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Towards a Theory of Diagnosis of Faulty Ontologies ∗
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Abstract

We initiate research into a generic theory of diagno-
sis of faulty ontologies. The proposals are based on,
but generalise, our experience with the GALILEO
and ORS systems. We make some initial simplify-
ing assumptions, which we hope will not restrict
the application of the proposals to new areas. In
particular, we look at repairing faulty ontologies
where the fault is revealed by an inference failure
and the repair is implemented by a signature and/or
theory morphism. More concretely, we focus on
situations where a false conjecture has been proved.
Diagnosis consists of constructing a morphism by
analysis of failed inference. It is assumed that an
oracle is available that can answer (and sometimes
ask) questions, but whose own ontology is other-
wise inscrutable.

1 Introduction
This paper builds on our experience of two systems for on-
tology evolution: ORS and GALILEO. Both systems start with
a potentially faulty logical theory representing some knowl-
edge. We will use the word ontology to describe such logical
theories. As a result of inference failure, these ontologies are
shown to be faulty. The fault is then automatically diagnosed
and the faulty ontology is then repaired. We will try to gener-
alise from the experience of these two systems to construct a
generic theory of diagnosis of faulty ontologies.

ORS (Ontology Repair System) evolves planning ontolo-
gies [McNeill and Bundy, 2007]. In its domain a planning
agent (PA) constructs plans from the services provided by ser-
vice providing agents (SPAs). The PA represents these ser-
vices with STRIPS-like operators. If the plan fails on exe-
cution then this indicates that the PA’s representation of the
SPA’s services is faulty. ORS diagnoses the fault and repairs
the PA’s ontology. Repairs can be either to the theory or to the
language. An example of a theory repair is inserting a missing
precondition in a STRIPS operator e.g., an SPA issuing travel

∗Thanks to Liwei Deng and an anonymous referee for feedback
on an earlier draft and to my research group for feedback during a
seminar.

visas might require the PA to possess some additional docu-
mentation that it wasn’t initially aware that it needed. An ex-
ample of a language repair is adding an additional argument
to a predicate, e.g., refining a proposition asserting that the
PA must provide a photograph by specifying its size with the
additional argument. The PA then replans with the repaired
ontology. Several repairs may be required to form a plan that
will execute successfully.

GALILEO (Guided Analysis of Logical Inconsistencies
Leads to Evolved Ontologies) evolves ontologies represent-
ing physics theories [Bundy and Chan, 2008]. In its domain
the predicted value of a physical function may be inferred
to differ from its observed value. GALILEO represents the
world with multiple ontologies, e.g., one for the theory and
another for an experiment. These ontologies are locally con-
sistent, but can be globally inconsistent. Different patterns
of divergence and repair are represented in ontology repair
plans (ORP)s. If an ORP’s trigger pattern is matched then
an appropriate repair is executed. Repairs include: splitting
one concept into many, merging several concepts into one,
adding a dependence on a hidden variable, or making a con-
cept independent of a variable. For instance, an anomaly in
the orbital velocity of spiral galaxies might suggest splitting
the concept of matter into regular visible matter, dark matter
and total matter.

An ontology is a pair 〈Σ, A〉, where:

• Σ is the ontology’s signature, which defines its lan-
guage. It consists of a set of type declarations for the
concepts in the ontology.

• A is the ontology’s axioms, which define its theory. It
consists of a set of formulae asserted to be true.

The type declarations and formulae are expressed in a logic
L. We will represent the repair of a source ontology O as the
target ontology ν(O), defined as:

ν(O) ::= 〈νσ(Σ), να(A)〉

where νσ is a signature morphism and να is a theory mor-
phism. These morphisms are meta-level functions that de-
scribe how to repair the source signature/axioms to form the
target ones.

The logic of ORS is KIF, an extended, typed, classical first-
order logic. Its signature consists of type declarations for its
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predicates and constants. Its axioms are (a) the STRIPS op-
erators and (b) propositions describing its beliefs about its
environment.

The logic of GALILEO is simply-typed lambda calculus, a
form of higher-order logic. Its ontology’s signature’s con-
sists of type declarations of functions describing the physical
world and its attributes. Note that higher-order functions are
required to represent force fields, calculus operations, astro-
nomical orbits, etc. Its ontology’s axioms include mathemat-
ical theorems, physical laws, experimental observations, etc.

2 Types of Ontological Fault
ORS and GALILEO have the following common operations:

• identification of a problem with an ontology;
• diagnosis of this problem;
• repair of the problem.

Although each system incorporates mechanisms for diagno-
sis and repair, these are domain specific. We lack a theory
to underpin them. In particular, we lack a theory of diagno-
sis. In this paper we will initiate the development of such a
diagnostic theory.

To aid formalisation, we will make the following simplify-
ing assumptions.

