6,104 research outputs found

    Modified Boltzmann Transport Equation and Freeze Out

    Full text link
    We study Freeze Out process in high energy heavy ion reaction. The description of the process is based on the Boltzmann Transport Equation (BTE). We point out the basic limitations of the BTE approach and introduce Modified BTE. The Freeze Out dynamics is presented in the 4-dimensional space-time in a layer of finite thickness, and we employ Modified BTE for the realistic Freeze Out description.Comment: 9 pages, 2 figure

    Angular, spectral, and time distributions of highest energy protons and associated secondary gamma-rays and neutrinos propagating through extragalactic magnetic and radiation fields

    Full text link
    The angular, spectral and temporal features of the highest energy protons and accompanying them secondary neutrinos and synchrotron gamma-rays propagating through the intergalactic magnetic and radiation fields are studied using the analytical solutions of the Boltzmann transport equation obtained in the limit of the small-angle and continuous-energy-loss approximation.Comment: 21 pages, 13 figure

    Heat conduction in multifunctional nanotrusses studied using Boltzmann transport equation

    Get PDF
    Materials that possess low density, low thermal conductivity, and high stiffness are desirable for engineering applications, but most materials cannot realize these properties simultaneously due to the coupling between them. Nanotrusses, which consist of hollow nanoscale beams architected into a periodic truss structure, can potentially break these couplings due to their lattice architecture and nanoscale features. In this work, we study heat conduction in the exact nanotruss geometry by solving the frequency-dependent Boltzmann transport equation using a variance-reduced Monte Carlo algorithm. We show that their thermal conductivity can be described with only two parameters, solid fraction and wall thickness. Our simulations predict that nanotrusses can realize unique combinations of mechanical and thermal properties that are challenging to achieve in typical materials

    Fluid dynamical equations and transport coefficients of relativistic gases with non-extensive statistics

    Full text link
    We derive equations for fluid dynamics from a non-extensive Boltzmann transport equation consistent with Tsallis' non-extensive entropy formula. We evaluate transport coefficients employing the relaxation time approximation and investigate non-extensive effects in leading order dissipative phenomena at relativistic energies, like heat conductivity, shear and bulk viscosity.Comment: 9 pages, 5 figures. Some small corrections in the text and in the first figure caption; accepted for publication in Physical Review
    • …
    corecore