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Abstract. Detection of humans and estimation of their 2D poses from
a single image are challenging tasks. This is especially true when part
of the observation is occluded. However, given a limited class of move-
ments, poses can be recovered given the visible body-parts. To this end,
we propose a novel template representation where the body is divided
into five body-parts. Given a match, we not only estimate the joints in
the body-part, but all joints in the body. Quantitative evaluation on a
HumanEva walking sequence shows mean 2D errors of approximately
27.5 pixels. For simulated occlusion of the head and arms, similar results
are obtained while occlusion of the legs increases this error by 6 pixels.

1 Introduction

Detection and analysis of humans in images and video has received much re-
search attention. Much of this work has focussed on improving pose estimation
accuracy, while partly ignoring the difficult localization task. Despite increased
awareness, the two processes are still researched in relative isolation, inhibiting
use in realistic scenarios. Another issue with the current state of the art is the
sensitivity to cluttered environments and, in particular, partial occlusions.

In this paper, we aim at simultaneous human detection and 2D pose recov-
ery from monocular images in the presence of occlusions. We do not model the
background, thus allowing our algorithm to work in cluttered and dynamical en-
vironments. Moreover, we do not rely on motion, which makes this work suitable
for estimation from a single image. The output of our approach can be used as
input for a more accurate pose estimation algorithm.

Our contribution is a novel template representation that is a compromise be-
tween half-limb locators and full-body templates. We observe that, for a limited
class of movements, there is a strong dependency of the location of body-parts.
For example, given a walking motion, we can accurately predict the location of
the left foot while observing only the right leg. To this end, we divide the human
body into five body-parts (arms, legs and torso), each of which has associated
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edge and appearance templates. Given a match of body-part template and im-
age, we not only vote for the locations of joints within the body-part but for all
joint locations. This approach allows us to recover the location of joints that are
occluded (see Figure 1). We first apply the templates over different scales and
translations, which results in a number of estimations for each 2D joint location.
In a second step, we approximate the final joint locations from these estimations.
In this paper, we focus on the matching, and keep the estimation part trivial.

Fig. 1. Conceptual overview of our method. Templates from different exemplars and
body-parts match with part of the image. Joint estimates are combined into a pose
estimate. Anchor points are omitted for clarity. Occlusion of the right arm is simulated.

We first discuss related work on human pose recovery. The two steps of our
approach, template matching and pose estimation, are discussed in Section 3
and 4, respectively. We present quantitative results on the HumanEva data set
in Section 5, both on original image sequences and with simulated occlusion.

2 Related work on monocular pose recovery

Human motion analysis has received much attention [1]. Here, we focus on
monocular approaches that can deal with cluttered, dynamic environments and
occlusion. In general, we can distinguish two main classes of approach.

Discriminative approaches learn a mapping from image to human pose, where
the image’s region of interest is conveniently encoded in an image descriptor.
Such approaches focus on poses that are probable, which is a subset of all physi-
cally feasible ones. Shakhnarovich et al. use histograms of directed edges and an
efficient form of hashing to find similar upper-body examples from a database
[2]. Agarwal and Triggs learn regression functions from extracted silhouettes to
the pose space [3]. These approaches are efficient, but require accurate localiza-
tion of the human from the image. Also, they are sensitive to noise in the region
of interest, due to incorrect localization or segmentation, and occlusions. Some
of these drawbacks have been partially overcome. Agarwal and Triggs suppress
background edges by learning human-like edges [4], thus alleviating the need for
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good segmentation. Howe uses boundary fragment matching to match partial
shapes [5]. His approach requires that background and foreground are labelled,
which limits its applicability to domains where such a segmentation is available.

The second class is that of generative approaches. These use a human body
model that describes both the visual and kinematic properties of the human
body. Pose estimation essentially becomes the process of finding the parameters
that minimize the matching error of the visual model with the image observation.
The direction of estimation is either top-down or bottom-up.

In top-down estimation, a projection of the human body is matched with
the image observation, and usually improved iteratively. The process is hindered
when occlusion occurs, since no image observation is present for the occluded
part of the body. This can lead to unrealistic poses. A practical problem is the
high dimensionality of the parameter space, which makes initialization difficult.
A recent trend to overcome this problem is to use dimensionality reduction in
the kinematic space, which can be regarded as a strong prior on the poses that
can be observed. This reduction is motivated by the observation that there is a
strong correlation in the movement of different body-parts, especially within a
single movement class such as walking.

