91,961 research outputs found

    Improving reconfigurable systems reliability by combining periodical test and redundancy techniques: a case study

    Get PDF
    This paper revises and introduces to the field of reconfigurable computer systems, some traditional techniques used in the fields of fault-tolerance and testing of digital circuits. The target area is that of on-board spacecraft electronics, as this class of application is a good candidate for the use of reconfigurable computing technology. Fault tolerant strategies are used in order for the system to adapt itself to the severe conditions found in space. In addition, the paper describes some problems and possible solutions for the use of reconfigurable components, based on programmable logic, in space applications

    A Low-Cost FPGA-Based Test and Diagnosis Architecture for SRAMs

    Get PDF
    The continues improvement of manufacturing technologies allows the realization of integrated circuits containing an ever increasing number of transistors. A major part of these devices is devoted to realize SRAM blocks. Test and diagnosis of SRAM circuits are therefore an important challenge for improving quality of next generation integrated circuits. This paper proposes a flexible platform for testing and diagnosis of SRAM circuits. The architecture is based on the use of a low cost FPGA based board allowing high diagnosability while keeping costs at a very low leve

    Mesoscale subduction at the Almeria-Oran front. Part 1: ageostrophic flow

    Get PDF
    This paper presents a detailed diagnostic analysis of hydrographic and current meter data from three, rapidly repeated, fine-scale surveys of the Almeria-Oran front. Instability of the frontal boundary, between surface waters of Atlantic and Mediterranean origin, is shown to provide a mechanism for significant heat transfer from the surface layers to the deep ocean in winter. The data were collected during the second observational phase of the EU funded OMEGA project on RRS Discovery cruise 224 during December 1996. High resolution hydrographic measurements using the towed undulating CTD vehicle, SeaSoar,. traced the subduction of Mediterranean Surface Water across the Almeria-Oran front. This subduction is shown to result from a significant baroclinic component to the instability of the frontal jet. The Q-vector formulation of the omega equation is combined with a scale analysis to quantitatively diagnose vertical transport resulting from mesoscale ageostrophic circulation. The analyses are presented and discussed in the presence of satellite and airborne remotely sensed data; which provide the basis for a thorough and novel approach to the determination of observational error

    Towards a Theory of Diagnosis of Faulty Ontologies

    Get PDF

    Mutation signature analysis identifies increased mutation caused by tobacco smoke associated DNA adducts in larynx squamous cell carcinoma compared with oral cavity and oropharynx.

    Get PDF
    Squamous cell carcinomas of the head and neck (HNSCC) arise from mucosal keratinocytes of the upper aero-digestive tract. Despite a common cell of origin and similar driver-gene mutations which divert cell fate from differentiation to proliferation, HNSCC are considered a heterogeneous group of tumors categorized by site of origin within the aero-digestive mucosa, and the presence or absence of HPV infection. Tobacco use is a major driver of carcinogenesis in HNSCC and is a poor prognosticator that has previously been associated with poor immune cell infiltration and higher mutation numbers. Here, we study patterns of mutations in HNSCC that are derived from the specific nucleotide changes and their surrounding nucleotide context (also known as mutation signatures). We identify that mutations linked to DNA adducts associated with tobacco smoke exposure are predominantly found in the larynx. Presence of this class of mutation, termed COSMIC signature 4, is responsible for the increased burden of mutation in this anatomical sub-site. In addition, we show that another mutation pattern, COSMIC signature 5, is positively associated with age in HNSCC from non-smokers and that larynx SCC from non-smokers have a greater number of signature 5 mutations compared with other HNSCC sub-sites. Immunohistochemistry demonstrates a significantly lower Ki-67 proliferation index in size matched larynx SCC compared with oral cavity SCC and oropharynx SCC. Collectively, these observations support a model where larynx SCC are characterized by slower growth and increased susceptibility to mutations from tobacco carcinogen DNA adducts

    Diagnosis and classification of pediatric acute appendicitis by artificial intelligence methods: An investigator-independent approach

