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1  
TISSUE PERFUSION PHYSIOLOGY 

Tissue perfusion refers to the delivery of oxygen-rich blood to tissue via the 
arterial network and, subsequently, the capillaries. With the exception of lung 
tissue, in all organs, oxygen diffuses from the capillaries to the parenchyma to 
fulfil the oxidative requirements. Afterwards, the generated carbon dioxide 
diffuses back to the capillaries, where it is transported through the venular 
system and eventually leaves the body through the lungs. Impaired perfusion 
causes the disruption of several important cellular processes, eventually leading 
to tissue necrosis. If such an event occurs in critical organs such as the brain or 
heart, it may prove to be lethal.1  

The perfusion flow is regulated by local and central mechanisms. Local control is 
referred to as autoregulation of microvascular blood flow and involves, among 
others, metabolic, myogenic and shear stress-dependent mechanisms.2 According 
to the classic metabolic theory, the flow through the microvascular bed is 
controlled by a direct relationship between the parenchymal cell partial pressure 
of oxygen (pO2) and arteriolar smooth muscle cell contraction.3 In case of oxygen 
deprivation, arterioles respond to the low pO2 by dilation, reducing microvascular 
resistance and increasing local flow and capillary perfusion, returning the 
oxygenation level to normal. This relationship persists in the opposite case, 
wherein contracted arterioles lower excessive tissue oxygenation. In specifically 
the brain, such local control is not a mere oxygen response but involves a 
complex interplay between neurons, astrocytes and several vascular and 
perivascular cells.4 In addition to these metabolic responses, the classic myogenic 
theory explains vasoregulation by the inherent response of arteriolar smooth 
muscle to its transmural pressure.5 An increase in transmural pressure constricts 
the arterioles and a decrease in transmural pressure dilates them. A third 
important response is a dilation induced by increased wall shear stress. Wall 
shear stress refers to the dragging force of the flowing blood, which is sensed by 
the endothelial cells that form the inner cell layer of all blood vessels. There is a 
strong interplay of such local mechanisms. As an example, studies found that 
metabolic mechanisms explain microvessel dilation during subnormal tissue 
oxygenation while myogenic mechanisms account for microvessel constriction 
during overoxygenization of the tissue.6,7 Also, individual segments within the 



12 

arterial and arteriolar network are differentially sensitive to pressure, shear stress 
and metabolites. A true understanding of local flow regulation requires a network 
analysis of the vascular bed.8,9 In addition to local control, central mechanisms 
regulate organ perfusion at a more global level. These processes include 
autonomic nervous innervation and hormonal pathways and are relevant for, 
among others, the regulation of total peripheral resistance and mean arterial 
pressure.10 

One important component of autoregulation is the development of vasodilator 
reserve, i.e., the ability to increase flow by vasodilation. Vasodilator reserve can 
be determined by measuring blood flow in autoregulation and during maximal 
pharmacological vasodilation. In slowly developing ischemic diseases like 
coronary artery disease, the vasodilator reserve is gradually lost. This results in 
stable angina and eventually in unstable angina, with chest pain and oxygen 
shortage at rest. In the brain, the effects of exhausted vasodilator reserve are far 
less clear, but it has been argued that chronic brain underperfusion is associated 
with dementia.11 During acute vascular events, such as myocardial infarction and 
stroke, vasodilator reserve becomes irrelevant in light of complete occlusion. 

Natural bypass vessels, so-called collaterals, may become available for 
recruitment when the main feeding artery is failing. The collaterals play roles in 
both chronic and acute conditions. In chronic underperfusion, they may remodel 
structurally to a much larger diameter, a process known as arteriogenesis.12 In 
acute myocardial infarction and stroke, perfusion relies on the current state of 
collaterals, although slight vasodilation may occur. 

MEASURING TISSUE PERFUSION 

Since adequate perfusion is critical for organ function, it is important to have 
robust and accurate perfusion assessment methods. Advancements in medical 
imaging technologies, such as higher resolution and faster imaging, allow both 
direct measurements of perfusion by visual inspection of the images and indirect 
measurements by analyzing contrast dynamics from which perfusion parameters 
are derived. Perfusion measures and their derivatives have been widely 
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1  
investigated for their clinical utility in determining intervention strategy, 
evaluating treatment, stratifying risks, and predicting patient outcome.13–15 

Perfusion can be measured by a myriad of medical imaging modalities, each with 
its own spatial and temporal resolution for the detection of intravascular flow 
and perfusion of contrast agents. These contrast agents have been used to 
enhance the visibility of the vessels through which they travel and help 
differentiate the vessels from the rest of the organs. Medical imaging with the 
use of contrast agents is commonly known as angiography. Additionally, contrast 
injection allows kinetic analysis of the concentration-time characteristics 
measured in an individual voxel or area of interest in the image where the 
contrast is detected. Such analysis enables the derivation of hemodynamic 
parameters, which are proxy measures for perfusion.  

KINETIC ANALYSIS OF DYNAMIC CONTRAST ENHANCEMENT 

Let us consider a region of interest in the image where the contrast perfuses the 
tissue. In principle, signal intensity as a function of time of this region of interest 
can be used to approximate the contrast concentration over time, although the 
complexity of such a measurement depends on the imaging modality. The so-
called concentration-time curve is quantifiable by deriving summary properties 
such as contrast arrival time, time-to-peak, maximum concentration, and transit 
time. However, these parameters are influenced by several factors in addition to 
the tissue properties, including contrast injection rate and volume and contrast 
dispersion.16 Therefore, to accurately measure the perfusion parameters of the 
tissue, these confounding effects need to be removed by separating arterial and 
tissue contributions in the perfusion model. This is achievable by deconvolution 
of the concentration-time curve by the arterial input function (AIF). AIF is 
measured at a reference point proximal to the region of interest, commonly 
preferred to be a major artery.17 However, this problem is non-trivial and 
conceptually challenging. The most obvious concern is to solve a single-state 
equation of indicator-dilution theory with two unknown variables: blood flow and 
residue function. 
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 is the concentration-time curve in tissue,  is blood flow, and  is the 
residue function which describes the fraction of the instantaneous bolus of 
contrast agent that remains in the tissue at time .  is dimensionless and 
decays from unity at  to zero at . The product of  and  is called 
the impulse response function ( ).18 This equation can be solved using a 
deconvolution method. In the absence of a general solution, multiple methods 
have been proposed to solve this so-called inverse problem: model-dependent 
approaches that estimate parameters for residue function with maximum 
likelihood or Bayesian methods and model-independent approaches such as 
singular value decomposition.19,20 After the residue function is determined,  
and mean transit time ( ) can be calculated as follows21:  

 

 

Vascular volume ( ) can then be calculated from  and  using the central 
volume theorem or derived directly from the residue function.18,22 

 

 

Another practical perfusion parameter, time-to-maximum of residue function 
( ), can also be computed from the residue function. 

 

This parameter essentially reflects the delay and dispersion of the contrast agent 
during its passage from the arterial input location to the tissue, which depends on 
the blood flow. The relations between the perfusion parameters and residue 
function are illustrated in Figure 1b. Although the kinetic analysis provides a 
theoretical framework as a basis for deriving perfusion parameters, it is important 
to note that deconvolution is an ill-posed problem. This implies that there are 
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1  
many approximate solutions that can reproduce the deconvolved signals; the 
correct values of perfusion parameters are difficult to find. 

 

Figure 1. Tracer kinetic analysis. The concentration-time curve is the measured intensity in a tissue of 
interest over time. This curve can be characterized into summary parameters such as arrival time (AT), time-
to-peak (TTP), full-width half maximum (FWHM), and first moment (centroid of the area under the curve) 
(a). This concentration-time curve depends on the contribution from both the arterial input function and 
the tissue impulse response function. The dependence on the arterial input function is removed by 
deconvolving the concentration-time curve with the arterial input function, resulting in the tissue impulse 
response function (b). From this impulse response function, perfusion parameters such as blood flow (BF), 
vascular volume (VV), and time-to-maximum (Tmax) can be derived. 

PERFUSION IMAGING MODALITIES 

Multiple imaging modalities support dynamic angiographic visualization via 
contrast administration that allows perfusion assessment. These modalities 
include x-ray angiography, computed tomography (CT), magnetic resonance 
imaging (MRI), and fluorescence imaging. 

X-ray angiography is a fluoroscopy-based imaging technique that leverages 
contrast agent injection to visualize blood vessels over time. All tissues in the 
body, including blood vessels, absorb X-ray radiation at varying rates. The 
appearance of blood vessels and their adjacent tissues in the resulting 
radiographic image is almost indistinguishable. Therefore, a radiopaque vascular 
contrast agent is required to differentiate the vessels from the rest of the tissues. 
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The generated radiographic image that highlights blood vessels is called an 
angiogram. In such an angiogram, the tissue perfusion is expressed as a blush 
appearance around and at the end of arterial trees. The visibility of vessels and 
perfusion can be further increased using digital subtraction to remove bones and 
other obfuscating tissues, a technique called digital subtraction angiography. 

CT provides an additional spatial dimension to conventional X-ray, among other 
things, as it provides volumetric data of the scanned body part. This is achieved 
by rotating the X-ray tube around the gantry during which the X-ray passes 
through the patient body and is received by detectors. Similar to X-ray 
angiography, the administration of a contrast agent enhances the visualization of 
the vasculature in the scan. In CT Perfusion (CTP), a series of images of the 
vasculature enhanced with a contrast agent are acquired over time. The 
acquisition time is determined to capture the wash-in and wash-out of contrast 
agent at any individual brain voxel in the scan, assuring a full-time attenuation 
curve.23 The time attenuation curve of a voxel or region of interest where a major 
intracranial artery is located is selected as the arterial input function. The 
availability of the time attenuation curves and the arterial input function allows 
tracer kinetic analysis which eventually computes voxel-wise perfusion 
parameters such as cerebral blood flow (CBF), cerebral blood volume (CBV), MTT, 
and Tmax. These perfusion parameters form a basis for localized perfusion 
assessment on CTP. 

A common perfusion technique on MRI is dynamic susceptibility contrast (DSC-
MRI). Perfusion parameters derived from this technique are generally based on 
similar principles of tracer kinetic models as used in CTP. The contrast agent 
concentration is calculated in terms of relaxivity and the measured T2 or T2* 
signal decrease on the voxel of interest.24 Another MRI technique for measuring 
perfusion that has been gaining traction is arterial spin labeling (ASL). This 
technique is non-invasive and uses magnetically tagged arterial blood water 
protons as an alternative tracer to exogenous contrast agent.25 
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1  

 

Figure 2. Examples of perfusion imaging modalities. Digital subtraction angiography images (a) highlight 
cerebral arteries and antegrade perfusion in lateral (left) and anteroposterior (right) projections. CT 
Perfusion maps (b) show a hypoperfused lesion on the left hemisphere as indicated by a high Tmax (left), 
low CBF (middle) and low CBV (right). Similarly, hypoperfusion is depicted in dynamic susceptibility 
contrast of MR T2* images (c) as a lesion with prolonged relative mean transit time (left) and low in both 
relative CBF (middle) and relative CBV (right). Finally, fluorescence imaging (d) on a gastric tube after 
esophagectomy following administration of indocyanine green (left) shows fluorescent dye distribution 
along the tube. The dye pattern is useful for intraoperative evaluation of perfusion on anastomoses as a 
non-homogenous pattern may be indicative of anastomotic failure. CT Perfusion maps were generated 
using StrokeViewer Perfusion, Nicolab. MR Perfusion maps and fluorescence imaging figures are reprinted 
with permission.15,27 
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Finally, near-infrared fluorescence imaging is an emerging perfusion technique 
useful for intraoperative applications including angiography, vessel patency and 
soft tissue perfusion assessment.26 This imaging technique supports real-time 
display with a high spatial resolution that captures emitted fluorescence due to 
ultraviolet excitation following the administration of the fluorescent agent, e.g., 
indocyanine green.  

Various perfusion measures based on dynamic contrast assessment have been 
introduced, and a critical evaluation of their value and usefulness in clinical 
settings is needed. In the absence of a true quantitative and validated perfusion 
measure based on contrast dynamics, visual perfusion grading systems have been 
suggested. 

VISUAL PERFUSION GRADING SCALES 

Based on the used modality and the disease, multiple visual perfusion grading 
systems have been established. In patients with myocardial infarction, a four-
point scale named myocardial blush grade is used to grade the perfusion after 
percutaneous coronary intervention.28 This scale was found to be a strong 
angiographic predictor of mortality in patients after primary angioplasty. For 
patients undergoing esophagectomy, intraoperative assessment of perfusion 
allows risk stratification of necrosis, therefore avoiding post-surgery 
complications such as anastomotic leakage.29 Such intraoperative perfusion 
assessment, for instance, may be achieved by optical fluorescence imaging.30 A 
similar rationale applies in the case of acute ischemic stroke, where the result of 
perfusion assessment factors in treatment selection and evaluation. The 
commonly used grading system here is the modified treatment in cerebral 
ischemia (TICI) scale, which is an estimate of the perfusion area visible in digital 
subtraction angiography relative to the target downstream territory.31 This scale 
had since been refined and reintroduced as extended TICI (eTICI).32 Additional 
grading scales are used to account for retrograde perfusion by proxy of collateral 
grading on digital subtraction angiography or CT angiography images.33  

Although the visual perfusion grading scores have been found to have prognostic 
value in clinical applications, they have several problems that need to be 
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1  
addressed. First, they mostly have an ordinal and low-resolution scale, i.e., 
minimal myocardial blush vs moderate myocardial blush in myocardial blush 
grade. This lack of resolution may translate to a loss of clinically relevant 
information. Subsequent resolution improvements to the TICI scale that called for 
redefinitions of successful reperfusion treatment have provided evidence that a 
more precise measure of perfusion is necessary. Second, visual grading scores are 
inherently dependent on the observer who is performing the grading. This is 
particularly true as the assessment with a high degree of complexity may 
necessitate a more experienced observer to achieve good interrater agreement.34 
Many studies reported varying results for interobserver agreement on TICI 
scoring, ranging from poor to good agreement. A recent study illustrated how the 
operators tend to overestimate the perfusion status after the intervention 
compared to core lab adjudication.35 Finally, visual perfusion assessment is often 
time-consuming.  

