1,066 research outputs found

    Analysis of conserved microRNAs in floral tissues of sexual and apomictic Boechera species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Apomixis or asexual seed formation represents a potentially important agronomic trait whose introduction into crop plants could be an effective way to fix and perpetuate a desirable genotype through successive seed generations. However, the gene regulatory pathways underlying apomixis remain unknown. In particular, the potential function of microRNAs, which are known to play crucial roles in many aspects of plant growth and development, remains to be determined with regards to the switch from sexual to apomictic reproduction.</p> <p>Results</p> <p>Using bioinformatics and microarray validation procedures, 51 miRNA families conserved among angiosperms were identified in <it>Boechera</it>. Microarray assay confirmed 15 of the miRNA families that were identified by bioinformatics techniques. 30 cDNA sequences representing 26 miRNAs could fold back into stable pre-miRNAs. 19 of these pre-miRNAs had miRNAs with <it>Boechera</it>-specific nucleotide substitutions (NSs). Analysis of the Gibbs free energy (ΔG) of these pre-miRNA stem-loops with NSs showed that the <it>Boechera</it>-specific miRNA NSs significantly (p ≤ 0.05) enhance the stability of stem-loops. Furthermore, six transcription factors, the Squamosa promoter binding protein like SPL6, SPL11 and SPL15, Myb domain protein 120 (MYB120), RELATED TO AP2.7 DNA binding (RAP2.7, TOE1 RAP2.7) and TCP family transcription factor 10 (TCP10) were found to be expressed in sexual or apomictic ovules. However, only SPL11 showed differential expression with significant (p ≤ 0.05) up-regulation at the megaspore mother cell (MMC) stage of ovule development in apomictic genotypes.</p> <p>Conclusions</p> <p>This study constitutes the first extensive insight into the conservation and expression of microRNAs in <it>Boechera </it>sexual and apomictic species. The miR156/157 target squamosa promoter binding protein-like 11 (SPL11) was found differentially expressed with significant (p ≤ 0.05) up-regulation at the MMC stage of ovule development in apomictic genotypes. The results also demonstrate that nucleotide changes in mature miRNAs significantly (p ≤ 0.05) enhance the thermodynamic stability of pre-miRNA stem-loops.</p

    Effects of Plant Stress on Facultative Apomixis in Boechera (Brassicaceae)

    Get PDF
    In flowering plants, apomixis is asexual reproduction by seeds. Apomixis allows the production of offspring with the same genetic characteristics as the mother plant. Fertilization is not required. Apomixis could become a tool for naturally cloning high-yielding crop hybrids through their own seed. However, apomixis does not occur in major crop plants, except for citrus. In the present study, genes that might cause apomixis in naturally occurring apomictic plants were investigated. Sexual and apomictic species of the genus Boechera were exposed to stressed and non-stressed conditions. Effects of these treatments on the expression of apomixis was then measured. Stress triggered an increase in the frequency of sexual development in apomictic plants, but continuation of sexual development to form sexual seeds did not occur. Stress also triggered alterations in the expression of stress-related genes

    Pharmacologically Induced Meiosis Apomeiosis Interconversions in \u3ci\u3eBoechera\u3c/i\u3e, \u3ci\u3eArabidopsis\u3c/i\u3e and \u3ci\u3eVigna\u3c/i\u3e

    Get PDF
    Apomixis is a clonal propagation method that produces offspring identical to the mother plant. With this feature, superior traits could be maintained over generations. However, our knowledge about apomixis is limited. In this study, we analyzed several apomictic Boechera embryologically to learn the details of apomixis. Meanwhile, we designed chemical treatments to successfully induce sex in apomictic plants and apomixis in sexual plants. Our experiments suggest that sex and apomixis coexist in plants and that sexual and apomictic reproduction are switchable by treating with specific chemicals

    Apospory and Diplospory in Diploid Boechera (Brassicaceae) May Facilitate Speciation by Recombination-Driven Apomixis-to-Sex Reversals

