5 research outputs found

    Polar Varieties, Real Equation Solving and Data-Structures: The hypersurface case

    Get PDF
    In this paper we apply for the first time a new method for multivariate equation solving which was developed in \cite{gh1}, \cite{gh2}, \cite{gh3} for complex root determination to the {\em real} case. Our main result concerns the problem of finding at least one representative point for each connected component of a real compact and smooth hypersurface. The basic algorithm of \cite{gh1}, \cite{gh2}, \cite{gh3} yields a new method for symbolically solving zero-dimensional polynomial equation systems over the complex numbers. One feature of central importance of this algorithm is the use of a problem--adapted data type represented by the data structures arithmetic network and straight-line program (arithmetic circuit). The algorithm finds the complex solutions of any affine zero-dimensional equation system in non-uniform sequential time that is {\em polynomial} in the length of the input (given in straight--line program representation) and an adequately defined {\em geometric degree of the equation system}. Replacing the notion of geometric degree of the given polynomial equation system by a suitably defined {\em real (or complex) degree} of certain polar varieties associated to the input equation of the real hypersurface under consideration, we are able to find for each connected component of the hypersurface a representative point (this point will be given in a suitable encoding). The input equation is supposed to be given by a straight-line program and the (sequential time) complexity of the algorithm is polynomial in the input length and the degree of the polar varieties mentioned above.Comment: Late

    Polar Varieties and Efficient Real Elimination

    Full text link
    Let S0S_0 be a smooth and compact real variety given by a reduced regular sequence of polynomials f1,...,fpf_1, ..., f_p. This paper is devoted to the algorithmic problem of finding {\em efficiently} a representative point for each connected component of S0S_0 . For this purpose we exhibit explicit polynomial equations that describe the generic polar varieties of S0S_0. This leads to a procedure which solves our algorithmic problem in time that is polynomial in the (extrinsic) description length of the input equations f1,>...,fpf_1, >..., f_p and in a suitably introduced, intrinsic geometric parameter, called the {\em degree} of the real interpretation of the given equation system f1,>...,fpf_1, >..., f_p.Comment: 32 page
    corecore