AIM AND OUTLINE 

The aim of this thesis is to form a base for new automated and quantitative 
alternatives to the qualitative perfusion scores. Several visual perfusion grading 
scales in multiple organs including the heart, gastric circulation, and the brain are 
used as references to extract relevant information from medical images. The 
exploration towards the formation of a base for new automated and quantitative 
perfusion measure alternatives includes: 

• dissecting the existing quantitative methods in assessing myocardial 
perfusion;  

• modeling microvascular hemodynamics of a gastric conduit to predict 
reduced flow post-esophagectomy; 

• developing and validating a new quantitative score in brain perfusion for 
stroke patients; and 

• validating a new collateral assessment method based on CT Perfusion 
parameters. 

In chapter 3, the initial assessment of the myocardial perfusion assessment 
computer program called Quantitative Blush Evaluator (QuBE) revealed that the 
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claimed performance of QuBE was not reproducible in our dataset of HEBE trial 
patients.36 We provided evidence as to why QuBE, at its current state, may not yet 
be appropriate to evaluate reperfusion success in a patient with myocardial 
infarction after percutaneous coronary intervention.  

Chapter 2 exhibits the potential of fluorescence dynamics to identify impaired 
perfusion in the anastomosis of gastric conduit after esophagectomy. In order to 
investigate the relations between fluorescence dynamics and the reduced flow, 
we developed a perfusion model as well-mixed compartments of arteries and 
veins and observed the dynamics of well-perfused sites and anastomotic sites.  

The perfusion assessment of acute ischemic stroke patients is studied in chapter 
4. We used the TICI methodology to develop a new semi-automated quantitative 
score, namely quantitative TICI (qTICI), that provides a perfusion assessment on 
digital subtraction angiography images of patients with a proximal large vessel 
occlusion. In chapter 5, we implemented a collateral scoring method based on CT 
Perfusion using multiple perfusion parameters within a hypoperfused volume. 
These last two chapters are part of the multicenter clinical registry of 
endovascular treatment for acute ischemic stroke in the Netherlands substudies.37  

We conclude this thesis with a general discussion and provide recommendations 
for future research pertaining to the automation and quantification of perfusion 
assessment. 
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ABSTRACT  

Most common complications of esophagectomy stem from a perfusion deficiency 
of the gastric conduit at the anastomosis. Fluorescent tracer imaging allows 
intraoperative visualization of tissue perfusion. Quantitative assessment of 
fluorescence dynamics has the potential to identify perfusion deficiency. We 
developed a perfusion model to analyze the relation between fluorescence 
dynamics and perfusion deficiency. The model divides the gastric conduit into 
two well-perfused and two anastomosed sites. Hemodynamics and tracer 
transport were modeled. We analyzed the value of relative time-to-threshold 
(RTT) as a predictor of the relative remaining flow (RRF). Intensity thresholds for 
RTT of 20% to 50% of the maximum fluorescence intensity of the well-perfused 
site were tested. The relation between RTT and RRF at the anastomosed sites was 
evaluated over large variations of vascular conductance and volume. The ability 
of RTT to distinguish between sufficient and impaired perfusion was analyzed 
using c-statistics. We found that RTT was a valuable estimate for low RRF. The 
threshold of 20% of the maximum fluorescence intensity provided the best 
prediction of impaired perfusion on the two anastomosed sites (AUC = 0.89 and 
0.86). The presented model showed that for low flows, relative time-to-threshold 
may be used to estimate perfusion deficiency. 

 

Keywords: Fluorescence imaging, indocyanine green, gastric conduit model, 
perfusion, esophagectomy  
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INTRODUCTION  

Esophagectomy, despite the arduous nature of the procedure, is a commonly used 
surgical technique to treat esophageal cancer.1 The procedure involves gastric 
transposition to the thorax and removal of major arterial and venous connections. 
Anastomotic leakage, necrosis, and stricture are major complications of this 
procedure. The success of esophagectomy depends on maintenance of perfusion 
of the whole gastric tube.2,3 Particularly, in the fundus, i.e., the proximal end of 
the gastric tube that is anastomosed with the remaining esophagus, perfusion is 
hampered as in this region, the perfusion fully depends on the presence of 
collateral connections. Insufficient perfusion hinders anastomotic healing or may 
even cause tissue necrosis. Early detection of insufficient perfusion could assist 
clinical decision making on additional surgical intervention, such as 
determination of the level of the anastomosis and primary anastomotic repair, 
consequently improving post-operative outcomes.4 Accordingly, intra-operative 
monitoring of local perfusion in the gastric tube is needed to predict success of 
the procedure. 

Recent developments in fluorescence imaging (FI) allow intra-operative 
visualization of local tissue perfusion in the gastric conduit.5–9 This technique 
involves intravenous injection of indocyanine green (ICG) and monitoring of its 
appearance dynamics in gastric tissue. FI has shown a difference in fluorescence 
dynamics between native and anastomosed areas in the gastric conduit during 
surgery.4  Preliminary experiments showed later time-to-peak of contrast arrival, 
suggesting lower perfusion, in areas closer to the fundus. However, the 
quantitative relation between contrast dynamics and actual perfusion of the 
gastric tissue has not been investigated. Moreover, alternative methods for 
detection of perfusion in this setting are not available. 

Impaired perfusion results in slower contrast appearance compared to normal 
perfusion. Although time-to-peak is commonly used in dynamics measurements 
to assess perfusion, we hypothesize that time to intensity threshold is a valuable 
alternative because this measure can be performed in a shorter acquisition 
window of FI.4 However, the validity of time to intensity threshold to assess local 
perfusion is unknown and may be complicated by the complexity of gastric tube 
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vascular network, which includes collateral connections. In this study, we present 
a comprehensive model that describes the deteriorated perfusion after 
esophagectomy and its relation with temporal ICG fluorescence intensity profiles. 
This model was used to explore the relation between reduced perfusion and 
slower fluorescence enhancement at anastomosed areas. Because the volumes of 
these vascular compartments affect the dynamics, the effect of variations in the 
vascular architecture of the gastric conduit on the relation between contrast 
dynamics and local perfusion was studied as well.10,11 We included a wide range 
of vascular resistances and volumes in order to identify general trends in ICG 
enhancement dynamics as a measure for perfusion. Finally, those trends were 
used to evaluate the usefulness of time to intensity threshold as an estimate for 
local perfusion. 

METHODS  

Essentially, we defined a simulation model of the gastric tube that includes 
perfusion and ICG transport in four regions. Local perfusion in this model was 
determined for a large range of model parameters. RRF, the relative remaining 
flow, is the calculated flow after the intervention relative to the flow to that 
compartment before the intervention and is considered to be a predictor of 
clinical outcome. RTT, the relative time to threshold, is the calculated time to a 
threshold signal for local ICG appearance, normalized to the time to threshold in 
the first, well-perfused compartment. RTT is considered to be a surrogate for RRF. 
We analyzed how well RTT predicts RFF, how this depends on the chosen 
parameters, and which threshold should be taken. 

Gastric Conduit Model  

The reconstruction of the gastric conduit generally preserves the right 
gastroepiploic vessels and right gastric artery as the main source of blood supply 
to the gastric wall. Consequently, part of the gastric conduit close to the 
anastomosis is only supplied with blood from collateral connections in the gastric 
wall. We modeled the gastric conduit by introducing four sites, as shown in Figure 
1. This choice was based on the four regions of interest (ROIs) for measurement 
of fluorescence intensity performed on constructed gastric conduit in the 
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prospective clinical study in Amsterdam Medical Center from October 2015 to 
June 2016.12 Figure 1a shows a frame of constructed gastric conduit of a patient 
with the ICG visualizing the tissue perfusion. The ROI was a 300 pixels circle with 
#1 3 cm below the watershed, #2 the watershed, #3 3 cm above the watershed, 
and #4 the fundus. The measured fluorescence enhancement curves at the four 
ROIS are shown in Figure 1b. In the model, the four sites are connected through 
collateral arteries and veins. Site 3 and site 4 represent the anastomosed areas 
and perfusion here depends completely on collateral vessels. The distributed 
nature of the arterial, capillary and venous networks at each site is represented 
by a single lumped resistance thought to be situated in the arterioles and 
capillaries, connecting a proximal arterial volume to a distal capillary/venous 
volume. The vascular bed in the gastric tube is thus represented by eight 
compartments, four microvascular connections, three arterial collateral 
connections, and three venous collateral connections. The system is supplied and 
drained by large arteries and veins of the lower two sites (Figure 1c). 

Parameter Space of The Model  

We assumed identical vascular conductances and volume for each site and varied 
multiple model parameters including collateral artery and vein conductance 
relative to microvascular conductance (Gca/Gc and Gcv/Gc), relative large vessel 
conductance (GLV/Gc), and vascular volume including arterial and venous volume 
(AV and VV). Quantitative information on gastric vascular branching patterns is 
not available, but we considered that the above conductance ratios are likely to 
be highly variable between patients. We therefore evaluated the model over a 
large parameter space, including the presumed physiological range. Determining 
the physiological range for vessel conductance is difficult. Total conductance of 
the arterial and venous system depends on the network connectivity and the 
diameter of the individual segments in this network. Such data are, to the best of 
our knowledge, not available for the human stomach. We therefore covered a 
very wide range of values for Gca/Gc and Gcv/Gc, spanning 0.01 to 100 for both 
ratios. The low end of the chosen spectrum reflects absence of collaterals, while 
the high end indicates a model with identical perfusion of all four sites. 
Physiological values were estimated to be less than 10, with no definitive lower 
boundary.13, 14 The large vessels (LV) include terminal arteries, i.e., right gastric  
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Figure 1. An image of constructed gastric conduit (a), obtained intraoperatively during fluorescence 
imaging post-esophagectomy, demonstrated perfusion with ICG and reduced fluorescence in the collateral-
dependent upper part. The corresponding fluorescence enhancement curves of each ROI were measured at 
the gastric conduit (b). The model (c): From bottom to top: the sites 1-4, which correspond respectively to 
the ROIs. A site consists of an arterial  and a venous compartment directly connected through a capillary 
bed (horizontal line between compartments). Collaterals, as depicted by vertical lines between 
compartments, connect the adjacent sites. In this figure, site 1 and 2 are well perfused, whereas site 3 and 
4 are anastomosed. Arrows indicate direction of flow after the intervention. 
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artery and right gastroepiploic terminal artery, and initial veins, i.e., pyloric vein 
and right gastroepiploic initial vein. Relative conductance of the combined large 
arteries (GLV/Gc) was 3 by default and spanned 1 to 100 when studying the effect 
of this parameter. Large vein conductance was fixed at twice the large artery 
conductance. We used physiological data describing the proportion of artery, 
capillary, and vein in a given volume in the systemic circulation to determine the 
physiological vascular volumes.14, 15 The total volume of a site was calculated 
based on the volume of the ROI in the preceding clinical study.12 The default 
vascular volumes were taken as 0.24 mL and 0.56 mL for arterial (AV) and venous 
(VV) compartments, respectively, spanning 0.12 mL to 1.12 mL when studying the 
effect of vascular volume to contrast dynamics. 

ICG Transport Simulation  

Pressure at each branching point in Figure 1c and flow in each segment was 
calculated using Kirchhoff’s first law combined with Ohm’s law, assuming laminar 
flow of a Newtonian fluid.16 These calculated hemodynamic parameters depend 
on the pressures in the right gastroepiploic artery and vein and on the 
conductance of all segments. Arterial input and venous outflow pressure were 
taken as 70 mmHg and 0, respectively. Conductances were varied to evaluate 
their influence on perfusion. For each segment, after the pressure gradient was 
obtained, the flow was calculated. Tissue perfusion at the four sites is reflected 
by the predicted flow in the segments connecting arterial and venous 
compartments (F1 to F4). 

