1,306 research outputs found

    MonoPerfCap: Human Performance Capture from Monocular Video

    Full text link
    We present the first marker-less approach for temporally coherent 3D performance capture of a human with general clothing from monocular video. Our approach reconstructs articulated human skeleton motion as well as medium-scale non-rigid surface deformations in general scenes. Human performance capture is a challenging problem due to the large range of articulation, potentially fast motion, and considerable non-rigid deformations, even from multi-view data. Reconstruction from monocular video alone is drastically more challenging, since strong occlusions and the inherent depth ambiguity lead to a highly ill-posed reconstruction problem. We tackle these challenges by a novel approach that employs sparse 2D and 3D human pose detections from a convolutional neural network using a batch-based pose estimation strategy. Joint recovery of per-batch motion allows to resolve the ambiguities of the monocular reconstruction problem based on a low dimensional trajectory subspace. In addition, we propose refinement of the surface geometry based on fully automatically extracted silhouettes to enable medium-scale non-rigid alignment. We demonstrate state-of-the-art performance capture results that enable exciting applications such as video editing and free viewpoint video, previously infeasible from monocular video. Our qualitative and quantitative evaluation demonstrates that our approach significantly outperforms previous monocular methods in terms of accuracy, robustness and scene complexity that can be handled.Comment: Accepted to ACM TOG 2018, to be presented on SIGGRAPH 201

    Human Pose Estimation from Monocular Images : a Comprehensive Survey

    Get PDF
    Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problema into several modules: feature extraction and description, human body models, and modelin methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used

    Vision-Based Observation Models for Lower Limb 3D Tracking with a Moving Platform

    Get PDF
    Tracking and understanding human gait is an important step towards improving elderly mobility and safety. This thesis presents a vision-based tracking system that estimates the 3D pose of a wheeled walker user's lower limbs with cameras mounted on the moving walker. The tracker estimates 3D poses from images of the lower limbs in the coronal plane in a dynamic, uncontrolled environment. It employs a probabilistic approach based on particle filtering with three different camera setups: a monocular RGB camera, binocular RGB cameras, and a depth camera. For the RGB cameras, observation likelihoods are designed to compare the colors and gradients of each frame with initial templates that are manually extracted. Two strategies are also investigated for handling appearance change of tracking target: increasing number of templates and using different representations of colors. For the depth camera, two observation likelihoods are developed: the first one works directly in the 3D space, while the second one works in the projected image space. Experiments are conducted to evaluate the performance of the tracking system with different users for all three camera setups. It is demonstrated that the trackers with the RGB cameras produce results with higher error as compared to the depth camera, and the strategies for handling appearance change improve tracking accuracy in general. On the other hand, the tracker with the depth sensor successfully tracks the 3D poses of users over the entire video sequence and is robust against unfavorable conditions such as partial occlusion, missing observations, and deformable tracking target
    • …
    corecore