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Abstract

Materials that possess low density, low thermal conductivity, and high stiffness are desirable for

engineering applications, but most materials cannot realize these properties simultaneously due to

the coupling between them. Nanotrusses, which consist of hollow nanoscale beams architected into

a periodic truss structure, can potentially break these couplings due to their lattice architecture

and nanoscale features. In this work, we study heat conduction in the exact nanotruss geome-

try by solving the frequency-dependent Boltzmann transport equation using a variance-reduced

Monte Carlo algorithm. We show that their thermal conductivity can be described with only two

parameters, solid fraction and wall thickness. Our simulations predict that nanotrusses can real-

ize unique combinations of mechanical and thermal properties that are challenging to achieve in

typical materials.
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Multifunctional materials that possess specific combinations of properties in multiple

physical domains are highly desirable for engineering applications. For example, the thermal

protection system of a spacecraft requires lightweight materials that can withstand large

mechanical stresses and thermal gradients. However, despite considerable effort, materials

with ultralow density and thermal conductivity yet high elastic modulus are not readily

available. The origin of the difficulty is that these physical properties are correlated in

common bulk materials. For example, the hardest known material, diamond, also has the

highest thermal conductivity.1 Conversely, materials with ultralow thermal conductivity

such as graphene and polymer foams;2,3 carbon nanotube films,4 sponges,5 and aerogels;6

and silica aerogels7 have poor mechanical properties. A material that combines the desired

properties in both the mechanical and thermal domains remains unrealized.

Recent advances in nanofabrication techniques have facilitated the fabrication of “nano-

trusses,” which are periodic three-dimensional truss structures composed of hollow nanoscale

beams, as shown in Fig. 1a. Mechanical studies have established their exceptional stiffness to

weight ratio and ability to recover their original shape after 50 percent strain.8 The hierarchy

of length scales that characterizes nanotrusses spans several orders of magnitude—unit cell

widths are several microns, truss member diameters are hundreds of nanometers, and wall

thicknesses are tens of nanometers. Hierarchical materials can thus outperform bulk mate-

rials because the length scales governing various physical processes are decoupled.9–11 In the

case of nanotrusses, mechanical deformation occurs at the scale of truss member lengths,

while the length scales relevant for thermal transport are on the order of the wall thickness.

The thermal conductivity of nanotrusses is expected to be low due to porosity, and classical

size effects can lead to further reduction of thermal conductivity because the wall thickness

is comparable to the mean free path of phonons.12 However, the thermal transport properties

of nanotrusses have never been investigated.

Here, we study heat conduction in the exact nanotruss geometry and evaluate the poten-

tial of nanotrusses as a multifunctional material. The challenging task of simulating phonon

transport in the complex nanotruss geometry is performed using a variance-reduced MC

algorithm to solve the spectral Boltzmann transport equation. We show that nanotruss

thermal conductivity can be calculated using only two parameters, solid fraction and wall

thickness, which describe geometrical and size effects, respectively. Our result enables the

predictive design of nanotruss thermal conductivity.
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FIG. 1. (a) Scanning electron microscopy image of a nanotruss showing the hierarchical structure.

The octet (b) unit cell and (c) representative subunit, labeled with tunable truss parameters

including unit cell size s, major axis width a, minor axis width b, and wall thickness t. We use the

(d) “rectangular subunit” as the simulation geometry, with a spatial structure that is identical to

that of the octet.

We begin by describing our simulation approach. The Boltzmann transport equation

(BTE) governs phonon transport in the classical size effect regime. The spectral BTE with

the relaxation time approximation is given by

∂fω
∂t

+ vω · ∇fω = −fω − f
0
ω

τω
. (1)

where fω is the phonon distribution, f 0
ω is the local equilibrium distribution, vω is group

velocity, and τω is relaxation time. To solve this equation, we employ an efficient variance-

reduced Monte Carlo (MC) method developed by Péraud et al .13,14 This algorithm is around

106 times faster than traditional MC for the problem considered here, and enables simula-

tions of thermal transport in large and complex structures.

The details of the algorithm are provided in Ref. 14. Briefly, the algorithm computes

thermal conductivity by following the trajectory of phonon bundles, each carrying a fixed

amount of energy. Each of these particles has a frequency, polarization, position, and ve-

locity, which are initialized based on a reference temperature distribution. These properties

and state variables are updated as the particle advects and scatters through the domain

according to prescribed boundary conditions and internal scattering events. The particle is

terminated when the number of scattering events reaches a specified maximum. The aver-

age heat flux is calculated using particle effective power, grid cell volume, and cumulative

particle displacement through each grid cell.
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Here, we focus on nanotrusses with an octet architecture. The complex octet unit cell is

reduced into a representative subunit geometry by considering translational and rotational

symmetries. Converting curved faces into flat faces while retaining node connectivities

leads to the “rectangular subunit” in Fig. 1d, the primary simulation geometry in this

work. Despite these simplifications, the simulation domain is still very large and complex.

Phonons traveling through the structure scatter thousands of times to traverse the micron-

scale distance.

