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Abstract
An emerging theory of “linear algebraic pseudorandomness” aims to understand the linear alge-
braic analogs of fundamental Boolean pseudorandom objects where the rank of subspaces plays
the role of the size of subsets. In this work, we study and highlight the interrelationships be-
tween several such algebraic objects such as subspace designs, dimension expanders, seeded rank
condensers, two-source rank condensers, and rank-metric codes. In particular, with the recent
construction of near-optimal subspace designs by Guruswami and Kopparty [12] as a starting
point, we construct good (seeded) rank condensers (both lossless and lossy versions), which are
a small collection of linear maps Fn → Ft for t � n such that for every subset of Fn of small
rank, its rank is preserved (up to a constant factor in the lossy case) by at least one of the maps.

We then compose a tensoring operation with our lossy rank condenser to construct constant-
degree dimension expanders over polynomially large fields. That is, we give O(1) explicit lin-
ear maps Ai : Fn → Fn such that for any subspace V ⊆ Fn of dimension at most n/2,
dim

(∑
iAi(V )

)
> (1 + Ω(1)) dim(V ). Previous constructions of such constant-degree dimen-

sion expanders were based on Kazhdan’s property T (for the case when F has characteristic zero)
or monotone expanders (for every field F); in either case the construction was harder than that
of usual vertex expanders. Our construction, on the other hand, is simpler.

For two-source rank condensers, we observe that the lossless variant (where the output rank
is the product of the ranks of the two sources) is equivalent to the notion of a linear rank-metric
code. For the lossy case, using our seeded rank condensers, we give a reduction of the general
problem to the case when the sources have high (nΩ(1)) rank. When the sources have O(1)
rank, combining this with an “inner condenser” found by brute-force leads to a two-source rank
condenser with output length nearly matching the probabilistic constructions.
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1 Introduction

The broad area of pseudorandomness deals with efficiently generating objects that exhibit the
desirable properties of “random-like” objects despite being constructed either explicitly or
with limited randomness. Pseudorandomness is a central and influential theme in many areas
such as complexity theory, derandomization, coding theory, cryptography, high-dimensional
geometry, graph theory, and additive combinatorics. The topic has witnessed much progress
over the years and continues to be intensively studied. We now have non-trivial construc-
tions of various pseudorandom objects such as expander graphs, randomness extractors and
condensers, Ramsey graphs, list-decodable codes, compressed sensing matrices, Euclidean
sections, and pseudorandom generators for various concrete models. Despite the seemingly
different definitions and contexts of these objects, insights in pseudorandomness have un-
covered intimate connections between them, and this has led to a rich theory of “Boolean
pseudorandomness” drawing a common pool of broadly useful techniques (see for instance
the recent survey by Vadhan [26].)

Recently, there is an emerging theory of “linear-algebraic pseudorandomness” aimed at
understanding the linear-algebraic analogs of fundamental Boolean pseudorandom objects
where the dimension of subspaces plays the role analogous to min-entropy. Examples of
such algebraic objects include dimension expanders, subspace-evasive sets, subspace designs,
rank-preserving condensers, etc. In addition to their intrinsic interest, these notions also have
surprising applications; for instance, subspace-evasive sets to the construction of Ramsey
graphs [22] and list-decodable codes [13, 15], subspace designs to list decoding both in the
Hamming metric and the rank metric [16, 14], and rank-preserving condensers to affine
extractors [10] 1 and polynomial identity testing [18, 9].

In this work, we study several interesting pseudorandom objects in the linear-algebraic
world, such as subspace evasive sets, subspace designs, dimension expanders, seeded rank
condensers, and two-source rank condensers. The last two notions are also introduced in
this work, though closely related concepts were studied earlier in the literature. We briefly
and informally define these notions now, with more precise statements appearing in later
sections. A subspace evasive set is a (large) subset of Fn that has small intersection with
every low-dimensional subspace of Fn. Subspace designs are a (large) collection of subspaces
such that every low-dimensional subspace intersects few of them. Dimension expanders are
a (small) collection of linear maps Ai : Fn → Fn such that for every subspace V ⊆ Fn of
bounded dimension, the dimension of

∑
iAi(V ) is at least α · dim(V ) for a constant α > 1

(so that the dimension grows, or expands). Rank condensers are a (small) collection of linear
maps Fn → Ft (for t� n) such that for every subspace of dimension r, its image under at
least one of the maps has large dimension. That is, the ambient dimension n is condensed to
t while roughly the preserving the rank (to r in the lossless case (so that no rank is lost),
and to Ω(r) in the lossy case). A two-source rank condenser is a map E : Fn × Fn → Ft
such that for every pair A,B ⊆ Fn with rank r each, f(A×B) has rank Ω(r2) (or even r2

in the lossless case) – the tensor product construction is lossless but requires t = n2, so the
challenge here is to “derandomize” the tensor product and achieve t� n2 (and even t� n

1 Despite the usage of rank condensers in the Gabizon-Raz [10] construction of affine extractors, affine
extractors seem to not quite fit the restricted notion of a “linear-algebraic pseudorandom object” in the
sense of this paper. That is, the objects we consider focus on functions and their interactions with the
rank of certain sets of vectors. In contrast, affine extractors (maps which convert uniform distributions
over large-enough subspaces of the input into uniform distributions over full-dimensional subspaces)
require further statistical properties. The weaker notion of an affine disperser (a map which is almost
surjective on its range when applied to a large-enough subspace of the input) similarly requires one-sided
statistical guarantees.

