718 research outputs found

    A view of canonical extension

    Get PDF
    This is a short survey illustrating some of the essential aspects of the theory of canonical extensions. In addition some topological results about canonical extensions of lattices with additional operations in finitely generated varieties are given. In particular, they are doubly algebraic lattices and their interval topologies agree with their double Scott topologies and make them Priestley topological algebras.Comment: 24 pages, 2 figures. Presented at the Eighth International Tbilisi Symposium on Language, Logic and Computation Bakuriani, Georgia, September 21-25 200

    Canonical extensions and ultraproducts of polarities

    Full text link
    J{\'o}nsson and Tarski's notion of the perfect extension of a Boolean algebra with operators has evolved into an extensive theory of canonical extensions of lattice-based algebras. After reviewing this evolution we make two contributions. First it is shown that the failure of a variety of algebras to be closed under canonical extensions is witnessed by a particular one of its free algebras. The size of the set of generators of this algebra can be made a function of a collection of varieties and is a kind of Hanf number for canonical closure. Secondly we study the complete lattice of stable subsets of a polarity structure, and show that if a class of polarities is closed under ultraproducts, then its stable set lattices generate a variety that is closed under canonical extensions. This generalises an earlier result of the author about generation of canonically closed varieties of Boolean algebras with operators, which was in turn an abstraction of the result that a first-order definable class of Kripke frames determines a modal logic that is valid in its so-called canonical frames

    Canonical extension and canonicity via DCPO presentations

    Get PDF
    The canonical extension of a lattice is in an essential way a two-sided completion. Domain theory, on the contrary, is primarily concerned with one-sided completeness. In this paper, we show two things. Firstly, that the canonical extension of a lattice can be given an asymmetric description in two stages: a free co-directed meet completion, followed by a completion by \emph{selected} directed joins. Secondly, we show that the general techniques for dcpo presentations of dcpo algebras used in the second stage of the construction immediately give us the well-known canonicity result for bounded lattices with operators.Comment: 17 pages. Definition 5 was revised slightly, without changing any of the result

    Sheaf representations of MV-algebras and lattice-ordered abelian groups via duality

    Full text link
    We study representations of MV-algebras -- equivalently, unital lattice-ordered abelian groups -- through the lens of Stone-Priestley duality, using canonical extensions as an essential tool. Specifically, the theory of canonical extensions implies that the (Stone-Priestley) dual spaces of MV-algebras carry the structure of topological partial commutative ordered semigroups. We use this structure to obtain two different decompositions of such spaces, one indexed over the prime MV-spectrum, the other over the maximal MV-spectrum. These decompositions yield sheaf representations of MV-algebras, using a new and purely duality-theoretic result that relates certain sheaf representations of distributive lattices to decompositions of their dual spaces. Importantly, the proofs of the MV-algebraic representation theorems that we obtain in this way are distinguished from the existing work on this topic by the following features: (1) we use only basic algebraic facts about MV-algebras; (2) we show that the two aforementioned sheaf representations are special cases of a common result, with potential for generalizations; and (3) we show that these results are strongly related to the structure of the Stone-Priestley duals of MV-algebras. In addition, using our analysis of these decompositions, we prove that MV-algebras with isomorphic underlying lattices have homeomorphic maximal MV-spectra. This result is an MV-algebraic generalization of a classical theorem by Kaplansky stating that two compact Hausdorff spaces are homeomorphic if, and only if, the lattices of continuous [0, 1]-valued functions on the spaces are isomorphic.Comment: 36 pages, 1 tabl

    Monotonic Distributive Semilattices

    Get PDF
    In the study of algebras related to non-classical logics, (distributive) semilattices are always present in the background. For example, the algebraic semantic of the {→, ∧, ⊤}-fragment of intuitionistic logic is the variety of implicative meet-semilattices (Chellas 1980; Hansen 2003). In this paper we introduce and study the class of distributive meet-semilattices endowed with a monotonic modal operator m. We study the representation theory of these algebras using the theory of canonical extensions and we give a topological duality for them. Also, we show how our new duality extends to some particular subclasses.Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; ArgentinaFil: Menchón, María Paula. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    A fresh perspective on canonical extensions for bounded lattices

    Full text link
    This paper presents a novel treatment of the canonical extension of a bounded lattice, in the spirit of thetheory of natural dualities. At the level of objects, this can be achieved by exploiting the topological representation due to M. Ploscica, and the canonical extension can be obtained in the same manner as can be done in the distributive case by exploiting Priestley duality. To encompass both objects and morphismsthe Ploscica representation is replaced by a duality due to Allwein and Hartonas, recast in the style of Ploscica's paper. This leads to a construction of canonical extension valid for all bounded lattices,which is shown to be functorial, with the property that the canonical extension functor decomposes asthe composite of two functors, each of which acts on morphisms by composition, in the manner of hom-functors

    A survey of recent results on congruence lattices of lattices

    Full text link
    We review recent results on congruence lattices of (infinite) lattices. We discuss results obtained with box products, as well as categorical, ring-theoretical, and topological results

    Duality and canonical extensions for stably compact spaces

    Get PDF
    We construct a canonical extension for strong proximity lattices in order to give an algebraic, point-free description of a finitary duality for stably compact spaces. In this setting not only morphisms, but also objects may have distinct pi- and sigma-extensions.Comment: 29 pages, 1 figur

    Coalgebraic completeness-via-canonicity for distributive substructural logics

    Get PDF
    We prove strong completeness of a range of substructural logics with respect to a natural poset-based relational semantics using a coalgebraic version of completeness-via-canonicity. By formalizing the problem in the language of coalgebraic logics, we develop a modular theory which covers a wide variety of different logics under a single framework, and lends itself to further extensions. Moreover, we believe that the coalgebraic framework provides a systematic and principled way to study the relationship between resource models on the semantics side, and substructural logics on the syntactic side.Comment: 36 page
    corecore