Due to the complexity and scale of the domain, code efficiency becomes paramount. The

traditional MC algorithm is not optimized for complex geometries. First, the traditional

approach for particle advection involves checking every boundary for a collision. For our

simulation domain, the computer would need to check 22 planar faces and several edges,

because a collision can only occur within the extents of the face. Therefore, boundary

checking is quite expensive in this scheme. Secondly, calculating the heat flux field requires

defining a grid over the entire domain, which is difficult for a complex geometry. Finally,

representing the geometry only as a collection of faces leads to the initialization of particles

from boundaries, meaning that the reference temperature distribution is implicitly set to a

constant value. Further efficiency improvements can be achieved if the reference temperature

reflects the actual temperature distribution more closely.14

To overcome these challenges, we decompose the domain into a collection of convex

subdomains. In the present case, the simulation domain can be divided into 42 convex prisms

and pyramids. This approach offers advantages at every step of the algorithm. First, by

tracking which subdomain the particle is in, the algorithm only needs to check the subdomain

boundaries for collisions, reducing the number of faces to check from 22 to 6 or fewer.

Identifying the next boundary collision or internal scattering location also becomes much

simpler compared to the traditional method for non-convex domains. Moreover, verifying

whether a point lies inside a convex polyhedron with N faces only requires N dot products,

whereas the same task for a non-convex shape may need many more operations. Thus, the

subdomain method expedites the advection routine by reducing the number of boundaries

that must be checked for collisions, simplifying the determination of whether a collision point

is on a boundary face, and eliminating the possibility of particles escaping the domain.

The subdomain method also avoids complications in setting up a spatial grid in the

entire domain by assigning a local coordinate system and grid to each subdomain. The
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local coordinate system maps each convex polyhedron into a common configuration, such

as the unit cube for parallelepipeds. This transformation simplifies the calculation of grid

cell occupancy and solid volumes. Each subdomain can have a different grid, which allows

computational effort to be concentrated in specific areas of interest.

Perhaps the greatest benefit of splitting the simulation domain into subdomains is the

ease of establishing a spatially linear reference temperature, which is done by initializing

particles uniformly throughout the domain. First, a random number is drawn to select a

subdomain according to relative volumes. Then, three more random numbers are drawn,

representing the local coordinates of a point in the chosen subdomain. Using a linear refer-

ence temperature reduces computational cost because the actual temperature distribution

in the simulation domain is close to linear. Therefore, volumetric generation of particles

reduces the variance of the MC algorithm and leads to significantly faster convergence than

occurs with the original algorithm.

To compute thermal conductivity using this optimized MC method, we establish a vertical

temperature gradient across the geometry and calculate the average steady-state heat flux

in a measurement region depicted in Fig. 2 inset. The effective thermal conductivity keff of

the corresponding nanotruss is obtained using Fourier’s law

q

Aeff

= keff
Th − Tc

Leff

(2)

where q is the total heat current, Th − Tc is the temperature difference, and Leff and Aeff

are the bounding box dimensions. In our simulations, we use the following inputs and

parameters. Structures have unit cell sizes s from 5 µm to 15 µm, major axis widths a

from 0.4 µm to 1.2 µm, and wall thicknesses t from 10 nm to 100 nm. The minor axis width

is b = a/4. We take the material of the nanotruss to be silicon with the dispersion and

relaxation times given in Ref. 15. In each MC simulation, 107 particles are propagated for

104 scattering events. Figure 2 demonstrates the MC convergence of heat flux with respect

to scattering events for a particular geometry.

Our BTE approach captures thermal conductivity reduction due to both porosity and

classical size effects. To isolate the role of size effects, we also solve the heat equation using

the finite element method (FEM) software COMSOL and apply the same procedure as above

to calculate effective thermal conductivity. The heat equation does not capture phonon size

effects, so comparing MC and FEM results is a convenient way to isolate geometrical and
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FIG. 2. Example convergence of average heat flux with respect to scattering events in a MC

simulation. Cumulative heat flux is normalized by the first scattering event contribution. The

inset shows the FEM temperature field and measurement region with cross-sectional area Ac.

Thermal conductivity is calculated from Fourier’s law using the total heat current q, temperature

difference Th − Tc, effective area Aeff , and effective length Leff . The full truss structure can be

constructed by tessellating the bounding box, which contains two node points X and Y that are

used for the thermal resistance model described in the text.

size effects in nanotruss structures.

We now present the results of our calculations for the octet nanotruss. Figure 3a plots

MC and FEM thermal conductivities of the rectangular subunit versus solid fraction. The

thermal conductivities of all the nanotrusses obtained from FEM collapse onto a single curve,

implying that the solid fraction can mostly describe the geometrical factors affecting heat

conduction. On the other hand, the MC results lie on separate curves that shift downwards

as wall thickness decreases. This decrease in thermal conductivity suggests that size effects

are occurring at the length scale of wall thickness, but also that the geometrical reduction

in thermal conductivity remains the same as that in the absence of size effects.