1. An attempt to prove a conjecture can one of the following
outcomes:

• The conjecture may be proved;
• The search space may be exhausted without a proof

being found, i.e., the conjecture is unprovable; or
• Resource limits may be encountered before a proof

is found or the search space is exhausted, i.e., the
conjecture is undetermined.

2. By a fault in an ontology we will mean some kind of rea-
soning failure. Examples of such failures include:
(a) A conjecture is true but unprovable.
(b) A conjecture is false but is proved.
(c) Inference is too inefficient, e.g., the search space

is infeasibly large. The evidence may be that too
many conjectures are left undetermined.

3. By an ontology repair we will mean the application of
a morphism (signature, theory or some combination) to
the source ontology to produce a new target one. The
fault being repaired should not hold in the target ontol-
ogy.

4. By a fault diagnosis we will mean constructing a mor-
phism that can be used to repair the fault.

5. The diagnostic process is a procedure that, given a faulty
source ontology, can produce a diagnosis. For both type
2a and type 2b faults the diagnosis process can be rep-
resented as the analysis of a failed or successful proof
attempt.

6. Proof attempts can be represented as a search space
containing a partial or complete proof. Without loss of
generality, we can represent the search space as an OR-
tree and a proof as an AND-tree.

3 Justification of these Simplifying
Assumptions

In both GALILEO and ORS, ontology evolution is driven by
inference failure, in particular, type 2b inference failure. The
derivation of false theorems can arise in two ways: (i) because
the ontology is inconsistent, so all formulae are provable; (ii)
because a particular theorem is false in the preferred model.
Below we will focus on type 2b (ii) inference failure.

• In ORS, a plan is derived that then fails on execution.
The derivation of the plan is also a formal verification
that the plan will achieve the goals of the PA. The failure
of the plan shows that the plan will not achieve these
goals, so the verification has proved a false conjecture.
Note that this is a type 2b (ii) inference failure, where the
preferred model is the real world, and truth and falsity in
this world are revealed by the success or failure of plan
execution.

• In GALILEO, a contradiction is derived from the combi-
nation of two ontologies: a theoretical one and an exper-
imental one. So, by merging these two ontologies into a
single inconsistent one, we could regard GALILEO’s type
2b inference failure as of the (i) kind. However, it will
be more convenient to regard the experimental ontology
as describing experiments performed in the real world.
Under this interpretation, GALILEO is similar to ORS, in
that the preferred model is the real world and truth and
falsity in that world is revealed by experimental results
that are described in the experimental ontology merely
for implementational convenience.

We will, therefore, concentrate on the diagnosis of type 2b
(ii) faults. We leave type 2a faults for future work, but ex-
pect the diagnostic process for these faults to be essentially
dual to the type 2b ones. Type 2c faults are inherently rather
different and we expect the diagnostic process also to be
very different. Early work on this problem includes Mc-
Carthy’s mutilated checkers board problem [McCarthy, 1964]
and Amarel’s work on the evolution of representations of the
missionaries and cannibals problem [Amarel, 1968].

In previous work it has been shown how various kinds of
ontology repair operations can be represented as signature
and/or theory morphisms, adapting ideas from Category The-
ory1 For the purposes of the current paper, it is enough to
envisage these morphisms as meta-level functions applied to
the two components of ontologies. Typically, both theory and
signature morphisms will be required in the overall repair of
an ontology. Thus, diagnosis can be regard as finding these
morphisms and repair as applying them. Since repair consists
only of morphism application, the more interesting problem,
and the focus of this paper, is diagnosis.

It will be convenient to represent a search space as an OR-
tree (see Figure 1). Each node of the tree will consist of a set
of sub-goals, where the root is the singleton set of the initial
conjecture. The children of a node are the result of applying
a rule of inference to one of the sub-goals and replacing it
with the resulting sub-sub-goals. OR-branching occurs when
there are multiple possible rule applications to a node. The

1Alan Smaill, personal communication (BBN) 1682.
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sub-goals in a leaf node are unproven conjectures. A proof
will be a path of the tree from the root to a leaf, in which the
leaf subset is empty. illustrates these two kinds of tree.

Each rectangle represents a set of AND sub-goals,
each of which must be proved. The arrows repre-
sent rules applied to the underlined sub-goal. Each
path is a potential proof attempt, which completes
when its leaf contains no sub-goals. The bold face
path is a completed proof.

Figure 1: A Search Space as an OR Tree

If we want to consider a proof alone, it will be convenient
to consider it as an AND tree, in which each node consists
of only one sub-goal (see Figure 2). The children of a node
will be the sub-sub-goals arising from an application of a rule
of inference to its sub-goal. The leaves will be instances of
axioms.