APPROX/RANDOM’15



802 Dimension Expanders via Rank Condensers

for the lossy case for r �
√
n).

We remark that there are two perspectives on the above objects. The first is that of
subspaces, so that we only consider subspaces and their dimension. The second is that of sets
of vectors, where we consider arbitrary sets of vectors measured by their rank (the dimension
of their span). When the underlying functions are linear (or multilinear) these viewpoints
are equivalent. For example, one can equally discuss dimension expanders as expanding the
dimension of subspaces or as increasing the rank of matrices through matrix multiplication.
In this work, we take both views, using “dimension” to refer to subspaces and “rank” to refer
to the dimension of the span of a set of vectors.

Conceptually, our work highlights close interconnections between the above pseudoran-
domness notions. In particular, we show that subspace designs (which were introduced
in the context of list decoding variants of algebraic-geometric codes of Guruswami and
Xing [16]) are the same concept as lossless rank condensers while emphasizing a different
regime of parameters. This connection also highlights that a strong variant of subspace
designs yields lossy rank condensers. The near-optimal explicit construction of (strong)
subspace designs of Guruswami-Kopparty [12] then yields lossless and lossy rank condensers
with parameters close to the existential constructions. Our main technical application is an
explicit construction of constant-degree dimension expanders over polynomially large fields,
that expands all subspaces of Fn of dimension n/2 (say) by a factor α > 1. We achieve this
construction by first increasing the rank in a trivial way by increasing the dimension of the
ambient space, and then using a lossy rank condenser to reduce the ambient space back
to Fn while preserving the rank up to a constant factor. While previous constructions of
dimension expanders were at least as complicated as constructions of standard expander
graphs (or more so), our construction and analysis is rather elementary. Unfortunately, unlike
previous work, our techniques are currently best suited to large fields due to connections
with Reed-Solomon codes. However, we do obtain dimension expanders over small fields by
paying various logarithmic penalties.

Turning to two-source rank condensers, our original motivation to propose them was a
possible route to iteratively construct subspace-evasive sets that might offer some way around
the exponential dependence on intersection size that seems inherent to constructions based
on algebraic varieties. While there appears to be serious obstacles to such an approach, the
notion seems a fundamental one to study regardless. In this work, we focus on two-source
rank condensers f : Fn × Fn → Ft where the map f is bilinear as this seems like a natural
class of constructions to study. We observe that the lossless variant is equivalent to the
notion of a linear rank-metric code. Known optimal constructions of rank-metric codes such
as the Gabidulin codes thereby yield lossless two-source condensers with optimal output
length (equal to Θ(nr) for rank-r subsets of Fn). For lossy two-source rank condensers, we
can enumerate over the seeds of our seeded lossy condenser, applying it to both sources
separately and condensing the sources to rΘ(1) dimensions (from the original n). For small r
(e.g., constant), we can “concatenate” this construction with a near-optimal lossy two-source
condenser found by brute-force to obtain output length Θ(n/r), matching the non-constructive
bound. In general, our method reduces the problem to the case of relatively high “rate”
(when r ≈ n1/3), which is typically easier to tackle.

Organization: In the next three sections, we state (informal versions of) our results, all of
ideas behind them, and brief discussions of prior work for seeded rank condensers (section 2),
dimension expanders (section 3), and two-source rank condensers (section 4). An expanded
treatment with formal statements and proofs can be found in the full version of this work
(arXiv:1411.7455).

http://arxiv.org/abs/1411.7455
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2 Subspace Designs and Rank Condensers

We begin by discussing the notion of a subspace design, as recently defined by Guruswami
and Xing [16], and contrast this with the notion of a seeded (single source) rank condenser
to which we add the qualifier of lossless, as defined by Forbes, Saptharishi and Shpilka [8].
We will describe how these objects are essentially the same notion, where the rank condenser
can be considered the “primal” object and the subspace design the “dual” object. We then
introduce lossy rank condensers, a new notion that is key to our construction of dimension
expanders see section 3) and describe how the construction of subspace designs of Guruswami
and Kopparty [12] implies nearly optimal lossy rank condensers.

2.1 Subspace Designs
We begin with the definition of a subspace design, which is a collection of subspaces {Hi}i
such that small-dimensional subspaces V intersect few of the Hi.

I Definition 1 (Guruswami-Xing [16] and Guruswami-Kopparty [12]). Let F be a field. A
collection H = {Hi}i of subspaces Hi ⊆ Fn is a weak (r, L)-subspace design if for every
subspace V ⊆ Fn with dimV = r,

|{i | dim(Hi ∩ V ) > 0}| 6 L .