To explain the FEM data, we use a thermal resistance network consisting of a single

resistor connecting node points X and Y in the subunit bounding box, as indicated in Fig. 2

inset. The model assumes that no heat flows through the horizontal beams connecting
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FIG. 3. (a) MC and FEM thermal conductivities of the rectangular subunit (symbols) versus solid

fraction. The thermal conductivities are normalized by the solid phase thermal conductivity. The

results are consistent with a simple thermal resistance model (solid lines). (b) Ratio of MC and

FEM thermal conductivities (symbols connected by lines) versus wall thickness. Agreement with

Fuchs-Sondheimer theory suggests that wall thickness is the critical thermal length. The legend

specifies (s; a), where s is the unit cell size and a is the major axis width of each data set. (c) Ratio

of octet and rectangular subunit thermal conductivities versus solid fraction obtained using FEM.

The ratio is close to unity, thereby justifying the approximation of curved faces as flat faces.

isothermal nodes and that beam lengths are much greater than beam widths (s � a, b, t),

such that the resistance is

R =
Leff

keffAeff

=
LXY

ksolidAc

(3)

where ksolid is the bulk thermal conductivity of silicon, LXY is the distance between X and

Y , and Ac is the beam cross-sectional area labeled in Fig. 2 inset. By relating all geometrical

parameters to s and Ac, we obtain a simple linear relation between thermal conductivity

and solid fraction ρ̄,
keff

ksolid

=
32
√

2Ac

s2
≈ ρ̄

3
(4)

As shown in Fig. 3a, the FEM simulation results are consistent with the theory, particularly

for small values of ρ̄ where the thin beam approximation is well satisfied. Therefore, the

thermal conductivity of nanotrusses in the absence of classical size effects can be determined

using only the solid fraction.

We examine the role of size effects by computing the ratio of MC to FEM thermal conduc-

tivities in Fig. 3b. When plotted against wall thickness, the data matches well with Fuchs-
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Sondheimer theory,16 which describes thermal transport along thin films. The decrease in

thermal conductivity with decreasing wall thickness is caused by boundary scattering at

length scales commensurate to phonon mean free paths. The theory explains our simulation

results for the entire range of cell sizes and major axes considered in this study, implying

that the dominant thermal length scale for nanotrusses in this regime is wall thickness. Fur-

ther, our calculation shows that the effect of boundary scattering can be described using the

well-known analytical equation from Fuchs-Sondheimer theory.

The MC data can be explained by combining the thermal resistance model with Fuchs-

Sondheimer theory. The wall thickness dependent family of curves plotted in Fig. 3a demon-

strates that this hybrid theory can provide a reasonable estimate for the MC thermal con-

ductivities. Hence, these simulation results show that octet nanotrusses can be modeled as

a simple thermal resistance network with reduced solid thermal conductivity. Specifically,

their thermal conductivity can be determined by two parameters—solid fraction describes

geometrical effects through a thermal resistance model, and wall thickness describes size

effects through Fuchs-Sondheimer theory.

To justify the approximation of curved faces as flat faces in this work, Fig. 3c compares

FEM simulations of the octet and rectangular subunit structures, which have curved and

flat faces, respectively. The thermal conductivities are within 6 percent of each other, which

validates the similarity of the two geometries. Although these heat equation calculations do

not account for classical size effects, we have demonstrated that size effects are primarily

dependent on wall thickness, which is the same for both structures.

Using the calculated thermal conductivities along with an elastic modulus scaling from

literature E ∝ (ρ̄)1.61,17 we compare the thermomechanical properties of silicon octet nano-

trusses to those of other materials. We use an Ashby-type plot of specific modulus versus

thermal conductivity, shown in Fig. 4, to visualize the parameter space. Compared to exist-

ing insulation materials such as aerogels and space shuttle tiles, nanotrusses can potentially

achieve specific stiffnesses that are 10 to 1000 times higher while reaching even lower thermal

conductivities.

It is possible to further reduce thermal conductivity and increase elastic stiffness by

manipulating composition. Nanotrusses constructed with materials such as alumina may

have better multifunctional properties than silicon due to lower bulk thermal conductivity

and higher specific modulus. In addition, nanotrusses with multilayered walls could achieve
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FIG. 4. Ashby-type plot of specific modulus and thermal conductivity. Silicon octet nanotrusses

occupy a previously unreachable region in the parameter space, thus demonstrating their potential

in multifunctional applications. The dashed line is a fit to guide the eye.

further reductions in thermal conductivity by increasing phonon interfacial scattering.

In summary, we have studied thermal transport in multifunctional nanotrusses using a

variance-reduced Monte Carlo algorithm to solve the BTE. The thermal conductivity of

nanotrusses can be described with two parameters, solid fraction and wall thickness. All

of the geometries studied in this work can be fabricated using two-photon lithography and

standard nanofabrication techniques. Nanotrusses therefore have considerable potential to

fulfill the need for simultaneously lightweight, stiff, and thermally insulating materials in

aerospace applications and other structural thermal insulation applications.
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