    Get PDF
    Apomixis (asexual seed formation) in angiosperms occurs either sporophytically, through adventitious embryony, or gametophytically, where an unreduced female gametophyte (embryo sac) forms and produces an unreduced egg that develops into an embryo parthenogenetically. Multiple types of gametophytic apomixis occur, and these are differentiated based on where and when the unreduced gametophyte forms, a process referred to as apomeiosis. Apomeiotic gametophytes form directly from ameiotic megasporocytes, as in Antennaria-type diplospory, from unreduced spores derived from 1st division meiotic restitutions, as in Taraxacum-type diplospory, or from cells of the ovule wall, as in Hieracium-type apospory. Multiple types of apomeiosis occasionally occur in the same plant, which suggests that the different types occur in response to temporal and/or spatial shifts in termination of sexual processes and onset timing of apomeiosis processes. To better understand the origins and evolutionary implications of apomixis in Boechera (Brassicaceae), we determined apomeiosis type for 64 accessions representing 44 taxonomic units. Plants expressing apospory and diplospory were equally common, and these generally produced reduced and unreduced pollen, respectively. Apospory and diplospory occurred simultaneously in individual plants of seven taxa. In Boechera, apomixis perpetuates otherwise sterile or semisterile interspecific hybrids (allodiploids) through multiple generations. Accordingly, ample time, in these multigenerational clones, is available for rare meioses to produce haploid, intergenomically recombined male and female gametes. The fusion of such gametes could then produce segmentally autoploidized progeny. If sex re-emerges among such progeny, then new and genomically unique sexual species could evolve. Herein, we present evidence that such apomixis-facilitated speciation is occurring in Boechera, and we hypothesize that it might also be occurring in facultatively apomictic allodiploids of other angiospermous taxa

    Comparative Expression Profiles of SUVH7 in Sexual and Apomict Boechera spp. Display Differential Expression

    Get PDF
    Genomic imprinting is parent-of-origin specific gene expression in embryo nourishing tissues endosperm and placenta in flowering plants and mammals, respectively. Seeds are formed with double fertilization in flowering plants and the endosperm has a 3n chromosome set with the contribution of 2 maternal and 1 paternal genome. Any deviation from this ratio (2m%2B1p) results in seed abortion in many species, however, apomict species modify their gametogenesis or fertilization to survive. Boechera divaricarpa is a diploid apomict plant species that can produce seeds with a 4m%253A1p parental genome ratio in endosperm and produce viable seeds. SUVH7, on the other hand, is a histone methyltransferase that has a catalytic SET domain responsible for epigenetic control of gene expression. In this study, we characterized the structures of the SUVH7 gene and compared the mRNA levels of SUVH7 in diploid apomict and sexual Boechera spp. in unopened immature buds and manually pollinated siliques representing the -pre and -post pollination stages, respectively. The expression level of SUVH7 in apomict B. divaricarpa has reached the max level 48 hours later following pollination, while in sexual B. stricta its expression level has dramatically decreased. Therefore, our study suggests the importance of epigenetic reprogramming in apomicts during seed development since chromatin marks via SUVH7 are commonly associated with the activation of transcription in plants

    Selection of reference genes for quantitative real-time PCR expression studies of microdissected reproductive tissues in apomictic and sexual Boechera

    Get PDF
    Abstract Background Apomixis, a natural form of asexual seed production in plants, is considered to have great biotechnological potential for agriculture. It has been hypothesised that de-regulation of the sexual developmental pathway could trigger apomictic reproduction. The genus Boechera represents an interesting model system for understanding apomixis, having both sexual and apomictic genotypes at the diploid level. Quantitative qRT-PCR is the most extensively used method for validating genome-wide gene expression analyses, but in order to obtain reliable results, suitable reference genes are necessary. In this work we have evaluated six potential reference genes isolated from a 454 (FLX) derived cDNA library of Boechera. RNA from live microdissected ovules and anthers at different developmental stages, as well as vegetative tissues of apomictic and sexual Boechera, were used to validate the candidates. Results Based on homologies with Arabidopsis, six genes were selected from a 454 cDNA library of Boechera: RPS18 (Ribosomal sub protein 18), Efalpha1 (Elongation factor 1 alpha), ACT 2 (Actin2), UBQ (polyubiquitin), PEX4 (Peroxisomal ubiquitin conjugating enzyme) and At1g09770.1 (Arabidopsis thaliana cell division cycle 5). Total RNA was extracted from 17 different tissues, qRT-PCRs were performed, and raw Ct values were analyzed for primer efficiencies and gene ratios. The geNorm and normFinder applications were used for selecting the most stable genes among all tissues and specific tissue groups (ovule, anthers and vegetative tissues) in both apomictic and sexual plants separately. Our results show that BoechRPS18, BoechEfα1, BoechACT2 and BoechUBQ were the most stable genes. Based on geNorm, the combinations of BoechRPS18 and BoechEfα1 or BoechUBQ and BoechEfα1 were the most stable in the apomictic plant, while BoechRPS18 and BoechACT2 or BoechUBQ and BoechACT2 performed best in the sexual plant. When subgroups of tissue samples were analyzed, different optimal combinations were identified in sexual ovules (BoechUBQ and BoechEfα1), in anthers from both reproductive systems (BoechACT2 and BoechEfα1), in apomictic vegetative tissues (BoechEfα1 and BoechACT2) and sexual vegetative tissues (BoechRPS18 and BoechEfα1). NormFinder ranked BoechACT2 as the most stable in the apomictic plant, while BoechRPS18 was the best in the sexual plant. The subgroups analysis identified the best gene for both apomictic and sexual ovules (BoechRPS18), for anthers from both reproductive system (BoechEfα1) and for apomictic and vegetative tissues (BoechACT2 and BoechRPS18 respectively) Conclusions From a total of six tested genes, BoechRPS18, BoechEfα1, BoechACT2 and BoechUBQ showed the best stability values. We furthermore provide detailed information for the accurate normalization of specific tissue gene expression analyses of apomictic and sexual Boechera.</p