The collection H is a strong (r, L)-subspace design if for every subspace V ⊆ Fn with
dimV = r,∑

i

dim(Hi ∩ V ) 6 L .

The collection H is explicit if given an index i ∈ [|H|] a basis for the i-th subspace in H can
be constructed in poly(n, log |H|) operations in F.

We note here that the above subspaces Hi are not constrained to be of equal dimension.
Allowing the dimension of the Hi to vary could conceivably allow for improved constructions,
but no construction so far uses this freedom. As such, we will primarily concern ourselves
with the case when the dimensions are equal.

Guruswami-Xing [16] defined subspace designs as a way to prune list-decodable codes to
ensure a small list-size while maintaining high rate. As such, one wishes for the size |H| of
the design to be large while maintaining L of moderate size. In particular, they showed that
large designs exist non-constructively.

I Proposition (Guruswami-Xing [16]). Let Fq be a finite field. Let ε > 0, n > 8/ε and s 6 εn/2.
Then there is a strong (s, 8s/ε)-subspace design H of (1− ε)n-dimensional subspaces in Fnq
with |H| = qεn/8.

Note that the co-dimension of the subspaces in H is εn, which is twice that of the
maximum dimension s ≈ εn/2. We now further remark on the variations of this definition.
The following relation between the weak and strong versions is immediate.

I Lemma 2 (Guruswami-Kopparty [12]). Let F be a field, and let H be a collection of subspaces
in Fn. Then if H is a strong (r, L)-subspace design, then H is a weak (r, L)-subspace design.
If H is a weak (r, L)-subspace design, then H is a strong (r, rL)-subspace design.

We also observe that as every dimension 6 r subspace can be padded to a dimension r
subspace, we immediately can see that subspace designs apply to smaller subspaces as well.

APPROX/RANDOM’15



804 Dimension Expanders via Rank Condensers

I Lemma 3. Let F be a field, and let H be a weak/strong (r, L)-subspace design in Fn. Then
H is a (s, L)-subspace design over Fn for every 1 6 s 6 r.

While the above seems to allow one to focus on dimension r as opposed to dimension 6 r,
this is not strictly true as one can achieve a better list size L for dimension s� r. Similarly,
the above lemma relating strong and weak designs seems to suggest that qualitatively (up to
polynomial factors) these notions are the same. However, as described in the full version,
obtaining the appropriate (strong) list size simultaneously for all s 6 r will be crucial for our
application to constant-degree dimension expanders.

2.2 Seeded Lossless Rank Condensers
Strong subspace designs ask that for any small subspace V there is some Hi ∈ H so that
Hi ∩ V is small (that is, by averaging, dimHi ∩ V 6 L/|H|). Equivalently, the amount
of dimension in V that is outside Hi is large so that in some sense the dimension of V
is preserved. This perspective is more naturally phrased in the language of (seeded) rank
condensers, as defined by Forbes, Saptharishi and Shpilka [8]. The definition we use here is
tuned to the equivalence with subspace designs, and we recover their definition as the lossless
version of what we term here a lossy seeded rank condenser (see Theorem 6). We will discuss
prior work and motivation for rank condensers that is less immediately relevant in the full
version.

We begin with the definition of rank condensers, which are a collection of linear maps
ϕ : Fn → Ft (given explicitly as matrices E ∈ Ft×n) such that for any small-dimensional
subspace V , most of the maps have dimϕ(V ) = dimV .

I Definition 4. Let F be a field and n > r > 1. A collection of matrices E ⊆ Ft×n is a weak
(seeded) (r, L)-lossless rank condenser if for all matrices M ∈ Fn×r with rankM = r,

|{E | E ∈ E , rankEM < rankM}| 6 L .

The collection E is a strong (seeded) (r, L)-lossless rank condenser if for all matrices
M ∈ Fn×r with rankM = r,∑

E∈E
(rankM − rankEM) 6 L .

The collection E is explicit if given an index i ∈ [|E|] the i-th matrix of E can be constructed
in poly(t, n, log |E|) operations in F.

As we have many types of condensers in this paper (weak, strong, lossless, lossy, two-
source, etc.) we will often just refer to them as “condensers” (perhaps with some relevant
parameters such as “(r, ε)”) when the relevant adjectives are clear from context.

As it can only increase the quality of the condenser, one naturally considers the case
when rankE = t for all E ∈ E . However, we do not impose this restriction just as we do not
impose the condition that subspaces in subspace designs all have the same dimension. In
fact, by the equivalence of subspace designs and lossless rank condensers one can see that
these two restrictions are equivalent.

We briefly remark that as all of the pseudorandom objects we consider in this work are
linear (or in the case of two-source condensers, bilinear) we will often freely pass between
subspaces V ⊆ Fn of dimension r and matricesM ∈ Fn×r of rank r, using that we can choose
a basis for V so that col-spanM = V . As such, we will often treat a matrix M ∈ Fn×r as a
list of r vectors in Fn.