The ICG enters the system from the hepatic artery into the gastroduodenal artery 
(greater curvature), which leads into right gastroepiploic artery, and the right 
gastric artery (lesser curvature). The ICG then flows into the various 
compartments from A1 and A2 towards capillaries in the native sites and 
collateral-dependent sites, and leaves the system via V1 and V2. ICG from the right 
gastric and the right gastroepiploic veins drains into the portal and the superior 
mesenteric vein, respectively. This ICG transport was simulated using the above 
vessel configuration and well-mixed arterial and venous compartments, where 
dynamics of dye concentration obey the following differential equation:   
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(1) 

with Ck the concentration of the dye in compartment k, m, and n the number of 
upstream and downstream vessel of compartment k, respectively, UCj the 
concentration of upstream compartment j, UFj upstream flow from this 
compartment, DFi flow through i-th downstream vessel, and Vk the volume of 
compartment k.17 This ordinary differential equation was numerically solved with 
a single-step solver based on the Dormand-Prince algorithm of Runge-Kutta 
method which computed C(t) from [C(t-Δt)].18 The algorithm had six stages of 
function evaluation for each partial step and generated fourth-order and fifth-
order approximation of C(t). The two approximations was subsequently compared 
to estimate the error which provides the basis to accept or reject the tentative 
C(t). The error estimate also modulated the step size, Δt, for the next time step.   

The ICG signal intensity for each site was defined as the amount of ICG in both 
the arterial and venous compartments at time t: 

     (2)  

where  indicates the ICG signal, AC and AV denote the ICG concentration and 
the volume of the arterial compartment, respectively. VC and VV represent the 
ICG concentration and the volume of the venous compartment and i denotes the 
number of site. Figure 2 shows an example of the simulated temporal profile of  
for each site. 

Figure 2. Example of 
contrast dynamics at 
the four sites with 
derivation of the 
respective times to 
threshold. Sites 1 
and 2 have native 
perfusion, while sites 
3 and 4 depend on 
collateral flow, and 
accordingly have 
slower contrast 
dynamics  
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Time Based Perfusion Estimate   

For each simulation, the temporal profile of  at each site was analyzed. This 
signal forms the base for the estimation of remaining perfusion after surgery. We 
propose a measure to describe relative impairment of flow in a collateral-
dependent site. This measure was based on the time to threshold Tn which was 
defined as the time at which  of site n reaches a fraction of the maximum of  
of site 1. For example, in Figure 2, T4 is defined as the time it takes for  to reach 
50% of the maximum intensity in site 1 (I50). This approach ensures that Tn can be 
calculated as long as the maximum  in site 1 is recorded. We introduce RTT as a 
parameter on which RRF estimation can be based: 

   

(3)   

With Ti the time to threshold and Fi the flow in site i. Fpresurgery is the flow prior to 
the ligation. It was calculated from the same model and using the same set of 
parameter values but with A3 and A4 still supplied by the large arteries and V3 and 
V4 still drained by the large veins. A range of intensity thresholds were tested: 
20%, 30%, 40%, and 50% of the maximum  of site 1. The starting point (t = 0) 
was defined as the first inflection of contrast intensity in site 1. RRF is the ratio of 
post- and pre-intervention flow. We hypothesized that for a large range of 
variation in vascular conductances and volumes, RTT is closely related to RRF, 
such that RTT is a possible measure for the effect of surgery on local perfusion. 

Using the simulation scenarios detailed in the Table 1, we first evaluated the 
effect of Gca/Gc and Gcv/Gc on the remaining perfusion in anastomosed sites by 
fixing GLV/Gc, AV and VV to their default values (simulation 1). The effect of GLV/Gc 
was tested while fixing AV and VV to 0.24 and 0.56 ml respectively (simulation 2). 
Finally, GLV/Gc was maintained at its default value (3) while examining the effect 
of AV and VV (simulation 3). All tests were performed using all intensity  
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thresholds over the full range of collateral conductances. We then computed the 
RRF for all possible combinations of parameters for a range of possible outcomes 
(sample space) from Ohm's and Kirchhoff's laws. We included curve fits of the 
relation between RRF and RTT to illustrate the nature of the relation over 
collateral conductance space. We included curve fits of the relation between RRF 
and RTT to illustrate the nature of the relation over collateral conductance space. 
We tested the curve fit using linear, polynomial, and exponential function while 
evaluating the goodness-of-fit. A good fit was defined as a model that has low 
sum of squared of errors and high R2. The prediction interval was calculated by 
taking into account the sample mean, sample standard deviation, sample size, 
and critical value of Student’s t distribution at 95% confidence level. It should be 
noted that the indicated relations merely described the data and were not a 

Table 1. Parameters of the model, simulation scenarios, and generated variables 

Parameters Definitions [unit] Default Min Max 

Gca/Gc Relative collateral artery conductance [-]  0.01 100 

Gcv/Gc Relative collateral vein conductance [-]  0.01 100 

GLV/Gc Relative large vessel conductance [-] 3 1 100 

AV Arterial volume [ml] 0.24 0.12 1.12 

VV Venous volume [ml] 0.56 0.12 1.12 

Simulation 1    

Model parameters varied: Gca/Gc, Gcv/Gc 

Model parameters fixed to default: GLV/Gc, AV, VV 
   

Simulation 2    

Model parameters varied: Gca/Gc, Gcv/Gc, GLV/Gc 

Model parameters fixed to default: AV, VV 
   

Simulation 3     

Model parameters varied: Gca/Gc, Gcv/Gc, AV, VV 
Model parameters fixed to default: GLV/Gc 

   

Generated variables     

Solving Kirchhoff’s first law + Ohm’s law F1, F2, F3, F4    
 Fpresurgery*    
Solving eq.1 & eq.2 T1, T2, T3, T4; for threshold 20% of maximum ϕ of site 1 (I20) 
 T1, T2, T3, T4; for threshold 30% of maximum ϕ of site 1 (I30) 
 T1, T2, T3, T4; for threshold 40% of maximum ϕ of site 1 (I40) 
 T1, T2, T3, T4; for threshold 50% of maximum ϕ of site 1 (I50) 

* Fpresurgery were similar across the sites     
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result of mathematical analysis of the model. Hence, these fits do not affect the 
further outcomes in this study. Finally, we performed receiver operating 
characteristic (ROC) curve analysis to select the best intensity threshold to 
estimate perfusion impairment. We arbitrarily chose RRF values to dichotomize 
the outcome into lacking versus adequate perfusion. For site 3, RRF < 50% was 
defined as lacking perfusion, and RRF ≥ 50% was adequate perfusion. For site 4, 
RRF < 40% was defined as lacking perfusion, and RRF ≥ 40% was adequate 
perfusion. The area of physiological sample space was treated as predictor 
variables on which logistic regression was applied to produce the ROC curve. The 
simulation was performed in Matlab on a standard PC running on Windows 7 with 
3 GHz 16 CPUs, 32 GB RAM, and NVIDIA Quadro K4200 GPU. 

RESULTS  

The relation between RRF and RTT for sites 3 and 4 is shown in Figure 3, where 
the estimates are based on time to reach 20% (Figure 3a) to 50% (Figure 3d) of 
the maximum . The increase in collateral conductance correlates with higher 
RTT and RRF. Interestingly, aside from negligible variation in the resulting RRF, 
the varying balance of conductance between collateral arteries and collateral 
veins seems to be inconsequential (see Appendix). As can be seen, the relation 
between RTT and RRF is far from linear, with RRF being lower than RTT for low 
flows. For high flows, RTT becomes stable and insensitive to flow changes. We 
obtained good fits of the relation at site 3 by second-order polynomials, while for 
site 4, an exponential fit was needed. The RTT-RRF relation for various values of 
GLV is illustrated in Figure 4. For low values of GLV, the large vessels limit 
perfusion, thereby reducing the maximum possible levels of RRF. Figure 5 shows 
the RTT-RRF relation for various vascular volumes. The RTT-RRF relation for low 
flows is relatively independent of the volumes. However for higher flows, i.e., 
better collaterals, the volumes indeed have an influence but rather than the 
absolute volume values, it is the ratio of arterial and venous volume that matters. 

Figure 6 shows the relation between RTT and RRF for all above variations in 
conductances and volumes (4 sets of parameters). The pink area indicates the 
sample space for the full range of variations, while the green area denotes  
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possible outcomes when the parameters were varied between more realistic 
values. 

Figure 3. Result 
of simulation 1: 
relation between 
RTT and RRF 
over collateral 
conductance 
space, for site 3 
(left) and 4 
(right). The plots 
show RTT for 
thresholds of 
contrast arrival at 
20% (a), 30% (b), 
40% (c) and 50% 
(d) of the 
maximum 
contrast signal at 
site 1 as a 
function of RRF. 
The 
corresponded 
fitting functions 
and the 
respective 
goodness-of-fit 
parameters were 
also displayed. 
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The highest accuracy of RTT as RRF estimator resides in both extrema of RTT, 
particularly in the lower values. As example, for an observed RTT with I20 at site 4 
of 0.2, the true RRF may have been 0.038 to 0.04, as compared to RTT of 0.5 
which may have resulted from a larger range of true RRF from 0.31 to 0.5. 
Assessed by ROC, all four logistic regression models demonstrated good 
discriminatory capacity in both sites (see Figure 7). Although all intensity 
thresholds performed comparably well, I20 yielded the highest concordance of 
predictions with actual outcomes (AUC = 0.89 and 0.86 for sites 3 and 4, 
respectively). 

  
Figure 4. Result of simulation 2: variation in large vessels conductance changes the relation between true 
RRF and its estimate (RTT)   

   
Figure 5. Result of simulation 3: RRF and RTT relation as a function of the ratio of arterial volume (AV) and 
venous volume (VV). Note that not every symbol/color is visible due to the overlay 
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Figure 6 The 
sample space of 
the model from the 
complete (pink) and 
physiological 
(green) parameter 
space of collateral 
conductances (Gca, 
Gcv), large vessel 
conductance (GLV), 
and vascular 
volume (AV, VV). 
Was calculated 
from I20 to I50 (top 
to bottom). 
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Figure 7 ROC curve of four 
threshold for site 3 (top) 
and 4 (bottom). The cutoff 
value was determined 
hypothetically as 0.5 and 
0.4 for site 3 and 4 
respectively  

 

 

DISCUSSION 

In this study, we introduced a gastric conduit model and used this to identify the 
effects of various combinations of vascular conductance and volume on ICG 
dynamics. The results indicate that the relation between delayed time-to-
threshold (indicated by RTT) and reduced flow (indicated by RRF) is not trivial. We 
have shown a strong dependency of this relation on collateral conductance, large 
vessel conductance, and vascular volume. Despite this dependency, we found that 
time-to-threshold at the collateral-dependent sites can be used to estimate 
whether remaining perfusion is sufficient. 
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Perfusion Model Analysis  

The vascular tree can be modeled using several choices for the level of detail of 
the branching network. One extreme is to have a full network of vessel segments, 
with poroelastic models for the smallest vessels.19–21 The other extreme would be 
a single-vessel lumped model that disregards the detailed geometric structure of 
vascular tree thus reducing the complexity of the model.10, 22, 23 We believe that 
the current choice for a limited set of compartments is optimal for the current 
purpose since the actual small vessel structure in the ROI of the gastric conduit is 
not well-defined and likely to be highly variable. The four ROIs used in this study, 
which account for both arterial and venous volumes, are based on a preliminary 
study using clinical data.12 The ROI 1, 2, and 3 were equidistant (3 cm apart), 
while ROI 4 was located in the fundus. We separated arterial and venous network 
into two compartments of lumped vessels since these compartments influence 
the contrast dynamics in each ROI. Hence, this model allowed us to evaluate the 
role of the arterial and venous collateral on the tissue perfusion. Other 
configuration of the model was not investigated (for instance an eight-site 
model). This choice would affect the values of the modeling parameters, since 
clearly the volumes and conductances in each site would be different. Yet, there 
seems little reason to suspect that the modeling outcomes and further analysis 
would be fundamentally different for such a more detailed model. Considering 
the clinical setting we therefore used the four site model. 

Limitations 

The validity of the presented model remains a limitation as this study only uses 
hypothetical data. We partly addressed this limitation by varying several model 
parameters over large ranges. Yet, many other choices would have been possible. 
Thus, the assumption of identical collateral conductances for all sites is an 
oversimplification of real cases. Patient data also show high variability in vascular 
volume between sites. These variations may yield different relations between 
RTT and RRF. The accuracy of the predictive value of RTT to predict RRF was 
based on perfusion thresholds of 50% and 40% of the pre-intervention perfusion. 
Currently, we do not have data for realistic values of this threshold. 
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A strong point of this study is that we have created a model in which many 
parameters can be tested. Therefore, alternative measures (such as intensity 
based, or absolute times) for estimating the perfusion can be evaluated with this 
model. However, in the context of the complex surgery, observation periods are 
limited to 2–3 min and longer periods are a concern.24 In the fluorescence 
enhancement curve in Figure 1b, the fluorescence yield is reasonably similar 
between the sites and a maximum is obtained in also the fourth site but these are 
not always the case. Thus, alternative measures of perfusion that rely on 
normalization to the maximal fluorescence at site 4 or generally the full 
enhancement curve may have been impractical. 

Potential Use of Gastric Conduit Model  

A large number of studies have employed fluorescence imaging in intraoperative 
applications to assist visualization of blood flow or anatomical features.6, 25–28 
However, quantitative analysis of ICG fluorescence imaging of the gastric conduit 
is still limited. Yukaya et al. introduced a quantitative parameter describing the 
decay of luminance as analyzed with the software tool LumiView to predict 
anastomotic leakage.29 They could not find an association between blood flow 
and anastomotic leakage. A study on quantitative assessment of free jejunal graft 
used the time-fluorescence intensity curve, showing that time to half maximum is 
an indicative parameter for venous malperfusion.30 However, that study had a 
population of only five patients suffering from venous anastomotic failure. 
Furthermore, in that study, no direct relation between perfusion deficit and ICG 
intensity dynamics was studied. A more recent study had been performed to 
predict anastomotic leakage by quantitatively measuring ICG speed between four 
predetermined points in the gastric conduit.8 Also, this study suffered from 
limited data especially in the anastomotic leakage/malperfusion group. 