    Cloning and Functional Analysis of three Cold Regulated <em>CBF</em> Genes in the Overwintering Crucifer <em>Boechera stricta</em>

    Get PDF
    In this research, we isolated three CBF (C-repeat-Binding Factors) genes from two genotypes of Boechera stricta with contrasting freezing tolerance and characterized their structure and expression patterns in response to cold treatment. An amino acid sequence comparison revealed that the CBF genes in B. stricta showed high conservation in the AP2 domain and PKKP/RAGR motif like other cold adaptable Brassicaceae. The pairwise sequence alignment of the CBF genes isolated from two genotypes of B. stricta showed non-synonymous mutations in CBF 2 and 3. Gene expression analysis demonstrated that CBF genes in B. stricta have expression patterns similar to CBFs in A. thaliana in response to cold treatment, while differential expression at the molecular level in CBF and COR genes was presented between two genotypes of B. stricta. Our results suggest that signal transduction of three CBF genes can be one of the central pathways in the development of freezing tolerance in B. stricta

    A Basic ddRADseq Two‐Enzyme Protocol Performs Well with Herbarium and Silica‐Dried Tissues across Four Genera

    Get PDF
    PREMISE: The ability to sequence genome-scale data from herbarium specimens would allow for the economical development of data sets with broad taxonomic and geographic sampling that would otherwise not be possible. Here, we evaluate the utility of a basic double-digest restriction site–associated DNA sequencing (ddRADseq) protocol using DNAs from four genera extracted from both silica-dried and herbarium tissue. METHODS: DNAs from Draba, Boechera, Solidago, and Ilex were processed with a ddRADseq protocol. The effects of DNA degradation, taxon, and specimen age were assessed. RESULTS: Although taxon, preservation method, and specimen age affected data recovery, large phylogenetically informative data sets were obtained from the majority of samples. DISCUSSION: These results suggest that herbarium samples can be incorporated into ddRADseq project designs, and that specimen age can be used as a rapid on-site guide for sample choice. The detailed protocol we provide will allow users to pursue herbariumbased ddRADseq projects that minimize the expenses associated with fieldwork and sample evaluation

    A Continental-Wide Perspective: The Genepool of Nuclear Encoded Ribosomal DNA and Single-Copy Gene Sequences in North American Boechera (Brassicaceae)

    Get PDF
    74 of the currently accepted 111 taxa of the North American genus Boechera (Brassicaceae) were subject to pyhlogenetic reconstruction and network analysis. The dataset comprised 911 accessions for which ITS sequences were analyzed. Phylogenetic analyses yielded largely unresolved trees. Together with the network analysis confirming this result this can be interpreted as an indication for multiple, independent, and rapid diversification events. Network analyses were superimposed with datasets describing i) geographical distribution, ii) taxonomy, iii) reproductive mode, and iv) distribution history based on phylogeographic evidence. Our results provide first direct evidence for enormous reticulate evolution in the entire genus and give further insights into the evolutionary history of this complex genus on a continental scale. In addition two novel single-copy gene markers, orthologues of the Arabidopsis thaliana genes At2g25920 and At3g18900, were analyzed for subsets of taxa and confirmed the findings obtained through the ITS data
    corecore