300 research outputs found

    On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher

    Get PDF
    This review is dedicated to recent results on the 2d parabolic-elliptic Patlak-Keller-Segel model, and on its variant in higher dimensions where the diffusion is of critical porous medium type. Both of these models have a critical mass McM_c such that the solutions exist globally in time if the mass is less than McM_c and above which there are solutions which blowup in finite time. The main tools, in particular the free energy, and the idea of the methods are set out. A number of open questions are also stated.Comment: 26 page

    Refined Asymptotics for the subcritical Keller-Segel system and Related Functional Inequalities

    Get PDF
    We analyze the rate of convergence towards self-similarity for the subcritical Keller-Segel system in the radially symmetric two-dimensional case and in the corresponding one-dimensional case for logarithmic interaction. We measure convergence in Wasserstein distance. The rate of convergence towards self-similarity does not degenerate as we approach the critical case. As a byproduct, we obtain a proof of the logarithmic Hardy-Littlewood-Sobolev inequality in the one dimensional and radially symmetric two dimensional case based on optimal transport arguments. In addition we prove that the one-dimensional equation is a contraction with respect to Fourier distance in the subcritical case

    Boundedness and homogeneous asymptotics for a fractional logistic Keller-Segel equations

    Full text link
    In this paper we consider a dd-dimensional (d=1,2d=1,2) parabolic-elliptic Keller-Segel equation with a logistic forcing and a fractional diffusion of order α∈(0,2)\alpha \in (0,2). We prove uniform in time boundedness of its solution in the supercritical range α>d(1−c)\alpha>d\left(1-c\right), where cc is an explicit constant depending on parameters of our problem. Furthermore, we establish sufficient conditions for ∥u(t)−u∞∥L∞→0\|u(t)-u_\infty\|_{L^\infty}\rightarrow0, where u∞≡1u_\infty\equiv 1 is the only nontrivial homogeneous solution. Finally, we provide a uniqueness result

    An aggregation equation with a nonlocal flux

    Get PDF
    In this paper we study an aggregation equation with a general nonlocal flux. We study the local well-posedness and some conditions ensuring global existence. We are also interested in the differences arising when the nonlinearity in the flux changes. Thus, we perform some numerics corresponding to different convexities for the nonlinearity in the equation

    A one-dimensional Keller-Segel equation with a drift issued from the boundary

    Get PDF
    We investigate in this note the dynamics of a one-dimensional Keller-Segel type model on the half-line. On the contrary to the classical configuration, the chemical production term is located on the boundary. We prove, under suitable assumptions, the following dichotomy which is reminiscent of the two-dimensional Keller-Segel system. Solutions are global if the mass is below the critical mass, they blow-up in finite time above the critical mass, and they converge to some equilibrium at the critical mass. Entropy techniques are presented which aim at providing quantitative convergence results for the subcritical case. This note is completed with a brief introduction to a more realistic model (still one-dimensional).Comment: short version, 8 page

    A semilinear parabolic-elliptic chemotaxis system with critical mass in any space dimension

    Full text link
    We study radial solutions in a ball of RN\mathbb{R}^N of a semilinear, parabolic-elliptic Patlak-Keller-Segel system with a nonlinear sensitivity involving a critical power. For N=2N = 2, the latter reduces to the classical linear model, well-known for its critical mass 8π8\pi. We show that a critical mass phenomenon also occurs for N≥3N \geq 3, but with a strongly different qualitative behaviour. More precisely, if the total mass of cells is smaller or equal to the critical mass M, then the cell density converges to a regular steady state with support strictly inside the ball as time goes to infinity. In the case of the critical mass, this result is nontrivial since there exists a continuum of stationary solutions and is moreover in sharp contrast with the case N=2N = 2 where infinite time blow-up occurs. If the total mass of cells is larger than M, then all solutions blow up in finite time. This actually follows from the existence (unlike for N=2N = 2) of a family of self-similar, blowing up solutions with support strictly inside the ball.Comment: 35 page
    • …
    corecore