While there clearly are several limitations to consider, quantitative analysis of 
contrast dynamics could provide a useful prognostic tool in determining 
treatment success. We found that time to 20% of the maximum intensity is 
optimal in the discrimination between intermediate and low perfusion as 
indicated by the area under the ROC curve. Additionally, if adopted in clinical 
practice, this low threshold requires only a relatively short measurement time of 
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fluorescence imaging after maximum intensity is reached in ROI 1, which 
alleviates surgery-related risks. 

Since fluorescence imaging allows assessment of temporal ICG intensity for 
different areas of gastric conduit intraoperatively, the operating clinician can 
evaluate intensity profiles for selected ROIs. This allows the calculation of the 
RTT at the anastomosed site and this value can be used to estimate the range of 
perfusion reduction (Figure 6). The actual usefulness of RTT as an estimate for 
local perfusion and predictor of final outcome in esophagectomy remains to be 
established. 

CONCLUSION  

Our model demonstrated the effects of vascular conductance and volume on 
contrast dynamics in gastric conduit in relation to perfusion in anastomosed 
areas. After evaluating ICG dynamics for numerous different model parameters, 
we found that the relation between the dynamics and perfusion is not trivial. 
However, the model showed that for low flows, a low time to threshold intensity 
is predictive of flow deterioration. This estimation of remaining perfusion may 
form the base for clinical evaluation of a successful esophagectomy.
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APPENDIX  

The effect of collateral artery and vein conductance ratio and total collateral 
conductance to capillary perfusion   

The balance ratio between collateral artery and vein conductance (Gca/Gcv) 
reflects the contribution of one side of collateral over another in determining 
perfusion. We compared the RRF modeled with a specific collateral conductance 
ratio with its inverse to test whether a certain side of collaterals is more 
favorable for perfusion. The result has shown negligible difference between RRF 
of two conductance configuration. Eventually, it was apparent that the total 
collateral conductance is a more consequential factor in determining the portion 
of contrast flowing through the capillary. Total collateral conductance was 

Figure 8. The effects of the balance of arterial and venous collateral conductance (a) and of the total 
collateral conductance (b) on the relative remaining flow(RRF) in the anastomotic site 4, demonstrating 
the log-linear dependence of RRF on total collateral conductance without an effect of arteriovenous 
balance. RRF for all levels of total collateral conductance and arteriovenous balance (c), demonstrating 
absence of interactive effects of both parameters. 
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calculated as the inverse of the sum of collateral arteries and veins resistance in 
a series circuit (Gca·Gcv/(Gca + Gcv)). Figure 8 shows the effect of this total collateral 
conductance in logarithmic scale on relative remaining flow in these models. The 
ratio of arterial and venous conductance has a relatively minor impact on these 
perfusions while increasing total collateral conductances show a better perfusion 
of the collateral-dependent sites.   
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ABSTRACT  

Background Quantitative Blush Evaluator (QuBE) is a software application that 
allows quantifying myocardial perfusion in coronary angiograms after a 
percutaneous coronary intervention. QuBE has some limitations such as the 
application of a crude filter to remove large scale structures and the absence of 
correction for cardiac motion. This study investigates the extent of these 
limitations and we hypothesize that enhanced image analysis methods can 
provide improvements.  

Methods We calculated QuBE scores of 117 patients from the HEBE Trial and 
determined its association with the Myocardial Blush Grade (MBG) score. Accuracy 
of large-structure removal is qualitatively assessed for various sizes of a median 
filter. The influence of cardiac motion was evaluated by comparing the blush 
curve and QuBE score of the native QuBE with manually motion-corrected QuBE 
for 40 patients. The effect of different kernel sizes and motion correction to a 
potential improvement of the association between QuBE score and MBG was 
studied.  

Results In our population, there was no significant association between QuBE 
score and MBG (p = 0.14). Median filters of various kernel sizes were unable to 
remove large structure related noise. Variations in filters and cardiac movement 
correction did not result in an improvement in the association with MBG scores 
(observer 1: p = 0.66; observer 2: p = 0.72).  

Conclusions There was no significant association of QuBE with MBG scores in our 
population, which suggests that QuBE is not suitable for a quantitative 
assessment of myocardial perfusion. Alternative kernel sizes for the large 
structure removal filter and cardiac motion correction did not improve QuBE 
performance.  

Relevance for patients Further improvements of QuBE to overcome its inherent 
limitations are necessary in order to establish QuBE as a reliable myocardial 
perfusion assessment method.  
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INTRODUCTION  

Myocardial infarction is commonly treated by primary percutaneous coronary 
intervention (PCI) in which various procedures such as coronary angioplasty, stent 
placement, or thrombus aspiration are performed. PCI aims to reestablish 
epicardial blood flow in the infarct-related artery and myocardial perfusion. After 
successful PCI, myocardial perfusion can be assessed using angiography in order 
to determine if the restored epicardial patency also leads to proper perfusion in 
the infarcted area.1,2 The Myocardial Blush Grade (MBG) is one of the most 
common reperfusion scales for categorization of the quality of perfusion in this 
area.1 Although MBG has been proven to be a strong predictor of mortality in 
patients with restored epicardial flow as indicated by Thrombolysis in Myocardial 
Infarction flow grade 3, it is a rather coarse scale and is also sensitive to observer 
dependency. This has prompted the need for an automated and quantitative 
approach for assessing myocardial perfusion. 

Currently, quantification of myocardial perfusion is possible with Single Photon 
Emission Computed Tomography, Positron Emission Tomography, Cardiovascular 
Magnetic Resonance, and CT imaging.3–5 However, these methods require other 
imaging modalities in addition to the current standard practice of using x-ray 
angiography during PCI. Therefore, Quantitative Blush Evaluator (QuBE) has been 
introduced to semi-quantitatively assess myocardial perfusion from coronary 
angiograms.6 

QuBE is an open-source computer program, which has been developed by the 
University Medical Center Groningen, the Netherlands.6 In general, angiographic 
quantification of myocardial blush poses some difficulties including cumbersome 
assessment because of poor blush signal to noise ratio and superimposition of 
irrelevant structures. Recognizing and solving these issues are important in 
developing a blush quantification method such as QuBE. QuBE has been validated 
as a good risk predictor in the TAPAS trial, which was a study that included 
patients with PCI and in which the MBG score was assessed on angiograms. In 
this study, high QuBE values were associated with high MBG scores, more ST-
segment elevation resolution, smaller infarct size, and lower 1-year mortality 
rate.6 Although QuBE has been shown to be reproducible, unknown effects of 
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different angiography hardware and techniques, median filter insufficiency as the 
default large structure removal method, and uncalibrated scoring remain as 
limitations.7–9 These inherent limitations might obstruct accurate calculation of 
myocardial blush. Another possible limitation is the effect of cardiac motion on 
QuBE score calculation, which has not been studied before. In this study, we 
evaluate the accuracy of QuBE in a clinical trial data and analyze whether general 
difficulties of blush quantification and inherent limitations of QuBE can be 
resolved with enhanced image analysis methods.  

METHODS  

Patients  

We included patients with ST-segment elevation myocardial infarction who 
underwent primary PCI in the HEBE trial.10 The HEBE trial was a multi-center 
randomized trial with blinded evaluation of endpoints. This trial was designed to 
assess the effects of intracoronary infusion of bone marrow mononuclear cells 
and peripheral blood mononuclear cells in improving left ventricular recovery 
after acute myocardial infarction. Patients from the bone marrow mononuclear 
cells, peripheral blood, and control groups were included based on the following 
criteria: age 30-75 years old, successful PCI within 12h after onset of symptoms, 
>3 hypokinetic or akinetic left ventricular segments observed on 
echocardiography at least 12h after PCI, and an elevation of creatine kinase in 
venous blood >10 times the local upper limit of normal. In addition, patients with 
hemodynamic instability, upcoming additional PCI, coronary-artery bypass 
grafting within the next 4 months, severe comorbidity, and contraindications for 
MRI were excluded from this trial. We included patients from the two largest of 
the eight participating centers in this study. We included 58 patients from the 
Academic Medical Center and 87 patients from the University Medical Center 
Groningen.14 Coronary angiograms made during primary PCI were collected. The 
inclusion criteria for accepted angiogram adhered to the guideline provided in 
the initial study of QuBE.6 We included complete blush sequence and no major 
overlapping of other non-infarct related area in myocardial region of interest.  
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QuBE evaluation and Myocardial Blush Grade 

In coronary angiograms, tissue perfusion appears as a blush surrounding the 
coronary artery. Therefore, myocardial perfusion can be observed by monitoring 
the dynamics of average contrast intensity within a certain region of interest 
(ROI), which is shown as a typical curve in Figure 1. 

The accuracy of QuBE score calculation assumes that the blush can be isolated by 
removal of contributions from coronary arteries and background structures such 
as the diaphragm and catheter from the image using filters. This implemented 
removal of these structures is based on differences between the spatial 
frequencies of myocardial blush compared to the unwanted structures (Figure 2). 
QuBE applies a median filter, which creates an image depicting large-scale 
structures only.11 Subsequently, this background image is subtracted from the 
original frame. This process results in an image representing myocardial blush 
and other high-spatial frequency noise. The noise characteristics, such as the 
sparsity and the intensity, depend on the kernel size of the median filter. 

 

Figure 1. Left: Coronary angiogram with a ROI containing distal infarct-related area of right coronary artery. 
Right: Blush curve representing the average intensity of ROI for each frame. The QuBE score is defined as 
the sum of the maximum increase (a) and the maximum decrease (b) of intensity.  
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Figure 2. Large structure removal for blush extraction. The original frame of coronary angiogram (left) was 
filtered using median filter with kernel size of 35 pixels × 35 pixels. The resulting background (middle) was 
subtracted from the original image such that only blush and other smaller structures remain (right).  

The native QuBE software uses a fixed kernel size of 35 pixels × 35 pixels. We 
evaluated the appropriateness of this kernel size for removal of large structures 
by comparing with results obtained from two different kernel sizes: 20 pixels × 20 
pixels and 50 pixels × 50 pixels. The performance of median filters with different 
kernel sizes was qualitatively and quantitatively assessed. 

Since QuBE uses a fixed ROI location, a bias may be introduced due to the cardiac 
motion. The QuBE only includes a rudimentary panning motion correction by 
calculating a possible translation offset of every frame, while cardiac motion is a 
complex combination of translation, rotation, and non-isotropic contraction and 
relaxation. We evaluated whether additional cardiac motion correction improves 
the agreement of QuBE score with MBG. The comparison was made because MBG 
is the most commonly used angiographic measure to assess myocardial perfusion 
and has moderate to good inter- and intra-observer agreement.1,12,13 For this, a 
single experienced cardiologist who was blinded to clinical data first indicated 
the ROI on a frame of reference. Two trained observers subsequently manually 
adjusted the ROIs for all time frames, ensuring that the ROI indicates the same 
area of myocardium at all times. The cardiac motion correction was performed for 
40 patients (10 of each MBG group). 

The suitability of the angiographic angulation was assessed by an experienced 
cardiologist to avoid an overlap between infarcted and healthy myocardium. The 
right anterior oblique view of −30° and the left anterior oblique view of −60° to 
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−90° were considered to be the appropriate angulations for perfusion assessment 
for the left anterior descending artery. A deviation of ±10° from the two proposed 
projections was allowed. In appropriate angiograms, the MBG was assessed by 
the same cardiologist. The cardiologist delineated the ROI that contained the 
distal part of the perfusion area of the infarct-related artery. The MBG was scored 
based on the following classification: MBG 0 for no myocardial blush, MBG 1 for 
minimal myocardial blush, MBG 2 for moderate myocardial blush but less than 
that obtained during angiography of the reference artery, and MBG 3 for normal 
myocardial blush that is comparable to the angiographically healthy reference 
artery. 

Statistical Analyses 

QuBE scores were summarized as medians (interquartile range, IQR). Associations 
between QuBE scores and MBG grades were analyzed by calculating the 
Spearman rank correlation coefficients. Kruskal-Wallis tests were performed to 
analyze the differences in QuBE scores between MBG groups. Lin’s concordance 
coefficient was calculated to quantify interobserver agreement on the QuBE 
scores acquired after manually correcting the cardiac motion. The significance of 
the difference of the QuBE scores with and without cardiac motion on QuBE score 
was analyzed using Wilcoxon signed-rank test. The similarity of the native and 
motion-corrected blush curves was analyzed using Pearson correlation where the 
intensities for every time frame was compared for both assessments. P-values 
lower than 0.05 were considered statistically significant. All statistics were 
performed using IBM SPSS software (version 19.0.0).  

RESULTS  

Out of 145 patients, 28 were excluded due to an unsuitable angulation. The 
remaining 117 patients (48 patients from the Academic Medical Center and 69 
from the University Medical Center Groningen) were included in this analysis. The 
QuBE score distribution for the MBG grades are represented in Figure 3. The 
correlation between QuBE score and MBG was not significant (p = 0.14) and no 
significant differences were found between the grades (p = 0.22). Table 1  
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summarizes the QuBE scores stratified for MBG scores for varying kernel sizes of 
the median filter. 