An earlier attempt at diagnosis via proof analysis is
Shapiro’s work on logic programming debugging [Shapiro,
1983]. Suppose a Prolog program has unexpectedly failed.
This is akin to a type 2a fault. Shapiro shows how to step
through the failed proof. For each sub-goal, an oracle (the
user) is asked whether the sub-goal is true or false. At each
node of the OR-tree search space there will be at least one
true sub-goal whose proof has failed, otherwise, the search
space will contain a proof. A path of true/failed subgoals are
traced through the search space until a leaf is reached. At
this point the true/failed leaf sub-goal represents a missing
axiom. Adding this sub-goal as a new axiom will debug the
logic program.

A Shapiro-like technique is used in ORS but for type 2b
faults, i.e., it is used to identify false ‘facts’ in the ontology,
where the oracle is derivation in the ontology. This suggests
that this kind of analysis can be adapted for faults of both type
2a and type 2b.

Each rectangle contains only one sub-goal. Each
rule labels a family of arrows: one for each sub-
goals arising from the rule’s application. A proof
is complete when all the leaves of the tree are in-
stances of axioms. The bold face path represents a
fault path, i.e., one in which all the sub-goals are
false, including the final axiom instance.

Figure 2: A Proof as an AND Tree

4 How to Block Illegitimate Success
By ‘illegitimate success’ we mean that something false can be
inferred in the ontology, i.e., the ontology has a type 2b (ii)
fault. We now discuss the use of Shapiro-like, proof analysis
to partially diagnose the fault by locating the source of the
problem. Note that, in the case of type 2b faults, we don’t
have to explore the whole search space, as we have a proof of
something false, so can restrict ourselves just to this proof.

Consider the proof as an AND-tree. The root of the tree
is the false ‘theorem’. The children of each node are the
sub-goals that collectively imply it. We will assume that the
derivation of a sub-goal by its children is via a logical rule of
inference that is beyond reproach, i.e., the fault lies in the ax-
ioms of the ontology and not its underlying logic2. The leaves
of the tree are instances of axioms.

Note that free variables in the sub-goals will arise from
dual skolemisation of existentially quantified variables, and
their instantiation during the proof will correspond to wit-
nesses being discovered for these variables. Usually, all such
free variables will be instantiated at some point during the
proof. If any free variables are left uninstantiated then this
indicates that the theorem has been proved for all their pos-
sible instantiations. Any instantiations of free variables made
during the proof can be inherited back up the tree, so proof
trees will usually be totally ground.

2If required, this assumption could be relaxed by treating the rule
of inference as an additional child node.
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For each false node, one of its children is also false, other-
wise the node would be true. Therefore, there exists at least
one path from root to leaf in which all the nodes are false. We
call such a path a fault path.

We assume that an oracle exists that can identify false
nodes, provided they are in its ontology’s language. In §5
we discuss where these oracles might come from. For each
false node, the oracle is asked for the truth of each of the
child nodes. By recursing this process, all the fault paths can
be identified. The leaves of these fault paths are all false in-
stances of axioms. Therefore, the axioms are also false and
must be repaired.

Suppose that, during this process, a sub-goal is found that
is not in the oracle’s language. The source ontology’s signa-
ture should be repaired so that the sub-goal is in the oracle’s
ontology. If this newly repaired sub-goal is false, then the
search for fault paths should resume at this sub-goal.

5 Where do the Oracles come from?
The proposals in §4 depend crucially on the existence of an
oracle to identify proven, but false, subgoals. Is it realistic to
assume the existence of such oracles? The answer depends on
the application. We illustrate this with the two applications of
ORS and GALILEO.

5.1 ORS Oracle

In ORS the oracle is provided by the service-providing agents.
The assumptions about these SPAs in ORS are:

• An SPA does not have the functionality, nor would its
owner usually consider it desirable, to reveal its ontol-
ogy.

• An SPA is regarded as the ultimate authority of the con-
ditions under which it is prepared to perform a service.
As such, its ontology is not subject to change3.

• An SPA will, however, answer specific questions. These
are posed as KIF formulae, which the SPA will try to
prove and to which it will return an answer.

• These answers can take the form of true, if the formula
can be proven without instantiation, false, if the for-
mula cannot be proven, or a substitution, indicating the
instantiations necessary to prove the formula.

• An SPA may also ask questions of the planning agent
(PA) during the plan formation process. These follow
the same process as when the PA asks a question of the
SPA.

Note that ORS oracles are able to classify non-ground sub-
goals and can sometimes prove them without any instantia-
tion, i.e., for all possible values of the free variables. When
instantiation is necessary to prove the subgoals, then this may
prove useful in the next phase of axiom modification (see §6).

3However, in a current UG4 project by Agnieszka Bomersbach,
we are relaxing this assumption.

5.2 GALILEO Oracle
In GALILEO the real world can be regarded as the oracle. This
enforces rather different assumptions about the oracle than in
ORS.