    Get PDF
    Acute appendicitis is one of the major causes for emergency surgery in childhood and adolescence. Appendectomy is still the therapy of choice, but conservative strategies are increasingly being studied for uncomplicated inflammation. Diagnosis of acute appendicitis remains challenging, especially due to the frequently unspecific clinical picture. Inflammatory blood markers and imaging methods like ultrasound are limited as they have to be interpreted by experts and still do not offer sufficient diagnostic certainty. This study presents a method for automatic diagnosis of appendicitis as well as the differentiation between complicated and uncomplicated inflammation using values/parameters which are routinely and unbiasedly obtained for each patient with suspected appendicitis. We analyzed full blood counts, c-reactive protein (CRP) and appendiceal diameters in ultrasound investigations corresponding to children and adolescents aged 0–17 years from a hospital based population in Berlin, Germany. A total of 590 patients (473 patients with appendicitis in histopathology and 117 with negative histopathological findings) were analyzed retrospectively with modern algorithms from machine learning (ML) and artificial intelligence (AI). The discovery of informative parameters (biomarker signatures) and training of the classification model were done with a maximum of 35% of the patients. The remaining minimum 65% of patients were used for validation. At clinical relevant cut-off points the accuracy of the biomarker signature for diagnosis of appendicitis was 90% (93% sensitivity, 67% specificity), while the accuracy to correctly identify complicated inflammation was 51% (95% sensitivity, 33% specificity) on validation data. Such a test would be capable to prevent two out of three patients without appendicitis from useless surgery as well as one out of three patients with uncomplicated appendicitis. The presented method has the potential to change today’s therapeutic approach for appendicitis and demonstrates the capability of algorithms from AI and ML to significantly improve diagnostics even based on routine diagnostic parameters

    Isoform-level gene signature improves prognostic stratification and accurately classifies glioblastoma subtypes.

    Get PDF
    Molecular stratification of tumors is essential for developing personalized therapies. Although patient stratification strategies have been successful; computational methods to accurately translate the gene-signature from high-throughput platform to a clinically adaptable low-dimensional platform are currently lacking. Here, we describe PIGExClass (platform-independent isoform-level gene-expression based classification-system), a novel computational approach to derive and then transfer gene-signatures from one analytical platform to another. We applied PIGExClass to design a reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) based molecular-subtyping assay for glioblastoma multiforme (GBM), the most aggressive primary brain tumors. Unsupervised clustering of TCGA (the Cancer Genome Altas Consortium) GBM samples, based on isoform-level gene-expression profiles, recaptured the four known molecular subgroups but switched the subtype for 19% of the samples, resulting in significant (P = 0.0103) survival differences among the refined subgroups. PIGExClass derived four-class classifier, which requires only 121 transcript-variants, assigns GBM patients' molecular subtype with 92% accuracy. This classifier was translated to an RT-qPCR assay and validated in an independent cohort of 206 GBM samples. Our results demonstrate the efficacy of PIGExClass in the design of clinically adaptable molecular subtyping assay and have implications for developing robust diagnostic assays for cancer patient stratification

    Survival prediction in mesothelioma using a scalable lasso regression model: instructions for use and initial performance using clinical predictors

    Get PDF
    Introduction: Accurate prognostication is difficult in malignant pleural mesothelioma (MPM). We developed a set of robust computational models to quantify the prognostic value of routinely available clinical data, which form the basis of published MPM prognostic models. Methods: Data regarding 269 patients with MPM were allocated to balanced training (n=169) and validation sets (n=100). Prognostic signatures (minimal length best performing multivariate trained models) were generated by least absolute shrinkage and selection operator regression for overall survival (OS), OS <6 months and OS <12 months. OS prediction was quantified using Somers DXY statistic, which varies from 0 to 1, with increasing concordance between observed and predicted outcomes. 6-month survival and 12-month survival were described by area under the curve (AUC) scores. Results: Median OS was 270 (IQR 140–450) days. The primary OS model assigned high weights to four predictors: age, performance status, white cell count and serum albumin, and after cross-validation performed significantly better than would be expected by chance (mean DXY0.332 (±0.019)). However, validation set DXY was only 0.221 (0.0935–0.346), equating to a 22% improvement in survival prediction than would be expected by chance. The 6-month and 12-month OS signatures included the same four predictors, in addition to epithelioid histology plus platelets and epithelioid histology plus C-reactive protein (mean AUC 0.758 (±0.022) and 0.737 (±0.012), respectively). The <6-month OS model demonstrated 74% sensitivity and 68% specificity. The <12-month OS model demonstrated 63% sensitivity and 79% specificity. Model content and performance were generally comparable with previous studies. Conclusions: The prognostic value of the basic clinical information contained in these, and previously published models, is fundamentally of limited value in accurately predicting MPM prognosis. The methods described are suitable for expansion using emerging predictors, including tumour genomics and volumetric staging
    corecore