Figure 4 shows the resulting images after subtracting median filtered images for 
various sizes of the median filters for a single patient. For all kernel sizes the 
right coronary and right marginal artery were successfully removed. However, the 
resulting images were commonly noisy, especially around the edge of the 
angiogram’s border, arteries, and diaphragm. This figure indicates that a kernel 
size of 20×20 resulted in more pronounced and higher frequency noise. On the 
other hand, a kernel size of 50×50 resulted in a lower noise level but in larger 
areas around the edges of large structures.  

 

 

Table 1. MBG and QuBE score of 117 patients 

 MBG 0 MBG 1 MBG 2 MBG 3 

n 70 14 13 20 

QuBE score 

Kernel Size 20×20 4.2(1.1-24) 4.0(1.4-9.4) 4.7(2.3-8.6) 4.9(2.4-9.0) 

Kernel Size 35×35 (Native) 14(3.3-31) 12(3.0-22) 15(8.5-19) 12(4.1-29) 

Kernel Size 50×50 15(4.0-35) 12(5.0-22) 15(7.9-18) 13(4.7-36) 

QuBe scores are presented as median (and interquartile range); MBG, Myocardial Blush Grade; QuBE, 
Quantitative Blush Evaluator. 

Figure 3. Association of myocardial 
blush grade with QuBE. MBG 0: no 
myocardial blush; MBG 1: minimal 
myocardial blush; MBG 2: moderate 
myocardial blush; MBG 3: normal 
myocardial blush.  
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Figure 4. The remaining structure after the median-filtered frame is subtracted from the original frame. 
Left: kernel size of 20×20. Middle: kernel size of 35×35 (native QuBE). Right: kernel size of 50×50. 
Contrast is readjusted for clarity.  

Figure 5. 
QuBE scores 
distribution 
per MBG: (a) 
for three 
different 
kernel sizes 
of median 
filter, and (b) 
pre- and 
post-motion 
correction in 
40 patients.  
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Figure 5a shows the distribution of the QuBE scores for varying kernel size and 
MBG score. We found that there were no significant correlations between QuBE 
score and MBG for kernel size 20 pixels x 20 pixels (p = 0.33) and 50 pixels x 50 
pixels (p = 0.16). Additionally, no significant QuBE differences were found 
between MBG groups for all kernel sizes (p = 0.70 and 0.28 for kernel size 20 
pixels x 20 pixels and 50 pixels x 50pixels, respectively). 

There were no significant differences among QuBE scores of different MBG 
groups of the native and motion-corrected QuBE score (p = 0.70), as can be seen 
in Figure 5b. For both observers, 38 patients demonstrated strong correlation 
between blush curves of native and motion-corrected QuBE and the remaining 2 
patients showed moderate correlation (observer 1: median R = 0.97, range 0.47–
1.00; observer 2: median R = 0.98, range 0.53–1.00). The Lin’s inter-observer 
concordance was 90%. The native and motion corrected blush curves with the 
worst and the best correlation are shown in Figure 6. The Wilcoxon signed-rank 
test showed that additional manual cardiac motion correction performed by the 
two observers did not elicit a statistically significant change in QuBE scores (p = 
0.66, 0.72).  

DISCUSSION  

In our population, we found no association between QuBE scores and the MBG 
score, suggesting that QuBE is not suitable for myocardial blush quantification. 

 
Figure 6. Comparison of the native QuBE and motion-corrected QuBE of blush curves. The frame rate is 
12.5 frames per second. The largest difference in blush curves is shown in the left panel (R = 0.47). The 
right panel shows the best correlation between the two blush curves (R = 1.00).  
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We found that the implemented median filter is not accurate in the removal of 
large structures and that in the filtered images many artefacts associated with 
large structures remain and influence the QuBE score. We explored different sizes 
of filters without better results. Furthermore, cardiac motion correction did not 
strongly affect QuBE calculation. These findings suggest that despite the reported 
high reproducibility, QuBE scores may not represent the actual reperfusion state. 

The feasibility of QuBE has been evaluated in a number of trials, notably the 
TAPAS and PREPARE trials.8,9,14,15 These authors found that a high QuBE score 
significantly correlates with high MBG, ST-segment elevation resolution, smaller 
infarct sizes, survival at 1 year,  improved functional outcome, and contrast-
enhanced Cardiac Magnetic Resonance outcomes.6,8,9 Our results do not confirm 
these findings. 

Because QuBE is open source, it allowed for detailed inspection of the algorithms 
that are employed in the software. We found that the underlying cause of the lack 
of association between QuBE and MBG may reside within QuBE itself. We have 
shown that the median filter used in QuBE may not be appropriate for blush 
isolation. It was demonstrated that the filtered image may contain noise around 
the edges of removed structures that has the same spatial characteristics as the 
blush. QuBE calculates the local average of the intensities of the few brightest 
pixels as the blush value of a single frame of angiogram.6 This calculation leads 
to the inclusion of the noise in the equation since there is no earlier process in 
QuBE that distinguishes blush from the noise. 

We considered cardiac motion as a potential important limitation in the 
calculation of the QuBE score. Our observation, however, revealed that in most 
cases cardiac motion did not have a large influence on the QuBE calculation. We 
suspect that the limited improvement of cardiac motion correction is because the 
ROIs were large enough for the infarct-related artery and its perfusion area to 
remain inside the ROI during the cardiac cycle. On the other hand, in the cases 
where the ROI is close to a coronary artery bifurcation but does not include it, i.e., 
during reperfusion assessment of myocardium supplied by the right coronary 
artery, cardiac motion did have an effect. Since the most prominent cluster of 
noise was formed in curving arteries and bifurcations, the cardiac motion which 



3 

 

65

subsequently included and excluded this bifurcation in a cardiac cycle introduced 
subsequent spikes and dips in the blush curve. In these particular cases, motion 
correction may improve the accuracy of the QuBE score. 

Describing and visualizing intermediate results in QuBE calculations set this 
study apart from previous QuBE studies. This allowed for careful analysis of the 
limitations of the specific algorithms in QuBE. Although we investigated different 
kernel sizes of the filter, we did not explore other large-scale structure removal 
methods that might provide better isolation of the myocardial blush. Several 
enhanced-image and segmentation methods could be employed as alternatives 
to median filter, i.e., digital subtraction angiography for coronary arteries or 
vesselness filters for better artery removal.16,17 Since this is a retrospective 
analysis of trial data, no power analysis and sample size calculation were 
performed. Uneven distribution of samples across MBG groups may have reduced 
the statistical power of our findings. Additionally, the trial data used by previous 
studies that showed positive findings with QuBE were not available, thus, a 
comparison study could not be performed. However, aside from the particular 
limitation of the local algorithm, this discrepancy of QuBE performance may also 
have been caused by a number of other factors. For instance, type and volume of 
contrast agent, speed of injection, and the configuration of acquisition machine 
have not been yet standardized. Besides, the infarct location and body mass index 
has been known to confound QuBE value.7 If the image acquisition protocol is 
standardized and the known confounders are controlled, QuBE may give a more 
reliable assessment. This information should be incorporated in the guidelines on 
the use of QuBE to assess myocardial perfusion. 

In summary, QuBE may not reliably describe myocardial perfusion and extensive 
motion correction does not improve its performance. Alternatives for the 
currently used large-scale structure removal algorithms should be investigated.
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ABSTRACT  

Background The Thrombolysis in Cerebral Infarction (TICI) scale is an important 
outcome measure to evaluate the quality of endovascular stroke therapy. The TICI 
scale is ordinal and observer-dependent, which may result in suboptimal 
prediction of patient outcome and inconsistent reperfusion grading. 

Aims We present a semi-automated quantitative reperfusion measure (quantified 
TICI (qTICI)) using image processing techniques based on the TICI methodology. 

Methods We included patients with an intracranial proximal large vessel 
occlusion with complete, good quality runs of anteroposterior and lateral digital 
subtraction angiography from the MR CLEAN Registry. For each vessel occlusion, 
we identified the target downstream territory and automatically segmented the 
reperfused area in the target downstream territory on final digital subtraction 
angiography. qTICI was defined as the percentage of reperfused area in target 
downstream territory. The value of qTICI and extended TICI (eTICI) in predicting 
favorable functional outcome (modified Rankin Scale 0-2) was compared using 
area under receiver operating characteristics curve and binary logistic regression 
analysis unadjusted and adjusted for known prognostic factors.   

Results In total, 408 patients with M1 or internal carotid artery occlusion were 
included. The median qTICI was 78 (interquartile range 58-88) and 215 patients 
(53%) had an eTICI of 2C or higher. qTICI was comparable to eTICI in predicting 
favorable outcome with area under receiver operating characteristics curve of 
0.63 vs. 0.62 (P = 0.8) and 0.87 vs. 0.86 (P = 0.87), for the unadjusted and adjusted 
analysis, respectively. In the adjusted regression analyses, both qTICI and eTICI 
were independently associated with functional outcome. 

Conclusions qTICI provides a quantitative measure of reperfusion with similar 
prognostic value for functional outcome to eTICI score. 

  

Keywords: Digital subtraction angiography; endovascular therapy; ischemic 
stroke; reperfusion. 
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INTRODUCTION  

Various grading scales have been introduced to assess the extent of reperfusion 
on digital subtraction angiography (DSA) images following endovascular 
treatment (EVT).1 One of the most frequently used scales is the modified 
Treatment in Cerebral Ischemia (mTICI) scale.2 This scale has been recommended 
because of its fair interobserver agreement and clinical prognostic value.1,3,4 
mTICI assesses the proportion of brain tissue perfused in an antegrade fashion 
relative to the total area of the target downstream territory (TDT) distal to the 
target occlusion.5 The TDT is the area of the brain that was supplied by the 
occluded artery prior to stroke onset.1 The score ranges from no perfusion (mTICI 
= 0) to complete reperfusion (mTICI = 3). A subsequent refinement has been made 
to intermediate grades of reperfusion (mTICI 2B) to better define successful 
reperfusion.3,4,6 Recently, the extended Thrombolysis in Cerebral Ischemia (eTICI) 
scale has been introduced, which includes grade 2C to account for nearly 
complete reperfusion with slow flow in distal cortical vessels or presence of tiny 
distal emboli.7–9 This grade 2C has been retained in the expanded TICI scale, 
which added 67% perfusion threshold into the middle categories.10 Recent 
findings suggest that eTICI 2C-3 has a stronger association with favorable 
functional outcome than eTICI 2B-3.10–15  

Despite its widespread use, the eTICI score suffers from two shortcomings: it is 
prone to observer variance and it is an ordinal scale.1,6,7,10,16 Moreover, a recent 
study showed that reperfusion is generally overestimated by the interventionalist 
performing EVT compared to core-lab observers.16 An automated and quantitative 
reperfusion grading has the potential to provide a more clinically relevant, less 
observer-dependent score, and a greater ease of use. In this study, we present a 
quantitative reperfusion measure using semantic segmentation of DSA images. 
We assessed the prognostic value of the proposed quantitative reperfusion 
grading for predicting functional outcome in comparison with eTICI.   
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METHODS  

Patients  

This is a substudy of the Multicenter Clinical Registry of Endovascular treatment 
for acute ischemic stroke in the Netherlands (MR CLEAN Registry). Details of the 
registry, patient inclusion, baseline clinical and imaging characteristics, and 
interventional therapy have been described previously.17 We included only 
patients with acute ischemic stroke attributable to an occlusion of the 
intracranial internal carotid artery (ICA) or proximal middle cerebral artery (MCA) 
(M1) as presented on DSA who were treated between March 2014 and June 2016. 
We also only included patients with good quality pre- and post-treatment DSA, 
with full arterial to venous anteroposterior and lateral runs, and who were eTICI 
graded by an independent core-lab of neuro/interventional radiologists. DSA 
images with motion artifacts and low contrast volume were excluded.  

Image Analysis  

Similar to the eTICI grading, our quantitative reperfusion measure assesses the 
percentage of the reperfused area within the TDT on DSA. An overview of the 
proposed approach is shown in Figure 1.  

First, the reperfused area was identified by following the contrast trajectory past 
the initial target occlusion. The contrast trajectory can be roughly divided into 
three phases in the brain: the arterial, parenchymal, and venous phase. This 
sequence of phases occurs earlier in the proximal part of the intracranial 
vasculature than in the distal areas. Since perfusion is only visible during the 
parenchymal phase (from contrast opacification in the brain microvasculature), 
segmentation of the reperfused tissue can be challenging due to the lack of 
distinction between phases. This distinction is especially important to separate 
the antegrade (via recanalization) and retrograde (via pial collateral) perfusion as 
only the former constitutes reperfusion. Moreover, the local vessel structure, 
whether it is artery in earlier frames or vein in later frames, can be present during 
the parenchymal phase. To accurately assess the extent of reperfusion in the 
parenchyma, the vessel structure was removed from the images.  
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Figure 1. Overview of the image segmentation approach in a patient with M1 occlusion. There are two 
parallel segmentation tasks: segmentations of reperfused area and of TDT. The reperfused area was 
segmented from temporal maximum intensity projection of the images of the arterial and parenchymal 
phase. The TDT was defined as the middle cerebral artery territory and was manually delineated. The 
percentage of the reperfused area within the TDT was subsequently calculated 

We quantified reperfusion on a temporal maximum intensity projection of the 
images starting at the arterial until the end of parenchymal phase. The last frame 
of parenchymal phase was manually determined as the immediate frame before 
the appearance of contrast in the superior sagittal sinus. We assumed that this 
frame marked the separation between antegrade and retrograde perfusion. 

