895 research outputs found

    The Effect of Vascular Segmentation Methods on Stereotactic Trajectory Planning for Drug-Resistant Focal Epilepsy: A Retrospective Cohort Study

    Get PDF
    Background: Stereotactic neurosurgical procedures carry a risk of intracranial hemorrhage, which may result in significant morbidity and mortality. Vascular imaging is crucial for planning stereotactic procedures to prevent conflicts with intracranial vasculature. There is a wide range of vascular imaging methods used for stereoelectroencephalography (SEEG) trajectory planning. Computer-assisted planning (CAP) improves planning time and trajectory metrics. We aimed to quantify the effect of different vascular imaging protocols on CAP trajectories for SEEG. Methods: Ten patients who had undergone SEEG (95 electrodes) following preoperative acquisition of gadolinium-enhanced magnetic resonance imaging (MR + Gad), magnetic resonance angiography and magnetic resonance angiography (MRV + MRA), and digital subtraction catheter angiography (DSA) were identified from a prospectively maintained database. SEEG implantations were planned using CAP using DSA segmentations as the gold standard. Strategies were then recreated using MRV + MRA and MR + Gad to define the “apparent” and “true” risk scores associated with each modality. Vessels of varying diameter were then iteratively removed from the DSA segmentation to identify the size at which all 3 vascular modalities returned the same safety metrics. Results: CAP performed using DSA vessel segmentations resulted in significantly lower “true” risk scores and greater minimum distances from vasculature compared with the “true” risk associated with MR + Gad and MRV + MRA. MRV + MRA and MR + Gad returned similar risk scores to DSA when vessels <2 mm and <4 mm were not considered, respectively. Conclusions: Significant variability in vascular imaging and trajectory planning practices exist for SEEG. CAP performed with MR + Gad or MRV + MRA alone returns “falsely” lower risk scores compared with DSA. It is unclear whether DSA is oversensitive and thus restricting potential trajectories

    CAVE:Cerebral artery–vein segmentation in digital subtraction angiography

    Get PDF
    Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery–vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 (±0.04) and an artery–vein segmentation Dice of 0.79 (±0.06). CAVE surpasses traditional Frangi-based k-means clustering (P &lt; 0.001) and U-Net (P &lt; 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery–vein segmentation in DSA using deep learning. The code is publicly available at https://github.com/RuishengSu/CAVE_DSA.</p

    Contrast-enhanced magnetic resonance angiography

    Full text link

    Advanced Algorithms for 3D Medical Image Data Fusion in Specific Medical Problems

    Get PDF
    Fúze obrazu je dnes jednou z nejběžnějších avšak stále velmi diskutovanou oblastí v lékařském zobrazování a hraje důležitou roli ve všech oblastech lékařské péče jako je diagnóza, léčba a chirurgie. V této dizertační práci jsou představeny tři projekty, které jsou velmi úzce spojeny s oblastí fúze medicínských dat. První projekt pojednává o 3D CT subtrakční angiografii dolních končetin. V práci je využito kombinace kontrastních a nekontrastních dat pro získání kompletního cévního stromu. Druhý projekt se zabývá fúzí DTI a T1 váhovaných MRI dat mozku. Cílem tohoto projektu je zkombinovat stukturální a funkční informace, které umožňují zlepšit znalosti konektivity v mozkové tkáni. Třetí projekt se zabývá metastázemi v CT časových datech páteře. Tento projekt je zaměřen na studium vývoje metastáz uvnitř obratlů ve fúzované časové řadě snímků. Tato dizertační práce představuje novou metodologii pro klasifikaci těchto metastáz. Všechny projekty zmíněné v této dizertační práci byly řešeny v rámci pracovní skupiny zabývající se analýzou lékařských dat, kterou vedl pan Prof. Jiří Jan. Tato dizertační práce obsahuje registrační část prvního a klasifikační část třetího projektu. Druhý projekt je představen kompletně. Další část prvního a třetího projektu, obsahující specifické předzpracování dat, jsou obsaženy v disertační práci mého kolegy Ing. Romana Petera.Image fusion is one of today´s most common and still challenging tasks in medical imaging and it plays crucial role in all areas of medical care such as diagnosis, treatment and surgery. Three projects crucially dependent on image fusion are introduced in this thesis. The first project deals with the 3D CT subtraction angiography of lower limbs. It combines pre-contrast and contrast enhanced data to extract the blood vessel tree. The second project fuses the DTI and T1-weighted MRI brain data. The aim of this project is to combine the brain structural and functional information that purvey improved knowledge about intrinsic brain connectivity. The third project deals with the time series of CT spine data where the metastases occur. In this project the progression of metastases within the vertebrae is studied based on fusion of the successive elements of the image series. This thesis introduces new methodology of classifying metastatic tissue. All the projects mentioned in this thesis have been solved by the medical image analysis group led by Prof. Jiří Jan. This dissertation concerns primarily the registration part of the first project and the classification part of the third project. The second project is described completely. The other parts of the first and third project, including the specific preprocessing of the data, are introduced in detail in the dissertation thesis of my colleague Roman Peter, M.Sc.