We now note that subspace designs are equivalent to lossless rank condensers.
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I Proposition 5. Let F be a field and n > r > 1. Let H = {Hi}i∈[N ] be a collection of
subspaces Hi ⊆ Fn and let E = {Ei}i∈[N ] ⊆ Ft×n be a collection of matrices, where we have
that row-spanEi = (Hi)⊥ for i ∈ [N ]. Then H is a weak/strong (r, L)-subspace design iff E
is a weak/strong (r, L)-lossless rank condenser.

While the above proposition is quite simple, it offers a unifying perspective of these
different objects which was key to obtaining further results.

2.3 Seeded Lossy Rank Condensers
While the above seeded lossless rank condensers already have applications to list-decodable
codes, rank condensers were defined in Forbes, Saptharishi and Shpilka [8] for quite different
reasons. We now give a definition closer to their motivation.

I Definition 6. Let F be a field and n > r > 1 and ε > 0. A collection of matrices E ⊆ Ft×n
is a (seeded) (r, ε)-lossy rank condenser if for all matrices M ∈ Fn×r with rankM = r,

rankEM > (1− ε) rankM ,

for some E ∈ E . The collection E is a (seeded) (6 r, ε)-lossy rank condenser if it a
(s, ε)-lossy condenser for all 1 6 s 6 r.

The collection E is explicit if given an index i ∈ [|E|] the i-th matrix of E can be
constructed in poly(t, n, log |E|) operations in F.

This notion is a natural linear-algebraic analogue of condensers for min-entropy from
the realm of Boolean pseudorandomness. One contrast is that we do not require that
most E ∈ E have the desired condensing property as this does not seem important for our
applications, although we note that our constructions can meet this stronger requirement
with the appropriate modifications2.

In is worthwhile to contrast this object with subspace designs or lossless rank condensers.
The goal of subspace designs was (due to connections with list-decodable codes) to construct
a large design while less focus was on the exact list-size bound. Here, we have the somewhat
different goal of obtaining a small collection of matrices, which is akin to obtaining a very
small list size in a subspace design. The focus on the collection being small is from the use
of such condensers in derandomization, as we will need to enumerate over each matrix in the
collection.

In particular, the notion of a (r, 0)-lossy rank condenser is of interest because it is lossless,
which is important for many applications. In particular, this notion was previously defined
as a “rank condenser (hitting set)” in the work of Forbes, Saptharishi and Shpilka [8], but
the construction and usage of these objects predates them3. In particular, Gabizon and
Raz [10] constructed a (r, 0)-condenser with size nr2, and they used this to construct affine
extractors over large fields. Karnin and Shpilka [18] named the construction of Gabizon and
Raz [10] to be “rank preserving subspaces” and used this construction to make a polynomial

2 More precisely, this stronger definition requiring most E to condense rank is closer to the definition
of a min-entropy condenser. Only requiring some E to condense rank is more akin to the notion of a
somewhere condenser as defined by Barak-Kindler-Shaltiel-Sudakov-Wigderson [3].

3 We note that the works we highlight are not necessarily the first or last in their respective lines of
research, and rather we only highlight those that (to the best of our knowledge) had results concerning
lossless rank condensers.

APPROX/RANDOM’15
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identity testing4 algorithm of Dvir and Shpilka [7] work in the black box model. Forbes
and Shpilka [9] later gave an improved construction of a rank condenser with only nr size,
and showed how they can be used to make another polynomial identity testing algorithm
of Raz and Shpilka [24] work in the black-box model. Forbes, Saptharishi and Shpilka [8],
building on the work of Agrawal, Saha, and Saxena [1], analyzed “multivariate” lossless rank
condensers as they arose naturally in a polynomial identity testing algorithm.

Beyond applications to polynomial identity testing, Lokshtanov, Misra, Panolan and
Saurabh [19] used these condensers to derandomize a fixed-parameter-tractable algorithm
of Marx [21] for `-matroid intersection. Cheung, Kwok and Lau [6] rediscovered the rank
condenser of Gabizon and Raz [10] and (among other things) used this to give faster
randomized algorithms for exact linear algebra. Forbes, Saptharishi and Shpilka [8] showed
a generic recipe to construct such rank condensers from any error-correcting code (over large
fields). Given these applications and connections present in (r, ε)-lossy rank condensers for
ε = 0, we expect the ε > 0 version will similarly have many applications.

We now quote the parameters given by the probabilistic method.

I Proposition 7. Let Fq be a finite field. Let n > r > 1, ε > 0 and t > (1− ε)r. Then there
is a collection E of k matrices E ⊆ Ft×nq that is a (r, ε)-lossy rank condenser whenever

k >
rn+ oq(1)

(t− (1− ε)r)(bεrc+ 1)− oq(1) . (2.1)

For ε > 0, there is a collection E of size k that is a (6 r, ε)-lossy rank condenser whenever

k >
n+ oq(1)

ε(t− (1− ε)r)− oq(1) .

Thus we can make the output size t of the condenser to be almost equal to the guaran-
teed dimension bound of (1 − ε)r. Further, we see that there is essentially no penalty in
(existentially) insisting for a (6 r, ε)-condenser over a (r, ε)-condenser. However, we show in
the full version that the notion of (6 r, ε)-condenser is provably stronger.