In bottom-up estimation, individual body-parts are found first and then as-
sembled into a human body. In general, weak half-limb detectors are used, which
results in many false positives. Many of the bottom-up works resemble the picto-
rial structures idea, which was applied to human pose recovery by Felzenszwalb
and Huttenlocher [6]. The key idea is to model the appearance of each body-
part individually, and represent the deformable assembly of parts by spring-like
connections between pairs of parts. Most of this work relies on inference in a tree-
like structure [6–8]. Again, there are two major drawbacks with the bottom-up
approach. First, the templates are usually at the level of half-limbs (e.g. upper
leg) which results in many false positives. Second, the 2D location of a template
does not give any information about the rotation in 3D. This makes it difficult
to enforce 3D constraints, such as joint limits, on the relative position between
two adjacent parts. Such constraints are needed to be able to recover realistic
poses when part of the body in the image is occluded.

In this paper, we propose an approach that combines several of the ideas
above, while it aims at circumventing the major drawbacks. First, we use body-
part templates that encode exactly one body-part (arm, leg or torso). Such a
representation is more meaningful than that of half-limbs, and reduces false
positives since the templates implicitly encode the view. Second, by voting over
all joints, we can cope with occlusions and recover the pose even when only
part of the human body is visible. See also Figure 1. Our work resembles that
of Demirdjian and Urtasun [9], who vote over the pose space using patches
that are similar to those in the image. Patches and their joint location densities
are learned from a large annotated database. Our work differs since our few
templates can be generated automatically using 3D modelling software. We focus
on walking movements only. This effectively puts a strong prior on the poses that
we can recover, which is a limitation of our work.
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3 Template matching

We introduce full-body templates that consist of five, possibly overlapping, body-
part templates, see Figure 2. We will call a full-body template exemplar. For the
estimation of articulated poses, we use a collection E of n exemplars Ei ∈ E (1 ≤
i ≤ n). Each exemplar consists of a tuple that describes the 2D pose u and the
body parts p, Ei = (u,p). Note that we do not include information about the
3D orientation and scaling since this is implicitly encoded in the templates and
2D pose. For clarification of notation, subscripts are omitted where possible.

(a) (b) (c) (d)

Fig. 2. (a) Exemplar with all color regions, (b) color regions and (c) edge template of
left arm, (d) 2D joint locations (body shown for reference). Closed dots are used in the
evaluation, see Section 5. The anchor point is the left-upper corner of the box.

Each element in u is a 2D joint location written as a tuple ui = (xi, yi) ∈
u (1 ≤ i ≤ m). These locations are relative to the anchor point, which is by
default the left upper corner of the minimum enclosing box of all templates. In
principle, we use m = 20 joints, as shown in Figure 2(d).

Each pi ∈ p (1 ≤ i ≤ 5) represents exactly one body-part (leg, arm or
torso). We can write it as a tuple pi = (t, r). Here, t is an edge template, where
each element ti = (xi, yi) ∈ t (1 ≤ i ≤ |t|) represents an edge pixel at a given
location, relative to the anchor point. |t| is the number of elements in t. Each
body-part has several color regions, each of which is assumed to have a constant
color. The number of regions per body-part, |r|, is three for each leg and arm,
and five for the torso (see also Figure 2(a-b)). Similar to our edge representation,
each region ri (1 ≤ i ≤ |r|) consists of a number of relative pixel locations, which
can be considered the foreground mask. The total number of foreground pixels
in a region is denoted with |ri| for the ith region.
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In summary, each exemplar consists of five body-parts, each of which rep-
resents a limb or the torso. Each body-part has an associated edge template,
and a number of color regions. Templates and 2D joint locations are positioned
relative to the anchor point.

3.1 Template distance

For the matching, the notion of an exemplar is not needed, rather that of the
body-parts individually. The match of a body-part and an image region is deter-
mined by calculating the distance of the edge and color templates individually.

For the edge matching, distance transforms such as the Chamfer distance are
common. For such a transform, both image and template need to be converted
to a binary edge map. The distance transform gives the (approximate) distance
to the nearest edge pixel. The matching score is calculated by summing all
distance transform values in the image “under” the edge pixels. One problem
that we found while using this technique is that is favors areas that are densely
covered with edges. Also, the performance proved to be very sensitive to the
value of the edge magnitude threshold. Therefore, we use the edge magnitudes
of the image directly, by calculating the derivative Iedge of the image in gray
scale. Distance score ∆edge for template tj with the anchor at location (sx, sy)
is given by:

∆edge(Iedge, tj , sx, sy) =

∑
(x,y)∈tj

Iedge(sx + x, sy + y)

|tj |
(1)

To evaluate the distance of the color template, we determine the color deviation
score ∆color for each region rk at anchor point (sx, sy):

∆color(Icolor, rk, c, sx, sy) =

∑
ci∈c

∑
(x,y)∈rk

|Icolor(sx + x, sy + y, ci)− µ|

|c||rk|
(2)

Here, Icolor is the color image, c is a vector with |c| color channels. We make no
assumptions about the color space of the image. µ is the shorthand notation for
µ(Icolor, rk, ci, sx, sy), the mean value of all “region” pixels in the color channel
when no appearance assumptions are made. Alternatively, if the region colors
are set beforehand, µ corresponds to a(j, k, i) the specified value for body-part
j, region k and channel i. Alternatively, we could have used color histograms, as
in [8] but it seems unrealistic that these can be determined beforehand.