    Spatio-Temporal U-Net for Cerebral Artery and Vein Segmentation in Digital Subtraction Angiography

    Get PDF
    X-ray digital subtraction angiography (DSA) is widely used for vessel and/or flow visualization and interventional guidance during endovascular treatment of patients with a stroke or aneurysm. To assist in peri-operative decision making as well as post-operative prognosis, automatic DSA analysis algorithms are being developed to obtain relevant image-based information. Such analyses include detection of vascular disease, evaluation of perfusion based on time intensity curves (TIC), and quantitative biomarker extraction for automated treatment evaluation in endovascular thrombectomy. Methodologically, such vessel-based analysis tasks may be facilitated by automatic and accurate artery-vein segmentation algorithms. The present work describes to the best of our knowledge the first study that addresses automatic artery-vein segmentation in DSA using deep learning. We propose a novel spatio-temporal U-Net (ST U-Net) architecture which integrates convolutional gated recurrent units (ConvGRU) in the contracting branch of U-Net. The network encodes a 2D+t DSA series of variable length and decodes it into a 2D segmentation image. On a multi-center routinely acquired dataset, the proposed method significantly outperformed U-Net (P<0.001) and traditional Frangi-based K-means clustering (P<<0.001). Particularly in artery-vein segmentation, ST U-Net achieved a Dice coefficient of 0.794, surpassing the existing state-of-the-art methods by a margin of 12\%-20\%. Code will be made publicly available upon acceptance

    autoTICI: Automatic Brain Tissue Reperfusion Scoring on 2D DSA Images of Acute Ischemic Stroke Patients

    Get PDF
    The Thrombolysis in Cerebral Infarction (TICI) score is an important metric for reperfusion therapy assessment in acute ischemic stroke. It is commonly used as a technical outcome measure after endovascular treatment (EVT). Existing TICI scores are defined in coarse ordinal grades based on visual inspection, leading to inter- and intra-observer variation. In this work, we present autoTICI, an automatic and quantitative TICI scoring method. First, each digital subtraction angiography (DSA) sequence is separated into four phases (non-contrast, arterial, parenchymal and venous phase) using a multi-path convolutional neural network (CNN), which exploits spatio-temporal features. The network also incorporates sequence level label dependencies in the form of a state-transition matrix. Next, a minimum intensity map (MINIP) is computed using the motion corrected arterial and parenchymal frames. On the MINIP image, vessel, perfusion and background pixels are segmented. Finally, we quantify the autoTICI score as the ratio of reperfused pixels after EVT. On a routinely acquired multi-center dataset, the proposed autoTICI shows good correlation with the extended TICI (eTICI) reference with an average area under the curve (AUC) score of 0.81. The AUC score is 0.90 with respect to the dichotomized eTICI. In terms of clinical outcome prediction, we demonstrate that autoTICI is overall comparable to eTICI.Comment: 10 pages; submitted to IEEE TM
    corecore