2.4 Our Results
We now turn to our constructions of condensers. We begin with the following construction,
which is the rank condenser of Forbes and Shpilka [9] and was named the folded Wronskian
by Guruswami-Kopparty [12].

I Construction 8 (Folded Wronskian). Let F be a field. Let ω ∈ F be an element of
multiplicative order > n. Define the matrix Wt,ω(x) ∈ F[x]JtK×JnK by (Wt,ω(x))i,j := (ωix)j.

Identifying FJnK with the vector space of degree < n polynomials F[x]<n, the matrix
Wt,ω(x) defines the linear map Wt,ω(x) : F[x]<n → F[x]t given by

f(x) 7→ (f(x), f(ωx), . . . , f(ωt−1x)) .

That is, we define JnK := {0, . . . , n − 1} so that in the above the indices i and j are
indexed from zero. When the value of ω is clear from context we will just write “Wt”. Note

4 The polynomial identity testing problem is when given a algebraic circuit C (perhaps from a restricted class
of circuits) to deterministically decide whether the circuit C computes the identically zero polynomial.
The black box version is where we only allow access to C by evaluating the polynomial it computes. See
Shpilka and Yehudayoff [25] for more on this problem.



M.A. Forbes and V. Guruswami 807

that the fact that ω has large multiplicative order means that we require a large field, in
particular that |F| > n.

The key result that forms the starting point for our constructions is the following analysis
of the folded Wronskian by Guruswami and Kopparty [12]. While their analysis was originally
in the context of subspace designs, we state their result here in the language of lossless rank
condensers as it is more natural in our context.

I Theorem 9 (Guruswami-Kopparty [12]). Assume the setup of Theorem 8 where we take
t > r > 1. Let S ⊆ {(ω`)j | j > 0} where ` > t− r + 1. Then {Wt(α) | α ∈ S} ⊆ Ft×n is a
strong (r, r(n−r)t−r+1 )-lossless rank condenser.

We note here that the above parameters are slightly stronger than what Guruswami and
Kopparty [12] obtain, as they only obtain a list bound of r(n−1)

t−r+1 . This improved bound
follows by using some of the analysis from Forbes, Saptharishi and Shpilka [8] as explained in
the full version. Note that this construction essentially matches the non-constructive bound
(2.1) when ε = 0.

The above analysis indicates that for a matrixM ∈ Fn×r of rank r that the total rank loss
over all maps in E is at most r(n−r)t−r+1 . Thus, by an averaging argument, at most 1/k · r(n−r)t−r+1 such
maps can have a rank loss of > k. This observation thus shows that the above construction
is not just a lossless rank condenser but also a lossy condenser (with different parameters).

I Corollary 10. Let F be a field. Let n, t > r > 1 and ε > 0, where ω ∈ F is an element
of multiplicative order > poly(n). Define E := {Wt,ω((ωt)j) | 0 6 j < n

ε(t−r+1)}, that is,
the folded Wronskian evaluated at n

ε(t−r+1) distinct powers of ωt. Then E is an explicit
(6 r, ε)-lossy rank condenser.

To motivate our below application to dimension expanders, suppose that r = n/3, t = n/2

and ε > 0. This says then that we construct a rank condenser that maps Fn to Fn/2 that
maps rank n/3 subspaces to rank (1− ε)n/3 subspaces. Further, this condenser is a collection
of at most

n

ε(n/2− n/3) = 6/ε

maps such that one map from the collection always preserves the desired rank. To obtain
these parameters, it is key to the analysis that we have a strong lossless condenser and
that it obtains the (near-optimal) bound given by Guruswami and Kopparty [12]. Note
that these condensing parameters are similar to the min-entropy condensers of Raz [23] and
Barak-Kindler-Shaltiel-Sudakov-Wigderson [3], which use a constant number of random bits
to condense a source with a constant-rate of min-entropy.

3 Dimension Expanders

We now turn to our main object of interest, dimension expanders. Dimension expanders
were defined by Barak, Impagliazzo, Shpilka and Wigderson [2] in an attempt to translate
challenges in the explicit construction of objects in Boolean pseudorandomness into the regime
of linear algebra. Indeed, in combinatorics there is a well-established analogy between subsets
of [n] and subspaces of vector spaces over finite fields. In the context of pseudorandomness,
we can then translate questions that manipulate the size of subsets S ⊆ {0, 1}n (or more
generally, the min-entropy of distributions over {0, 1}n) into questions about manipulating the
dimension of subspaces V ⊆ Fn. While these regimes seem different, it is conceivable that such

APPROX/RANDOM’15
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linear algebraic constructions could yield new constructions in Boolean pseudorandomness
(such as how the inner-product function is a two-source extractor). Indeed, as in the work of
Guruswami and Wang [13], this idea has borne fruit (if in a perhaps unexpected way) by
showing how linear-algebraic pseudorandom objects can improve list-decodable codes. We
now define dimension expanders.