We adopted a multiscale vesselness filter to segment the arteries.18 The 
vesselness filter detects tubular structures in images using local curvature 
information encoded in a Hessian matrix. Improvements were made by 
introducing a normalization factor to the vesselness classification to reduce blur 
surrounding the vessel. Details can be found in the Supplemental Materials. To 
obtain a parenchymal mask image that contains only the non-vessel structure, 
the resulting vessel mask was subtracted from the original image. This 
parenchymal mask comprised of reperfused area and background (which includes 
non-perfused areas). Finally, the reperfused area was arbitrarily determined as the 
area in the parenchymal mask where the pixel intensity exceeded 7% and 3% of 



76

the maximum intensity in the original image for anteroposterior and lateral runs, 
respectively. These numbers reflect the minimum contrast intensity in the image 
that distinguishes perfusion from background area. 

For TDT delineation, an expert observer blinded to all clinical data except 
symptomatic side visually assessed the DSA images of a subpopulation and 
outlined the TDTs. For this study, we included three expert observers (HP, MK, 
and BJE) to account for three different patient subpopulations. The M1 TDT was 
defined as the presumed area supplied by the MCAs including part of 
lenticulostriate arteries and holotemporal branch.1 In clinical practice, the ICA 
TDT is dependent on the patency of the anterior communicating artery. In case 
the anterior communicating artery is patent, the ipsilateral anterior cerebral 
artery (ACA) territory is usually supplied by the contralateral anterior circulation. 
In this case, the ICA TDT is identical to the M1 TDT. In case of an absent or 
severely hypoplastic anterior communicating artery, the ICA TDT also includes the 
ACA territory. In practice, baseline computed tomography angiography (CTA) data 
can be used to inspect the patency of the anterior communicating artery. 
However, during the core-lab evaluations of the eTICI, this information was not 
available and the M1 TDT was used. Therefore, we used M1 TDT for both ICA and 
M1 cases in this study. The effect of using different TDTs for the ICA occlusions 
on the quantified TICI (qTICI) score was evaluated. We did not make a distinction 
in TDT between a proximal and distal ICA and M1 occlusions since there is no 
considerable difference in the TDT. Consensus agreement between expert 
observers was achieved to maintain consistency in the delineation process. An 
example of a TDT is shown in Supplemental Figure S1. 

The parenchymal mask within the resulting TDT was subsequently determined. 
qTICI was calculated as the number of pixels of reperfused area in the TDT 
divided by the number of pixels in the parenchymal mask in the TDT and 
expressed as percentage. The average qTICI of both anteroposterior and lateral 
DSA was used as the final qTICI score. 
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Angiography Evaluation  

An independent core-lab assessed all the imaging in the MR CLEAN Registry.19 
The pre- and post-treatment DSA images were used for reperfusion evaluation 
with target occlusion location determined from pre-treatment DSA images. The 
six-point eTICI grading was used to adjudicate the reperfusion of the initial target 
occlusion. We should clarify that we used the eTICI and not the expanded TICI 
definition. The eTICI is the extension of the modified TICI in which grade 2C has 
been added.9 The expanded TICI further divides the scale 2B into 2B50 and 
2B67.10 At the time of the prospective patient recruitment for the registry, the 
expanded TICI was not yet introduced and therefore not used in the current 
study. In summary, eTICI 0 describes no reperfusion in TDT; eTICI 1 indicates 
antegrade reperfusion past the initial occlusion but minimal reperfusion of TDT, 
eTICI 2A is reperfusion of <50% of TDT, eTICI 2B is a reperfusion of ≥50% of TDT, 
eTICI 2C reflects a near-complete perfusion with distal slow flow or presence of 
small cortical emboli, and eTICI 3 is a complete reperfusion.7 

Statistical Analyses  

Continuous and categorical variables were expressed as median (interquartile 
range (IQR)) and frequency (percentage), respectively. Kruskal–Wallis tests were 
performed to compare differences in qTICI scores between eTICI grades. 
Functional outcome was determined by assessing the modified Rankin Scale 
(mRS) at day 90 and dichotomized into favorable (mRS 0–2) and unfavorable 
outcome (mRS 3–6). Stacked bar plots were used to visually compare the ordinal 
mRS distribution with respect to qTICI and eTICI grades. A classification table for 
grouped qTICI based on the definition of the corresponding eTICI grades was 
provided. 

The unadjusted and adjusted odds ratios for favorable outcome were estimated 
for qTICI and eTICI using logistic regression. Adjustments were made by including 
major prespecified baseline prognostic factors: age, sex, baseline stroke severity 
(National Institutes of Health Stroke Scale (NIHSS)), Alberta Stroke Program Early 
CT Score, CTA collateral score, history of hypertension, diabetes mellitus, and 
previous stroke, pre-treatment mRS, systolic blood pressure, administration of 
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intravenous thrombolytics prior to EVT, general anesthesia, time from onset-to-
groin puncture, and duration of endovascular treatment. For adjusted analyses 
only, missing variables were imputed based on additive regression, bootstrapping, 
and predictive mean matching using the aforementioned variables with 
additional variables: glucose level, hypercholesterolemia, atrial fibrillation, 
history of myocardial infarction, occlusion segment, time from onset to 
reperfusion or last contrast bolus, and NIHSS score after 24 to 48 h.19,20 

Unadjusted and adjusted odds ratios were reported with 95% of confidence 
interval (CI) for statistical precision. Nagelkerke’s coefficient of determination was 
used to compare the unadjusted and adjusted models of qTICI and eTICI in 
explaining the proportion of functional outcome variation. The effect of using 
different TDTs for ICA occlusion cases in the estimation of the odds ratio was 
tested in a sensitivity analysis in which the combined ACA and MCA TDTs were 
used instead of the MCA TDT. 

The area under the receiver operating characteristic curve (AUC) was calculated 
to determine the prognostic value of the logistic regression models in predicting 
favorable outcome. P values lower than 0.05 were considered statistically 
significant. All statistics were performed using IBM SPSS software (version 19.0.0) 
and RStudio, RStudio, Inc. (version 1.2.1335). 

RESULTS  

A total of 524 patients met the inclusion criteria based on occlusion location and 
DSA availability. Based on DSA quality, 115 additional patients were excluded 
because of motion artifacts (N = 85) and low contrast volume (N = 30), resulting 
in a total of 408 patients to be included in our final analysis (Supplemental 
Figure S2). Table 1 shows the baseline characteristics of the patients included in 
this study. Occlusion sites were ICA in 99 patients and M1 in 309 patients. Median 
age was 69 (IQR 59–78) years and 43% of patients were female. Median qTICI 
score was 78 (IQR 58–88). Core-lab determined eTICI was 0 in 31 patients (7%), 1 
in 7 patients (2%), 2A in 64 patients (16%), 2B in 91 patients (22%), 2C in 56 
patients (14%), and 3 in 159 patients (39%). 
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Table 1. Baseline Characteristics  

N  408  
Age, median (IQR)  69 (59–78)  
Female sex  200 (43%)  
M1 occlusion on DSA  299 (73%)  
NIHSS, median (IQR)  16 (12–20)  
History of ischemic stroke  67 (17%)  
History of hypertension  200 (50%)  
History of diabetes mellitus  65 (16%)  
Prestroke mRS    
  0  277 (70%)  
  1  48 (12%)  
  ≥2  73 (18%)  
Arterial systolic blood pressure in mmHg, median (IQR)  150 (130–165)  
Treatment with IV-rtPA  318 (78%)  
ASPECTS, median (IQR)  8 (7–10)  
CTA collateral score    
  0  36 (9%)  
  1  126 (33%)  
  2  154 (40%)  
  3  71 (18%)  
eTICI    
  0  28 (8%)  
  1  7 (2%)  
  2A  59 (16%)  
  2B  80 (22%)  
  2C  48 (13%)  
  3  141 (39%)  
General anesthesia  170 (43%)  
Onset-to-groin puncture time in min, median (IQR)  210 (163–260)  
EVT time in min, median (IQR)  61 (40–86)  

IQR: interquartile range; M1: M1 segment of middle cerebral artery; DSA: digital subtraction 
angiography; NIHSS: National Institutes of Health Stroke Scale; mRS: modified Rankin scale; IV-rtPA: 
intravenous recombinant tissue plasminogen activator; ASPECTS: Alberta Stroke Program Early 
Computed Tomography Score; CTA: computed tomography angiography; eTICI: extended thrombolysis 
in cerebral ischemia; EVT: endovascular treatment.  

Figure 2(a) shows the distribution of qTICI values for different eTICI grades. The 
qTICI was significantly different between all eTICI grades (P < 0.001). For ICA 
occlusion cases only, the qTICI values were not significantly different for eTICI 
classifications when using the combined ACA and MCA territories (P = 0.28). The 
full result of this analysis is shown in Supplemental Figure S3. Figure 2(b) shows  
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Figure 2. Com
parison of qTICI and eTICI. (a) D

istribution of the qTICI score for the various eTICI grades. (b) m
RS at 90 days based on qTICI and eTICI. 

m
RS: m

odified Ranking Scale; TICI: Throm
bolysis in Cerebral Infarction; qTICI: quantified TICI; eTICI: extended TICI.  
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the distribution of mRS for different qTICI groups and eTICI grades. The group- 
wise comparison between qTICI and eTICI is shown in Table 2.  

Ninety-five patients had missing baseline prognostic variables which were 
imputed for the subsequent predictive analytics. 

Logistic regression analysis showed that both qTICI and eTICI were significantly 
associated with favorable outcome with unadjusted odds ratio of 1.25 (95% CI, 
1.14–1.35, P < 0.001) for 10% qTICI increment and of 1.37 (95% CI, 1.2–1.58, P < 
0.001) for one grade eTICI increment (Table 3). After adjustment for baseline  
prognostic variables, an increase in 10% point in qTICI and one grade in eTICI led 
to the adjusted odds ratio of 1.28 (95% CI, 1.14–1.42, P < 0.001) and 1.43 (95% CI, 
1.18–1.73, P < 0.001), respectively. The models including qTICI (unadjusted: 
pseudo-R2 = 0.08; adjusted: pseudo-R2 = 0.50) outperformed the models including 
eTICI (unadjusted: pseudo-R2 = 0.07; adjusted: pseudo-R2 = 0.49) in both 

Table 2. Classification table of the grouped qTICI and the corresponding eTICI grades 

 eTICI 0 eTICI 1 eTICI 2A eTICI 2B eTICI 2C eTICI 3 Total 

qTICI 0 
2 0 0 0 0 0 2 

100% 0% 0% 0% 0% 0% 100% 

qTICI 1-9 
2 0 0 0 0 0 2 

100% 0% 0% 0% 0% 0% 100% 

qTICI 10-49 
14 5 24 12 2 11 68 

21% 7% 35% 18% 3% 16% 100% 

qTICI 50-89 
11 1 40 65 35 93 245 

4.5% 0.5% 16% 27% 14% 38% 100% 

qTICI 90-99 
2 1 0 12 18 53 86 

2% 1% 0% 14% 21% 62% 100% 

qTICI 100 
0 0 0 2 1 2 5 

0% 0% 0% 40% 20% 40% 100% 

Total 
31 7 64 91 56 159 408 

7% 2% 16% 22% 14% 39% 100% 

TICI: Thrombolysis in Cerebral Infarction; qTICI: quantified TICI; eTICI: extended TICI. The correct 
classifications are in bold. 
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unadjusted and adjusted analysis, although the differences were not statistically 
significant. 
 

Table 3. Results of unadjusted and adjusted regression analysis for the effect of reperfusion score on the 
dichotomized functional outcome 

 Unadjusted  Adjusteda 

  uOR (95% CI) p-value Pseudo-R2  aOR (95% CI) p-value Pseudo-R2 

qTICI per 10% 1.28 (1.14 – 1.42)  <.001  0.08    1.25 (1.14 – 1.35)  <.001  0.50  

eTICI per grade 1.37 (1.2 – 1.58)  <.001  0.07    1.43 (1.18 – 1.73)  <.001  0.49  

Note: Higher Pseudo-R2 implies better models. TICI: Thrombolysis in Cerebral Infarction; qTICI: quantified 
TICI; eTICI: extended TICI; uOR: unadjusted odds ratio; aOR: adjusted odds ratio; CI: confidence interval; 
Pseudo-R2: Nagelkerke’s coefficient of determination. 
aAdjusting for sex, age, NIHSS baseline, Alberta Stroke Program Early CT Score baseline, CTA collateral 
score, previous ischemic stroke, previous hypertension, previous diabetes mellitus, prestroke mRS, arterial 
systolic blood pressure, treatment with intravenous recombinant tissue plasminogen activator, general 
anesthesia, onset-to-groin puncture time, and EVT time.  