The distance for all color regions together is the sum of the means of each
region, weighted on the size of the regions |rk|. We have distances rather than
probabilities, so we need to determine when a match occurs. Therefore, we in-
troduce thresholds η and θ for the minimum edge distance and maximum color
deviation distance, respectively. We determine the values of these thresholds
empirically.
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4 Pose estimation

To estimate the 2D joint locations of a person in an image, we evaluate the
distances of the body-parts of all exemplars in collection E. Each template is
matched over multiple scales with the anchor point at different locations. For
each match (with the distance scores satisfying the thresholds), a vote is made
for the location of all joints in u. The body-parts are unrelated to the exemplar,
except for the common joint locations.

After processing the image, we have a number of estimates for each joint
location. This “density” usually has multiple modes, depending on the num-
ber of persons, and the modes of uncertainty. For simplicity, we assume only
a single person in the image. Therefore, we simply take the average location
of all estimates for a given joint. This presents the risk of averaging over mul-
tiple modes. To be able to handle multiple persons, a more advanced density
estimation scheme could be used such as the one described in [9].

5 Experimental results and discussion

To evaluate the performance of our technique, we evaluate the algorithm on the
publicly available HumanEva benchmark set [10]. To our best knowledge, there
is no data set that contains partially occluded human figures and 2D annotated
joint positions. Therefore, we simulate occlusion on the HumanEva set.

5.1 Training set

One of the advantages of our approach is that templates can be generated using
3D modelling software. This makes it possible to generate templates that do not
require manual labelling of joint positions, edge locations and color regions.

Curious Labs’ Poser 5 was used, with the “Poser 2 default guy” as human
model. We selected the “P4 Walk” as motion, and sampled 6 key frames within
the cycle. The camera was placed at eye height, and was pointed slightly down-
wards. Each key frame was further viewed from 8 different angles at every 45°
around the vertical axis. This yields 48 exemplars. For each exemplar, we used
the “Cartoon with line” renderer to generate edge templates and color regions.
See Figure 2(b-c) for examples of templates. In a post-processing step, the joint
locations and templates are normalized with respect to the left-upper corner of
the minimum enclosing bounding box of all templates.

5.2 Test set

We evaluated our approach on the HumanEva data set [10]. This set contains
sequences with synchronized video and pose data. For the test sequences, ground
truth is held back and validation is performed online. We present results for
Walking and Jog sequence 2, performed by subject 2 and viewed from color
camera 1. This sequence shows a man walking or jogging in circles.



7

Fig. 3. Simulated occlusion. Left to right: head, left arm, left leg, right arm, right leg.

In order to test the accuracy of our approach against occlusions, we simulate
occlusions for different body-parts. Instead of placing black boxes, as in [9], we
remove the body-parts by replacing the foreground with background patches.
Note that we do not model the background, so we have no knowledge where
occlusion occurs. The location and size of the patch is determined by the 2D
location of the shoulder and wrist, hip and ankle, and head for an arm, leg and
head respectively. These locations were annotated manually. Figure 3 shows ex-
ample frames with occlusion for different body-parts. The patches often occlude
other body-parts, which is especially the case for the legs. Also, due to the loca-
tion of the selected joints, there are still some parts visible, notably hands and
feet. However, it is unlikely that this aids in the matching phase.

5.3 Results

We defined values for the color of the skin, shirt, pants, shoes and hair in HSV
color space. Hue values were transformed to be the distance to the center value
(180°), to avoid wrap-around errors. To reduce computation time, we assume
that the person is entirely within the image. We move the anchor point through
the image with steps of 10 pixels. This causes the edge term to function as a
rejector of false positives. The human model in our exemplars is approximately
350 pixels high. We evaluate the templates at three scales: 90%, 100% and 110%.
The human figure in our test sequence is between 275 and 410 pixels high, so
in the range 79-117% of our exemplars. We further reduce computation time
by ignoring body-parts with an area smaller than 1500 pixels. This excludes
occluded or almost occluded limbs from being evaluated. These templates have
a high probability of matching, while providing little information about the pose.

We used Walking sequence 1 of subject 2 to determine the thresholds for the
templates. The exemplars and the HumanEva set use different joint sets. We
selected the joints corresponding to the wrist, elbow, shoulder, ankle, knee, hip
and head. In Figure 2(d), these are the closed dots. The mean 2D error over the
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Walking test sequence is 27.48 pixels, with a SD of 3.26. This corresponds to an
error of approximately 14 cm, if we average over the scales. We evaluated the Jog
sequence, frames 100339, which corresponds to a full cycle. The average error is
30.35 pixels, with a SD of 3.90. For the evaluation of the occluded images, we
used frames 1400 (one walking cycle) with an increment of 5 frames. We used the
same settings as for the unmodified sequence. Specifically, we did not alter the
thresholds. Results are presented in Table 1. In addition, we applied the method
to some frames of the movie Lola Rennt (sample frames in Figure 4(a-b)).