I Definition 11. Let F be a field, n > 1, ε > 0 and α ∈ R with α > 1. A collection of
matrices A = {A1, . . . , Ad} ⊆ Fn×n is a (ε, α)-dimension expander of degree d if for all
subspaces V ⊆ Fn of dimension 6 εn that

dim
d∑
i=1

Ai(V ) = dim span{Ai(V )}di=1 > α · dimV .

The collection A is explicit if given an index i ∈ [|A|] the i-th matrix in A can be constructed
in poly(n, log |A|) operations in F.

We remark that in the above definition one can generally assume that all of the maps Ai
are of full-rank, as that can only increase dim

∑d
i=1Ai(V ). Similarly, one can assume that

A1 equals the identity matrix In as we can use the transform Ai 7→ A−1
1 Ai as again this does

not affect the size of the outputted dimension. While these assumptions are thus without
loss of generality, we will not impose them.

In general we will be most interested in (Ω(1), 1 + Ω(1))-dimension expanders of constant
degree, which we shall thus call “dimension expanders” without any quantification. This
parameter regime is of interest because it matches that of the probabilistic method, which
we quote the results of below.

I Proposition 12. Let Fq be a finite field, n > 1, ε > 0 and α ∈ R with α > 1. Then there
exist a collection matrices A = {A1, . . . , Ad} ⊆ Fn×n which is a (ε, α)-dimension expander
of degree d whenever

d > α+ 1
1− αε + oq(1) .

Put into more concrete terms, we see that one can existentially obtain (1/2d, d−O(1))-
dimension expansion with degree d. That we have an expansion of (1 − ε)d in a degree
d expander is akin to lossless (vertex) expanders which have a similar degree/expansion
relation, and these expanders have applications beyond those of normal expanders (see
Capalbo, Reingold, Vadhan and Wigderson [5] and references therein). While previous work
focused on obtaining constant-degree dimension expanders, our work raises the questions of
obtaining lossless dimension expanders so that we match the above bound. Our work, as
discussed below, lends itself to being particularly quantitative with regards to the size and
parameters of the construction. However, we do not obtain lossless dimension expanders,
and to the best of our knowledge, neither do the other previous constructions of dimension
expanders discussed below.

While we discuss prior work in depth in the full version, we briefly summarize the state
of art in dimension expanders in the following theorems.

I Theorem (Lubotzky and Zelmanov [20] and Harrow [17]). Let F be a field of characteristic
zero and n > 1. There exists an explicit O(1)-sized collection A ⊆ Fn×n such that A is a
(1/2, 1 + Ω(1))-dimension expander over Fn.

This construction requires characteristic zero as it uses a notion of distance that lacks a
good definition in finite characteristic.
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I Theorem (Bourgain and Yehudayoff [4]). Let n > 1. There exists an explicit O(1)-sized
collection A ⊆ {0, 1}n×n such that A is a (1/2, 1 + Ω(1))-dimension expander over Fn, over
every field F.

Note that the above construction is only a function of n, and not of the field, so that this
single construction is a dimension expander over all fields.

As explained in the full version of this work, both of the above constructions in some
way attempt to extend existing ideas about expander graphs into the world of dimension
expanders. The first replicates the representation theory approach to constructing expanding
Cayley graphs, and the second shows how bipartite expanders (with the strong requirement
of monotonicity) extend to also be dimension expanders.

Our Work: In our work we take a different approach to constructing dimension expanders
that treats such expanders as part of an emerging theme of linear-algebraic pseudorandomness
as seen by recent linear-algebraic approaches to list-decoding [11, 15, 13, 16, 14] and linear-
algebraic derandomization of subclasses of polynomial identity testing [18, 9]. The first
consequence of this perspective is that we work in fields that are at least polynomially large
as this is the setting of Reed-Solomon codes. To obtain dimension expanders over smaller
fields, a natural solution within this theory is to use “code concatenation” ideas from coding
theory. Unfortunately the idea of code concatenation is somewhat subtle in our setting and
so only supplies a concatenation (based on converting Reed-Solomon codes to BCH codes)
that incurs a logarithmic loss in the parameters. The second consequence is that we build
our dimension expanders out of the existing linear-algebraic pseudorandom objects that have
emerged from prior work. That is, just how in Boolean pseudorandomness the notions of
expanders, extractors and list-decodable codes are all related (see for example Vadhan [26]),
we leverage such connections to construct our expanders from the above mentioned rank
condensers.

We now explain our construction, which while ultimately was motivated by the connections
between two-source rank condensers and dimension expanders, can be explained in a self-
contained manner. The first observation is that one can easily obtain “(1, d)-expanders” of
degree d ∈ N if one is willing to allow the ambient space to grow. That is, consider the
tensor product Fn ⊗ Fd = Fnd. By properties of the tensor product, for V ⊆ Fn of rank
r 6 n we know that V ⊗ Fd is of rank rd in Fnd. Further, V ⊗ Fd can be seen as the image
of d maps Ti : Fn → Fnd where the i-th map places the space Fn into the “i-th block” of
(Fn)d = Fnd. In analogy to bipartite expander graphs, this is akin to giving each left vertex
its own “private neighborhood” of right vertices into which it expands.