 
Figure 3. Receiver operating characteristic (ROC) curves for qTICI and eTICI for predicting good 
functional outcome (mRS 0-2). Left: The area under the curve for qTICI and eTICI as a single predictor 
were 0.63 and 0.62 respectively. Right: The area under the curve for the adjusted predictive model with 
either qTICI or eTICI were 0.87 and 0.86 respectively, a minor improvement from the area under the 
curve 0.85 of the model with the other prognostic factors. 
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As shown in Figure 3, receiver operator characteristics analysis showed that qTICI 
and eTICI were moderate predictors of favorable outcome with an AUC of 0.63 
(95% CI, 0.58–0.68) vs. 0.62 (95% CI, 0.57–0.67). For the adjusted model, qTICI 
and eTICI were comparable with AUC 0.87 (95% CI, 0.83–0.90) and 0.86 (95% CI, 
0.83–0.90), respectively. For both the adjusted and unadjusted models, the 
difference in AUCs of qTICI and eTICI was not significant (P = 0.87 for the 
adjusted model, P = 0.80 for the unadjusted model).  

The sensitivity analysis showed that the unadjusted and adjusted odds ratio for 
10% qTICI increment were 1.28 (95% CI, 1.16–1.4, P < 0.001) and 1.33 (95% CI, 
1.18–1.49, P < 0.001) when the combination of ACA and MCA territory was used 
as ICA TDT. These odds ratios were higher compared to the odds ratios of qTICI 
using only MCA territory as the ICA TDT. 

DISCUSSION  

We have presented a semi-automated quantitative method to assess reperfusion 
on DSA images after endovascular treatment of patients with acute ischemic 
stroke due to large vessel occlusion. Our study shows that in our population, the 
qTICI is independently associated with functional outcome. We demonstrated 
that qTICI has a similar prognostic value compared with eTICI. This result remains 
consistent after the adjustment for other prognostic factors, indicating that qTICI 
could be a potential alternative for manual reperfusion assessment with a 
potentially reduced bias and interobserver variation. 

Our method is the first fully quantitative scale of reperfusion assessment. There 
have been many iterations of angiographic reperfusion scales: starting from 
adopting the Thrombolysis in Myocardial Infarction scale for the brain, renaming 
and adjusting the score to TICI, modifying the threshold for scale 2A and 2B (from 
two-thirds to half of the TDT), adding scale 2C, redefining 2C (90%–99% 
reperfusion), and expanding scale 2B with the introduction of 2b50 and 
2b67.1,7,9,10,21 Each iteration claimed to give a better definition of successful 
reperfusion with a more precise threshold to determine the reperfusion result.4–
6,22,23 The inclusion of finer scales was based on evidence that this provides a 
better reperfusion assessment and clinical utility compared to that of coarser 
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scales. This underpins the potential value of our continuous quantitative 
measure. Additionally, qTICI has minimum source of bias as the only dependency 
to the observer is during the delineation of the TDT. It must be pointed out that 
qTICI uses a TDT estimate, which is an actual TDT with a slight extension to both 
cranial and caudal direction. This crude TDT may provide a less accurate 
assessment since the actual TDT could differ significantly per patient and per 
occlusion location. However, qTICI remains significantly associated with 
functional outcome. This is likely due to the low sensitivity of qTICI for small TDT 
differences. Since the TDT of ICA and M1 occlusion is large, it is expected that 
minor variation in TDT delineation results in small effects in the qTICI score. In 
addition, the crude TDT increases the ease of use as meticulous delineation of 
TDT is not necessary. This could be beneficial in providing a robust reperfusion 
assessment especially on a large data set of clinical trials and registries. It also 
allows for faster assessment of difficult cases because of anatomical variation or 
DSA overprojection. 

qTICI and eTICI behave differently in cases with failure of recanalization but 
retrograde reperfusion via collaterals. Here, some patients have high qTICI, 
whereas their reperfusion were classified as eTICI 0. For these cases, the high qTICI 
score may have included a substantial amount of retrograde filling from collaterals 
in the TDT, which is not included in the eTICI grading. While this may subvert qTICI 
value in assessing poor reperfusion, the true utility of qTICI is at assessing 
moderate to high reperfusion. It has been postulated that a fast retrograde 
perfusion may provide sufficient sustenance to the oligemic region and thus its 
inclusion may be of added value, though eventual watershed infarcts have also 
been described in these cases.24,25 The actual benefit of the inclusion of retrograde 
perfusion in the assessment was not studied. Another discrepancy between qTICI 
and eTICI stems from the different concern regarding vessel patency. In recanalized 
patients with severe stroke or a damaged blood–brain barrier, qTICI may confuse 
the extravasation of contrast near the artery as parenchymal blush thus 
exaggerating the rate of reperfusion. Further study is required to confirm the extent 
of this effect. Finally, Table 2 shows that the grouped qTICI and eTICI only have a 
modest agreement. This could be attributed to different factors according to the 
degree of the reperfusion: for moderate reperfusion, a large mismatch between the 
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crude TDT and the actual TDT and for zero or complete reperfusion, the 
hypersensitivity of qTICI to TDT. Overall, grouping of qTICI based on the 
corresponding eTICI grades, especially qTICI 1 (eTICI 1) and qTICI 99 (eTICI 2C), 
was somewhat arbitrary and has minimum parallel to the clinical practice of eTICI 
grading. Hence, the group-wise comparison should be interpreted with caution. 

It was demonstrated that the reperfusion scores by themselves have limited value 
in predicting functional outcome. This is illustrated by the modest predictive 
value of both qTICI and eTICI. Similar analyses performed on the adjusted models 
with either qTICI or eTICI show stronger predictive value, where these models 
explain about half of the variance. This suggests that in a population where most 
of the patients achieve successful reperfusion, the reperfusion measure becomes 
a non-variable and has limited effect on functional outcome prediction. However, 
it should be noted that in both these models, the perfusion scores are 
independently associated with outcome. The huge effect of endovascular 
treatment in recent trials has shown that the procedural outcome of endovascular 
treatment is important.17,19,26,27 This confirms that although reperfusion outcome 
may play a substantial role, functional outcome is multifactorial. 

The limitations of our study include the availability of adequate images. qTICI is 
sensitive to noise; motion artifacts could result in false-positive identification of 
reperfused tissue. A full frontal and lateral view of the affected hemisphere were 
required, and this was not available for all patients. Another requirement for 
images includes the first passage of contrast as later passages may be 
detrimental to the assessment accuracy. We also limited our patient inclusion to 
only ICA and M1 occlusions as the TDT variation was expected to be minimal. 

Our method may benefit from an automatic delineation of TDT, entirely 
eliminating observer dependency. To complete the full spectrum of perfusion 
assessment, cases with more distal occlusion could be included. The high 
variability of TDT for distal occlusions, however, is a challenge for automated 
methods. Another potential improvement would be to incorporate a region-
weighted score. It has been reported that infarct location, especially in the pre-
central sulcus and central sulcus, is associated with functional outcome.28 
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Therefore, if implemented, qTICI may have an improved prognostic value as the 
perfusion is weighted based on the importance of the territory. 

CONCLUSION  

We developed a quantitative and semi-automated reperfusion score for 
endovascular treatment evaluation of patients with acute ischemic stroke due to 
a large vessel occlusion. We have shown that qTICI is an independent predictor of 
functional outcome and has similar prognostic value as the standard eTICI. The 
use of crude TDT in qTICI potentially minimizes observer variations and allows 
more robust assessment across large imaging data set, making qTICI valuable for 
reperfusion assessment in clinical trial or registry.  
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SUPPLEMENTAL MATERIALS 

 

Supplemental Figure S1. 
The example of target 
downstream territory in 
anteroposterior and 
lateral runs of DSA for 
both M1 and ICA 
occlusion. The TDT is the 
MCA territory including 
basal ganglia and anterior 
temporal area.  

 

 
Supplemental Figure S2. Patient inclusion flow chart. 
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Supplemental Figure S4. The result of vessel enhancement using multiscale Frangi vesselness 

 
 
 
 

Supplemental Figure S3. The 
distribution of qTICI scores for 
various eTICI grades for ICA 
occlusion depending on the 
TDT configuration. Both 
measures had erroneously wide 
distribution on eTICI 0 and 1. 
For middle to high grades of 
eTICI, qTICI was 
underestimated in the 
combined ACA and MCA TDT. 
No significant differences were 
found between eTICI grades for 
qTICI scored using the 
combined ACA and MCA 
territory as TDT (P = 0.28). The 
differences become significant 
for qTICI scored using the MCA 
territory as TDT (P < 0.001). 
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The Frangi vesselness filter uses local structure information in the image to 
identify tubular shape of vessels. The detail of this method was previously 
described.18 In summary, the local structure of every pixel in the image was 
represented by the eigenvalues ( 1 and 2) and eigenvectors ( 1 and 2) 

decomposed from the two-dimensional Hessian matrix of the image. This 
eigendecomposition is performed at multiple Gaussian scale level by applying 
different sizes of convolutional kernel to the image therefore ensuring the 
identification of a range of sizes of local structure. At every pixel and scale level, 
the probability-like estimates of the vessel, or Frangi response, is calculated using 
two criteria of eigenvalues combination,  

 

 

 

where F is the Frangi response, S1 and S2 are the factors that determine the 
geometrical shape of the local structure, and 1 and 2 are the correction 
constants. The final Frangi response of a pixel is the highest response at that 
pixel among the scale space.   

In our application, the convolutional kernel is a two-dimensional array of (6  + 1) 
by (6  + 1) pixels, with  representing the variance of the Gaussian filter. We used 
 value ranging from 2 to 7 which yielded accurate visualization of the vessels 

with diameter  5 to 15 pixels. We found that the correction constants 0.5 and 15 
provided better vessel enhancement. However, the multiscale approach was 
prone to the false enhancement of the pixels surrounding the vessel in 
proportion to the scale level in which the final Frangi response for that pixel was 
selected. To overcome this so-called blur problem, we introduced a third factor to 
the Frangi response equation.  
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where I is the target pixel intensity and Imax and Imin are the maximum and the 
minimum pixel intensity, respectively, among the neighboring pixels including 
the target pixel. With this factor, the high Frangi response of the pixels close to a 
vessel was reduced since the intensity of these pixels were relatively low 
compared to the intensity of the vessel. The differences between the result of 
vesselness filter without and with the normalization factor is shown in 
Supplemental Figure S4.  
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ABSTRACT 

Good collateral status in acute ischemic stroke patients is an important indicator 
for good outcomes. Perfusion imaging potentially allows for the simultaneous 
assessment of local perfusion and collateral status. We combined multiple CTP 
parameters to evaluate a CTP-based collateral score. We included 85 patients 
with a baseline CTP and single-phase CTA images from the MR CLEAN Registry. 
We evaluated patients’ CTP parameters, including relative CBVs and tissue 
volumes with several time-to-maximum ranges, to be candidates for a CTP-based 
collateral score. The score candidate with the strongest association with CTA-
based collateral score and a 90-day mRS was included for further analyses. We 
assessed the association of the CTP-based collateral score with the functional 
outcome (mRS 0–2) by analyzing three regression models: baseline prognostic 
factors (model 1), model 1 including the CTA-based collateral score (model 2), 
and model 1 including the CTP-based collateral score (model 3). The model 
performance was evaluated using C-statistic. Among the CTP-based collateral 
score candidates, relative CBVs with a time-to-maximum of 6–10 s showed a 
significant association with CTA-based collateral scores (p = 0.02) and mRS (p = 
0.05) and was therefore selected for further analysis. Model 3 most accurately 
predicted favorable outcomes (C-statistic = 0.86, 95% CI: 0.77–0.94) although 
differences between regression models were not statistically significant. We 
introduced a CTP-based collateral score, which is significantly associated with 
functional outcome and may serve as an alternative collateral measure in settings 
where MR imaging is not feasible. 

Keywords: perfusion, CTP, collaterals, ischemic stroke  
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INTRODUCTION 

In patients with acute ischemic stroke, leptomeningeal collateral blood flow 
potentially maintains blood supply to the ischemic region until the occluded 
vessel is revascularized.1 Good collateral status is associated with favorable 
outcomes, smaller infarct volumes, and lower incidences of hemorrhagic 
transformation following endovascular therapy.2–10  

Collateral capacity can be assessed using several imaging modalities, including 
DSA, CTA, and MRA.11–14 MRA and CTA have been used to indirectly assess 
collateral status based on contrast filling in the arteries distal to the clot. In those 
studies, the collateral status is graded by classifying the extent, the intensity, the 
speed, or combinations of these contrast filling variables in arteries downstream 
of the thrombus. 

These collateral grading systems have coarse qualitative grading scales and their 
own limitations. For example, CTA is sensitive to inaccurate scan timing and may 
miss slower retrograde contrast enhancement of the pial arteries because of the 
lack of temporal resolution.6 Collateral grading based on (single vessel) DSA 
allows only a limited assessment of the MCA territory and is only available after a 
patient has been selected for treatment.15 Although these approaches provide an 
indication of collateral capacity, they do not offer information on the local 
perfusion of the affected tissue. Perfusion-based imaging acquisitions may 
provide improved estimates of collateral status in addition to their value in the 
assessment of stroke pathophysiology and penumbra volume.16  

A recent study suggested that MR perfusion allows for the quantitative 
assessment of collateral status with a high agreement with a DSA-based 
collateral score.17 In that study, perfusion parameters, such as the time delay of 
the tissue residue function and the corresponding blood volume, were combined 
to determine a perfusion collateral index. Because the arterial time delay and 
relative CBV (rCBV) are generated automatically by MR perfusion imaging 
software, the perfusion collateral index can be calculated quickly and 
independent of expert readers. In the time-critical setting of acute stroke care, 
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such rapid assessment of collateral status may provide added clinical value and 
factor into therapeutic decision-making. 

