4,882 research outputs found

    Textile-based wearable sensors for assisting sports performance

    Get PDF
    There is a need for wearable sensors to assess physiological signals and body kinematics during exercise. Such sensors need to be straightforward to use, and ideally the complete system integrated fully within a garment. This would allow wearers to monitor their progress as they undergo an exercise training programme without the need to attach external devices. This takes physiological monitoring into a more natural setting. By developing textile sensors the intelligence is integrated into a sports garment in an innocuous manner. A number of textile based sensors are presented here that have been integrated into garments for various sports applications

    Review of sensors for remote patient monitoring

    Get PDF
    Remote patient monitoring (RPM) of physiological measurements can provide an efficient method and high quality care to patients. The physiological signals measurement is the initial and the most important factor in RPM. This paper discusses the characteristics of the most popular sensors, which are used to obtain vital clinical signals in prevalent RPM systems. The sensors discussed in this paper are used to measure ECG, heart sound, pulse rate, oxygen saturation, blood pressure and respiration rate, which are treated as the most important vital data in patient monitoring and medical examination

    Updates of Wearing Devices (WDs) In Healthcare, And Disease Monitoring

    Get PDF
     With the rising pervasiveness of growing populace, aging and chronic illnesses consistently rising medical services costs, the health care system is going through a crucial change from the conventional hospital focused system to an individual-focused system. Since the twentieth century, wearable sensors are becoming widespread in medical care and biomedical monitoring systems, engaging consistent estimation of biomarkers for checking of the diseased condition and wellbeing, clinical diagnostics and assessment in biological fluids like saliva, blood, and sweat. Recently, the improvements have been centered around electrochemical and optical biosensors, alongside advances with the non-invasive monitoring of biomarkers, bacteria and hormones, etc. Wearable devices have created with a mix of multiplexed biosensing, microfluidic testing and transport frameworks incorporated with flexible materials and body connections for additional created wear ability and effortlessness. These wearables hold guarantee and are fit for a higher understanding of the relationships between analyte focuses inside the blood or non-invasive biofluids and feedback to the patient, which is fundamentally significant in ideal finding, therapy, and control of diseases. In any case, cohort validation studies and execution assessment of wearable biosensors are expected to support their clinical acceptance. In the current review, we discussed the significance, highlights, types of wearables, difficulties and utilizations of wearable devices for biological fluids for the prevention of diseased conditions and real time monitoring of human wellbeing. In this, we sum up the different wearable devices that are developed for health care monitoring and their future potential has been discussed in detail

    Synchronous wearable wireless body sensor network composed of autonomous textile nodes

    Get PDF
    A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system

    Smart Devices and Systems for Wearable Applications

    Get PDF
    Wearable technologies need a smooth and unobtrusive integration of electronics and smart materials into textiles. The integration of sensors, actuators and computing technologies able to sense, react and adapt to external stimuli, is the expression of a new generation of wearable devices. The vision of wearable computing describes a system made by embedded, low power and wireless electronics coupled with smart and reliable sensors - as an integrated part of textile structure or directly in contact with the human body. Therefore, such system must maintain its sensing capabilities under the demand of normal clothing or textile substrate, which can impose severe mechanical deformation to the underlying garment/substrate. The objective of this thesis is to introduce a novel technological contribution for the next generation of wearable devices adopting a multidisciplinary approach in which knowledge of circuit design with Ultra-Wide Band and Bluetooth Low Energy technology, realization of smart piezoresistive / piezocapacitive and electro-active material, electro-mechanical characterization, design of read-out circuits and system integration find a fundamental and necessary synergy. The context and the results presented in this thesis follow an “applications driven” method in terms of wearable technology. A proof of concept has been designed and developed for each addressed issue. The solutions proposed are aimed to demonstrate the integration of a touch/pressure sensor into a fabric for space debris detection (CApture DEorbiting Target project), the effectiveness of the Ultra-Wide Band technology as an ultra-low power data transmission option compared with well known Bluetooth (IR-UWB data transmission project) and to solve issues concerning human proximity estimation (IR-UWB Face-to-Face Interaction and Proximity Sensor), wearable actuator for medical applications (EAPtics project) and aerospace physiology countermeasure (Gravity Loading Countermeasure Skinsuit project)

    Distributed environmental monitoring

    Get PDF
    With increasingly ubiquitous use of web-based technologies in society today, autonomous sensor networks represent the future in large-scale information acquisition for applications ranging from environmental monitoring to in vivo sensing. This chapter presents a range of on-going projects with an emphasis on environmental sensing; relevant literature pertaining to sensor networks is reviewed, validated sensing applications are described and the contribution of high-resolution temporal data to better decision-making is discussed
    corecore