While trivial, the above step now allows us to convert a question of expansion to a
question of condensing. That is, tensoring achieves expansion only because the output of the
maps are larger than the input, while the non-trivial aspect of dimension expanders is to
expand while keeping the output size the same. However, tensoring has expanded dimension
and thus we can now focus on reducing the output size. Specifically, suppose that we consider
V ⊆ Fn of rank r = n/2d. Then its image under the above tensoring is W :=

∑
i Ti(V ) of

dimension n/2. This subspace W lies in an nd-dimensional space and we wish return it to an
n-dimensional space while not losing too much in the dimension. However, this last problem
is exactly the question of lossy rank condensing. For constant d, the above discussion shows
that we can condense such constant-rate dimension in a lossy way using a constant number
of maps. In this example, we can condense W to Fn using dn

ε(n−n/2) = 2d
ε maps, at least one

of which produces a (1 − ε)n/2 dimensional space. Thus, this expands V ⊆ Fn of rank n
2d

to be of dimension (1− ε)n/2 within Fn, all while using d · 2d
ε = 2d2

ε maps (we multiply the

APPROX/RANDOM’15



810 Dimension Expanders via Rank Condensers

Fn Fnd Fn
tensoring

(6 εdn, δ)-lossy
condenser

degree d degree dn
δ(n−εdn)

dim εn dim εdn dim (1− δ)εdn

Figure 1 Constructing dimension expanders from tensoring and lossy rank condensers.

number of maps due to the composition). We summarize this composition in Figure 1.
We note that the above discussion has only discussed constant-rate rank, that is, subspaces

of Fn with rank Ω(n). Dimension expanders however are required to expand all small
subspaces. Our construction also handles this case as the lossy rank condensers we use will
preserve a (1− δ) fraction of the input rank, as long as that rank is small enough. In the
above sketch there is also the technicality that we must tensor with Fd with d being integral,
which restricts d > 2 as d = 1 does not yield expansion. With this construction alone one
would only obtain expansion in Fn for rank < n/d 6 n/2, but we manage to sidestep this
restriction by a simple truncation argument. Putting the above pieces together we obtain
the following theorem.

I Theorem 13 (Main Theorem). Let n, d > 1 and let 0 < ε 6 η < 1 be constants. Let
F be a field with |F| > poly(n). There is an explicit (ε, η/ε)-dimension expander in Fn of
degree Θ

(
1

ε2(1−η)2

)
. If ε < 1/d then for any δ > 0 there is an explicit (ε, (1− δ)d)-dimension

expander in Fn with degree d2

δ(1−εd) .

These expanders yield an expansion of α with degree ≈ α2, and thus are not lossless. In
particular, existential methods show that there are (ε, η/ε)-dimension expanders with degree
≈ 1/ε + 1

1−η . In remains an interesting challenge to obtain such lossless dimension expanders.
In particular, we note that we get “all of the dimension” from the tensoring step using only
one map from the condenser. This occurs despite the fact that most maps in the condenser
preserve all of the dimension (assuming we double the seed length). It seems natural to
hope that an integrated analysis of the tensoring and condensing stages would show that the
construction has a better expansion than what we obtain.

Over small fields our results are comparatively weaker as we simulate a larger field within
the small field (as how one transforms Reed-Solomon codes to BCH codes), so that we pay
various logarithmic penalties.

I Corollary 14. Let Fq be finite and n, d > 1. Then there are explicit
(

Θ
(

1
d logq dn

)
,Θ(d)

)
-

dimension expanders in Fnq of degree Θ(d2 logq dn).

4 Two-Source Rank Condensers

In the context of Boolean pseudorandomness, it is well known (see for example Vadhan [26])
that strong min-entropy seeded extractors (extractors that output the entropy of the source
plus the entropy of the seed) are equivalent to a form of vertex expansion. Such extractors
are a special case of (seedless) two-source min-entropy extractors where one of the sources
is very small and of full entropy. Thus, as a generalization of the dimension expanders we
have already defined, we can thus define the notion of a (seedless) two-source rank condenser.
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While it is often most natural to consider the two sources to be of equal dimension, to highlight
the connection to dimension expanders we consider sources with unbalanced dimension.

I Definition 15. Let F be a field and n > r > 1 andm > s > 1. A function f : Fn×Fm → Ft
is a (seedless) (r, s, ε)-two-source rank condenser if for all sets A ⊆ Fn and B ⊆ Fm
with rankA = r and rankB = s,

rank f(A×B) = rank{f(v, w)}v∈A,w∈B > (1− ε) rankA · rankB .

The function f is a (6 r, s, ε)-condenser if it is a (r′, s, ε)-condenser for all 1 6 r′ 6 r, and
(6 r,6 s, ε)-condensers are defined similarly. If ε = 0 we say the rank condenser is lossless
and it is otherwise lossy. The function f is bilinear if f(v, w) = (vtrEiw)ti=1 for Ei ∈ Fn×m.
The function f is explicit if it can be evaluated in poly(n,m, t) steps.