• The real world does not have an inherent ontology, but
only one imposed by those trying to understand it. Con-
sequently, its ontology is also subject to evolution as
such understanding deepens.

• We can use it only to make measurements and observa-
tions of particular phenomena. These can be modelled
either as ground atoms, which will be classified as true
or false, or ground function calls, for which the out-
put will be returned. For instance, a ground predicate
might be At(Ball1, Posn1, T ime1) and a ground func-
tion call might be V el(Ball1, T ime1), to which the an-
swer might be 10 metres/sec.

• The real world cannot itself ask questions.

6 Modifying Axioms
If an instance of a faulty axiom is found, then we need to
delete or modify this axiom. The simplest thing is to delete it,
but that may not be optimal. In particular, the source axiom
might be successfully used in proofs of true formulae. An un-
wanted side effect of deleting it would be that these true for-
mulae would cease to be theorems — at least, by any proofs
using the source axiom. The alternative is a modification that
makes it inapplicable in the faulty proof, but retains its ap-
plicability elsewhere. In ORS, for instance, a precondition
was often added to the STRIPS operators that differentiated
the good uses from the bad ones.

The problem can be seen as a classification task, of the kind
to which the HR system is suited [Colton et al., 1999]. We
form two sets of applications of the source axiom: Good and
Bad. Good applications are those where it is used to prove
true formulae and Bad ones where it is used to prove false
formulae. In particular, its application in the faulty proof is in
the Bad set. We now learn a classification that differentiates
these two sets. It might, for instance, be an extra condition on
the axiom or it might be an instantiation of the axiom to re-
strict it to Good applications. We can test our modified axiom
by asking the oracle whether it is true. If not, then further or
different modifications are needed.

7 Modifying Signatures
If fault is detected in the source ontology’s signature, then we
need to figure out what signature morphism, νσ , to construct.
νσ must map the false sub-goal to a target sub-goal that is
in the oracle’s signature. There are many ways to do this:
the target sub-goal can be any formulae in the oracle’s sig-
nature. Ideally, however, we would like the source and target
sub-goals to be similar, e.g., by minimising the edit difference
between them. Another approach, that has been explored by
Theodosia Togia in a recent MSc project, is the use of compu-
tational linguistics tools, such as Wordnet, to identify synony-
mous and similar connections between ontology signatures
[Togia et al., 2010]. In practice, νσ will typically be of the
type listed in §3 or its dual, namely: naming apart/merging

17



of functions, permuting arguments and adding/removing ar-
guments.

As in ORS we will make the following assumptions:
• We have no direct access to the oracle’s ontology, i.e.,

we can’t just browse its ontology for likely targets.
• We can, however, ask the oracle questions. So, we can

construct a candidate target, send it to the oracle and ex-
pect an answer of one of the three forms: (i) in ontol-
ogy’s language and true, (ii) in ontology’s language and
false, (iii) not in ontology’s language . If it is in the on-
tology’s language then we can proceed, and if it is also
false then we can use it to resume the search for a fault
path.

As in ORS, we may already have some prior communi-
cation with the oracle, e.g., when discovering that the orig-
inal ‘theorem’ is false. ORS has the notion of a surprising
question, i.e., a question asked by the oracle that was not ex-
pected. Suppose that this question was not in the original
ontology. Then it (or some instance of it) might be a can-
didate for the target. For instance, the PA might expect to
be asked Pay(PA,£100), since this instantiates a precondi-
tions of one of its STRIPS operator. The SPA might, however,
ask it Pay(PA,£100, CreditCard) instead. This surpris-
ing question is a clue that it should modify the type of its
Pay predicate from binary to ternary, where the extra argu-
ment defines the method of payment.

In the worst case, arbitrary modifications could be applied
to the source, e.g., permuting and adding arguments, replac-
ing names with synonyms, and then sent to the oracle for
testing until one is in the oracle’s signature. These might be
explored breadth-first, e.g., first trying all one-step modifica-
tions, then all two-step, etc. This effectively uses minimisa-
tion of edit distance as a heuristic.

8 Conclusion
We have initiated a generic theory of diagnosis of faulty on-
tologies. The proposals here are based on, but generalise,
our experience with the GALILEO and ORS systems. We have
made some initial simplifying assumptions, which we hope
will not restrict the application of the proposals to new ar-
eas. In particular, we are looking at repairing faulty ontolo-
gies where the fault is revealed by an inference failure and
the repair is implemented by a signature and/or theory mor-
phism. More concretely, in this note, we focus on situations
where a false conjecture has been proved. Diagnosis consists
of constructing a morphism by analysis of failed inference.
It is assumed that an oracle is available that can answer (and
sometimes ask) questions, but whose own ontology is other-
wise inscrutable.
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