Head Left arm Left leg Right arm Right leg

27.32 (3.64) 27.31 (3.49) 32.77 (8.57) 27.65 (3.40) 32.95 (7.52)

Table 1. Mean 2D error (and SD) in pixels on HumanEva Walking 2 sequence, subject
2, viewed with color camera 1. Results are given for different occlusion conditions.

5.4 Discussion and comparison with related work

Other works have reported 2D errors on the HumanEva data set [8, 11]. While
these works are substantially different than ours, comparison may reveal the
strong and weak aspects of the respective approaches. Siddiqui and Medioni
present results on the Gesture sequence in the training set of subject 2. They
report mean errors of approximately 13 pixels, for the upper-body. Templates
are used, but for half-limbs, and colors specified as a histogram. In addition,
motion information obtained from frame differencing is used. The background is
modelled and temporal consistence is enforced through tracking. Their method
can deal with a broader range of poses and is considerably faster.

Howe [11] uses a discriminative approach with a database of reference poses
with corresponding image representation to retrieve similar observations. Tem-
poral consistency is enforced using Markov chaining. On the Walking sequence in
the training set of subject 1, mean errors of approximately 15 pixels are obtained.
Howe’s approach works in real-time, but requires good foreground segmentation.
Also, it remains an open issue whether similar results can be obtained for sub-
jects that are not in the training set.

Unlike both approaches above, our method is able to deal with occlusions, at
a cost of higher computational cost and lower flexibility with respect to the range
of poses that can be detected. Our larger errors are partly due to our evaluation
method, and are partly inherent to our approach. There is a discrepancy between
the joint locations in our exemplars and those defined for HumanEva. We selected
those joints that have similar locations but differences are still present. The hips
are placed more outwards in our exemplars, and the elbow and knee locations
are more at the physical location of the joint. Also, the human model used in
our exemplars differs in body dimensions, compared to subject in our test data
(see Figure 1).
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To reduce the computational cost, we used only 6 different key poses, viewed
at 45° intervals. Also, the walking style differs substantially from the one observed
in the test sequence. A similar observation can be made for the Jog sequence.
Our results could be improved by adding exemplars and viewpoints, at the cost
of increased computational complexity. By moving the anchor point with steps
of 10 pixels, our edge template functions as a false positive rejector. Changing
the matching function could improve results.

Closer analysis of our results shows that part of the error is caused by matches
that are the 180° rotation of the real match. This happens especially when the
person is facing the camera, or facing 180° away from it. This happens in frames
50, 250, 450, etc., see Figure 4(c). Consequently, we see lower error values around
frames 150, 350, 550, etc. Here, the subject is either walking to the right or
walking to the left. The number of left-right ambiguities are lower, resulting
in a lower error. The relatively higher errors around frames 350 and 750 are
caused by the subject being close to the camera. Here, matches with a larger
scale are selected, which causes higher errors for ambiguities. Joints closer to the
symmetry axis are much less affected by these errors, but these are not used in
the evaluation. Overall, the estimated joint locations are closer to the symmetry
axis than the real locations. A final observation can be made that the majority
of the matches is from the leg templates, which explains the higher errors when
one of the legs is occluded.

(a) (b)
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Fig. 4. Sample frames from Lola Rennt. (a) Legs occluded, (b) “out-of-vocabulary”
pose. (c) Errors in pixels for Walking sequence 2, subject 1. See discussion in Section 5.4.

6 Conclusion and future work

We presented a novel template representation, where the body is divided into
five body-parts. Each body-part implicitly encodes the viewpoint and is used to
predict the location of other joints in the human body. By matching body-part
templates individually, our approach is able to detect persons, and estimate their
2D poses under occlusions. We match edge and color templates associated with
a body-part at different locations and scales. For a good match, an estimate for
all joints is made. Subsequently, we determine the final pose estimate.
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The HumanEva data set was used for evaluation. We simulated occlusion by
replacing limbs with background patches. For the original walking sequence, and
for occlusion of head and arms, we obtained mean 2D errors of approximately
27.5 pixels. Occlusion of the legs resulted in a 6 pixel increase.

These results can be improved by adding exemplars and viewpoints. Also, the
edge matching could be improved to better fit the observations. A better pose
estimation process would allow for multiple persons, and could favor matches
close to the actual joint location. To reduce computational cost, we propose a
coarse-to-fine matching approach. Other future work is aimed at combining our
work with a discriminative or generative approach.
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