While this definition is naturally motivated as a generalization of dimension expanders, we
originally were motivated to study these objects due to potential applications for constructing
subspace evasive sets, as we describe in the full version.

Note that in general we allow the function f to be arbitrary, but in this work we will
restrict ourselves to bilinear functions f as they are the most natural. In this case, as
discussed after Theorem 4, we see that the function f acts on subspaces so that we ask that
for subspaces V ⊆ Fn and W ⊆ Fm that dim f(V,W ) > (1− ε) dimV · dimW . In this way,
f can be thought of as a derandomized tensor product.

We now quote the parameters as given by the probabilistic method.

I Proposition 16. Let Fq be a finite field. Let n > r > 1 and m > s > 1 and ε > 0.
Then there exists a function f : Fn × Fm → Ft which is a bilinear (r, s, ε)-two-source rank
condenser, assuming that

t >
n

εs
+ m

εr
+ (1− ε)rs+ oq(1) .

for ε > 0. Further, there exists an f which is a (6 r, s, ε)-condenser assuming that

t >
n

εs
+ m

ε
+ (1− ε)rs+ oq(1) .

If ε = 0, then there exists an f which is a (r, s, 0)-condenser assuming that

t > rn+ sm+ rs+ oq(1) .

In particular, in the balanced case of n = m and r = s this shows that any t >
2n
εr + (1 − ε)r2 + oq(1) suffices. Note that unlike the single-source setting, there is a large
penalty for condensing all small enough sources. Thus, the above gives (r, r, 1/2)-condensers
with output ≈ n

r + r2 but to obtain a (6 r, r, 1/2)-condenser the resulting output size is
≈ n+ r2 (and the full version shows that a linear dependence on n is needed in this case).

Note that in our definitions of seeded rank condensers there was no analogue of strong
min-entropy extractors, which are extractors that also recover the entropy of the seed in
addition to the entropy of the source. That is, in our setting, there is no “rank of the seed”
to recover as the seed is simply an index into the collection E . The notion of a two-source
rank condenser in some sense allows the second source to be a “seed” in that we can associate
elements of E with elements in a basis for Fm. However, we do not pursue this analogy
further as two-source rank condensers meeting the probabilistic method do not seem to yield
good lossy rank condensers in all regimes as two-source condensers can require an output
size which is linear in the input size.

APPROX/RANDOM’15
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However, the connection between two-source extractors and expanders does hold tightly
for the notion of rank, as we show. Note that for this connection it suffices to have condensers
that work when one of the two sources has full rank.

I Proposition 17. Let Fq be a finite field. For large n and all other parameters constant,
constructions of bilinear (6 δn,m, ε)-two-source rank condensers f : Fn × Fm → Ft that
meet the probabilistic method bound yield constructions of (δ, α)-dimension expanders in Fn
meeting the probabilistic method bound.

We also give constructions of two-source condensers using seeded rank condensers. That
is, for two sources we use a seeded rank condenser to condense each source and use a union
bound to show that the seed-length only doubles. We then enumerate over seeds and for each
seed we then tensor the two condensed sources together. While this approach seems wasteful,
we show that it yields optimal lossless two-source rank condensers by appropriate pruning. In
particular, we observe that this is the same construction as given by Forbes and Shpilka [9]
for an object known as a rank-metric code. We push this observation further to see that
bilinear lossless two-source rank condensers are equivalent to rank-metric codes. Using this
connection, we obtain optimal such condensers over any field using known constructions of
rank-metric codes.

I Theorem 18. Let F be a field and n > r > 1 and m > s > 1. Then there is an
explicit bilinear f : Fn × Fm → Ft which is a (r, s, 0)-two-source rank condenser with
t 6 O(min{r, s} · (n+m)).

We then turn to constructions of lossy two-source condensers, where our results are
considerably weaker. However, we are able to give near-optimal results for constant r by
using a brute force “inner condenser” and using our condense-then-tensor results as an “outer
condenser”.

I Proposition 19. Let F be a field and n > r > 1, where |F| > poly(n) and r 6 O(1). Then
there is an explicit bilinear (r, r, 1− (1− ε)3)-two source rank condenser f : Fn × Fn → Ft
with t 6 O(n/ε2r).

5 Open Questions

This work leaves several directions for future work.

1. Can one obtain (r, ε)-lossy seeded rank extractors, where the output is ≈ (1− ε)r? Our
methods require the output to be > r.

2. Can one develop of theory of “code concatenation” to improve our results for small fields?
3. Can one obtain lossy two-source rank condensers with output size o(nr) for r = ω(1)?
4. Can one obtain lossless dimension expanders, where the degree/expansion relationship

matches the probabilistic method?
5. What is the complexity of computing dimension expansion? That is, given matrices

A1, . . . , Ad ∈ Fn×n, compute the largest α so that A := {Ai}di=1 is a (1/2, α)-dimension
expander.
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