Compared to CT, MRI has a number of limitations in the acute setting, including 
its limited availability and longer acquisition times.18 CT is more widely available 
in acute stroke care settings. Moreover, CTP is increasingly performed in clinical 
practice. We hypothesize that, next to MR perfusion, CTP also allows for the 
assessment of the collateral capacity. We aimed to evaluate various baseline CTP 
parameters to select a CTP-based collateral score (CTP-CS). We subsequently 
aimed to assess the association of this CTP-CS with functional outcome after 
endovascular treatment for acute ischemic stroke. 

MATERIALS AND METHODS 

Patients 

The MR CLEAN Registry (A Multicenter Clinical Registry of Endovascular 
Treatment for Acute Ischemic Stroke in the Netherlands) is a prospective, 
multicenter registry collecting data of patients treated with endovascular 
treatment for ischemic stroke from all stroke intervention centers in the 
Netherlands. In this study, we selected patients from the MR CLEAN Registry who 
were treated between June 2016 and November 2017 and for whom baseline CTP 
and CTA data were available. We further included patients with an occlusion of 
the M1- or M2-segment of the middle cerebral artery. We excluded patients with 
poor scan quality due to motion artefact, insufficient contrast or noise, and low 
temporal imaging resolution. Collateral scores based on baseline single-phase 
CTA images (CTA-CS) and functional outcomes at 90 days (assessed with mRS) 
were collected.19  

CT Perfusion Analysis 

CTP data were analyzed using a commercially available software package 
(Syngo.via; Siemens Healthineers, Erlangen, Germany) to generate perfusion 
parameters, i.e., CBF, CBV, MTT, and the time to the maximum of residue function 
(Tmax). For each dataset, the software automatically stripped the skull by finding 
the bone contour and removed both cerebrospinal fluid and calcifications by 
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intensity thresholding. The locations to assess the global arterial input function 
and venous output function were automatically determined at the internal carotid 
artery and superior sagittal sinus, respectively. Thresholding was performed to 
remove peripheral and perforating vessels, as their inclusion could lead to the 
overestimation of microvascular flow. Subsequently, the software generated time 
attenuation curves of contrast enhancement in Hounsfield Units at the arterial 
input function and venous output function locations, and in each voxel in the 
brain area. CBV, CBF, MTT, and Tmax for every voxel of brain tissue were then 
calculated from the time attenuation curve-derived residue function.20 

A moderately hypoperfused area is indicative of penumbra, which is sustained by 
collaterals.21,22 We chose two CTP parameters to represent the delay and 
dispersion components of collaterals in moderately hypoperfused areas: Tmax 
and rCBV. 17 rCBV is defined as the volume of intravascular blood in mL per 100 
mL of the brain, compared to that in the contralateral hemisphere. 

Additional Imaging Assessments 

We chose two measures each for six different ranges of Tmax as candidates for 
CTP-CS. The two measures were the mean rCBV of the volume defined by Tmax 
(rCBVTmax(t1)–(t2)) and this rCBV multiplied by total volume of brain tissue defined by 
the Tmax (VolTmax(t1)–(t2)). To calculate the measures, we first created Tmax masks, 
which included all voxels within the predefined Tmax ranges. The contralateral 
mask was created by mirroring the ipsilateral mask in the midplane. rCBV was 
calculated as the mean CBV of the ipsilateral masked volume divided by the 
mean CBV of the contralateral masked volume. The total volume of grey and 
white matter was calculated by multiplying the voxel volume with the number of 
voxels that had Tmax values within the given range. The six predefined ranges of 
Tmax, which depicted the different degrees of hypoperfusion, were 2–4 s, 4–6 s, 
2–6 s, 6–10 s, 4–10 s, and 10–14 s. In total we evaluated 12 CTP-CS candidates 
and subsequently selected one measure as the CTP-CS for further analysis. Figure 
1 shows how the rCBV multiplied by the Tmax-based tissue volume was 
calculated. An example for the mask of Tmax 6–10 s is also shown. 
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Figure 1. Illustration of one measure as a candidate for baseline CTP-based collateral score: relative CBV 
multiplied by the total volume of brain tissue defined by time-to-maximum (Tmax). (A): Areas with various 
Tmax value ranges; (B): The corresponding CBV values of A (mL/100 mL); (C): Mask for Tmax 6–10 s. The 
contralateral mask is acquired by mirroring the ipsilateral mask using the midline; (D): CBV within mask C. 
The score is the mean CBV of the ipsilateral masked volume relative to the mean CBV of the contralateral 
masked volume multiplied by the total volume of all the voxels with Tmax value of 6–10 s. 

We used data on CTA occlusion locations and collateral scores assessed by an 
independent core laboratory of neuroradiologists.19 CTA-CS was based on a 4-
point scale: 0 for absent collaterals (no filling of the territory distal to the 
occlusion), 1 for poor collaterals (less than half filling of the territory), 2 for 
moderate collaterals (more than half filling of the territory), and 3 for good 
collaterals (complete filling of the territory).23 The unaffected contralateral 
hemisphere was used as reference to evaluate the contrast filling. 
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Statistical Analysis 

Continuous and categorical variables were summarized as median (interquartile 
range, IQR) and frequency (percentage), respectively. We used the Jonckheere-
Terpstra test to determine which CTP-CS candidate had a significant association 
with CTA-CS and a 90-day mRS. The associations of CTA-CS and the optimal CTP-
CS measure with functional independence (mRS 0–2) were assessed using 
multivariable logistic regression models. For this analysis, we evaluated three 
models. In the base model (model 1), baseline prognostic factors including age, 
NIHSS, time from onset to groin puncture, history of hypertension, diabetes 
mellitus, and previous strokes were included. In model 2, we added the CTA-CS to 
model 1. In model 3, the CTP-CS was added to model 1. The adjusted OR for 
statistically significant predictors were reported with 95% CI to indicate 
statistical precision. Receivers operating characteristics were subsequently 
determined to compare the predictive power of the models in distinguishing 
favorable from unfavorable functional outcomes. We compared the C-statistics 
between models using likelihood ratio tests. We used the Akaike information 
criterion to compare the relative quality of the regression models. Lower Akaike 
information criterion implies a more parsimonious model. p-values smaller than 
0.05 were considered statistically significant. All statistics were performed using 
IBM SPSS software (version 19.0.0). 

RESULTS 

A total of 85 patients were included in our analysis (Figure 2). Table 1 shows the 
baseline characteristics of the patients included in the study. The median age of 
the patients was 75 years (IQR 63–81); 41 patients (48%) were female, and the 
median NIHSS was 16 (IQR 11–20). Core-lab determined that the CTA collateral 
score was 0 in 4 patients (5%), 1 in 37 patients (43%), 2 in 37 patients (43%), and 
3 in 7 patients (9%). 
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Table 1. Baseline Characteristics 

N 85 
Age, median (IQR) 75 (63 - 81) 
Female sex 41 (48%) 
M1 occlusion on CT 66 (78%) 
NIHSS, median (IQR) 16 (11 - 20) 
History of ischemic stroke 18 (21%) 
History of hypertension 42 (50%) 
History of diabetes mellitus 8 (9%) 

Prestroke mRS  
 0 60 (70%) 
 1 11 (13%) 
 ≥2 14 (17%) 

RR systolic in mmHg, median (IQR) 144 (130 - 160) 
Treatment with IV-rtPA 62 (73%) 
ASPECTS, median (IQR) 9 (9 - 10) 

CTA collateral score  
 0 4 (5%) 
 1 37 (43%) 
 2 37 (43%) 
 3 7 (9%) 

eTICI  
 0 13 (15%) 
 1 4 (5%) 
 2A 16 (19%) 
 2B 14 (16%) 
 2C 13 (15%) 
 3 25 (30%) 

General anesthesia 7 (8%) 
Onset-to-groin puncture time in min, median (IQR) 150 (118 - 211) 
EVT time in min, median (IQR) 52 (31 - 81) 

IQR indicates interquartile range; M1, M1 segment of middle cerebral artery; eTICI, extended treatment 
in cerebral ischemia; and EVT, endovascular treatment. 

The Jonckheere-Terpstra test showed that among the 12 candidates we 
evaluated, only the mean rCBV of the Tmax between 6 and 10 s area (rCBVTmax6-10) 
was significantly associated with the change of both CTA-CS and ordinal mRS 
(Table 2). We therefore selected rCBVTmax6-10 as CTP-CS for further analysis. 
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Figure 2. Flowchart of patient inclusion in the study. 

Six patients with missing outcome variables were excluded from the 
multivariable regression analyses. We found that in our patient population, CTA-
CS was not significantly associated with a favorable outcome (p = 0.26), as shown 
in Table 3. On the other hand, CTP-CS was significantly associated with favorable 
outcomes with adjusted OR 1.04 (95% CI, 1.002–1.068, p = 0.036) per 1% 
increase of CTP-CS. Regression model analysis showed that the C-statistic for 
model 1 was 0.83 (95% CI, 0.74–0.92; Table 4). With the addition of CTA-CS, 
model 2 had a C-statistic of 0.84 (95% CI, 0.75–0.93). Finally, favorable outcomes 
were most accurately predicted by model 3 with a C-statistic of 0.86 (95% CI, 
0.77–0.94). This model also had the lowest Akaike information criterion. The 
differences between the C-statistics of the regression models were not 
statistically significant (model 1 vs. model 2, p = 0.88; model 2 vs. model 3, p = 
0.75; model 1 vs. model 3, p = 0.63). Figure 3 shows the receiver operating 
characteristics curves of the three regression models. 
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Table 2. Result of Jonckheere-Terpstra tests of the associations of the baseline CTP-based collateral score 
(CTP-CS) candidates with baseline single-phase CTA-based collateral score (CTA-CS) and ordinal 90-day 
mRS. 

CTP-CS candidates 
P-value 

Association with CTA-CS Association with mRS 

rCBVTmax2-4   VolTmax2-4 (ml) 0.028a 0.19 

rCBVTmax4-6   VolTmax4-6 (ml) 0.99 0.91 

rCBVTmax6-10   VolTmax6-10 (ml) 0.036a 0.35 

rCBVTmax2-6   VolTmax2-6 (ml) 0.13 0.39 

rCBVTmax4-10   VolTmax4-10 (ml) 0.16 0.56 

rCBVTmax10-14   VolTmax10-14 (ml) <0.001a 0.12 

rCBVTmax2-4 0.18 0.89 

rCBVTmax4-6 0.049a 0.59 

rCBVTmax6-10 0.020a 0.045b 

rCBVTmax2-6 0.16 0.80 

rCBVTmax4-10 0.038a 0.23 

rCBVTmax10-14 0.036a 0.09 

Tmax: time to maximum of residue function; VolTmaxa-b: tissue volume as indicated by Tmax a–b 
seconds; rCBVTmaxa-b: mean relative CBV of the brain tissue as indicated by Tmax a–b seconds. 
a Significantly different between groups defined by CTA collateral score (P<0.05) 
b Significantly different between groups defined by mRS (P<0.05) 

Table 3. Adjusted Odds Ratio of logistic regression models of CS-CTA and CS-CTP for favorable 
outcome 

 Adjusted OR 95% CI p-value 

CS-CTA per grade 1.62 0.70-3.73 0.26 

CS-CTP per 1% 1.04 1.002-1.068 0.036 

OR: odds ratio; CI: confidence interval; CTA-CS: baseline single phase CTA-based collateral score; 
CTP-CS: baseline CTP-based collateral score. 

 

Table 4. Logistic regression models for favorable functional outcome with C-statistic and Akaike 
information criterion 

Model C-statistic AIC 

Baseline prognostic factors 0.83 93.5 
Baseline prognostic factors + CTA-CS 0.84 94.2 
Baseline prognostic factors + CTP-CS 0.86 90.7 

AIC: Akaike Information Criterion; CTA-CS: baseline single phase CTA-based collateral score; CTP-CS: 
baseline CTP-based collateral score. 
Higher C-statistic and lower AIC imply better models 



 

107 

5 

 

Figure 3. Receiver-operating characteristics curves for three different models for predicting favorable 
functional outcomes (mRS 0–2). Model 1 is the base model with baseline prognostic factors as the 
independent variables: age, stroke severity (NIHSS), time from onset to groin puncture, history of 
hypertension, diabetes mellitus, and previous strokes. Model 2 and model 3 are model 1 with the addition 
of collateral scores as assessed by CTA and CTP, respectively. The C-statistic for model 1, model 2, and 
model 3 respectively are 0.83 (95% CI, 0.74–0.92), 0.84 (95% CI, 0.75–0.93), and 0.86 (95% CI, 0.77–0.94). 
There are no significant differences between the C-statistics of the models. 

DISCUSSION 

We showed that the CTP parameters Tmax and rCBV can be used to automatically 
assess collateral capacity in patients who received endovascular treatment for 
acute ischemic stroke due to a proximal anterior circulation occlusion. 

We consider the rCBV of moderately hypoperfused volumes to be a proxy for 
collaterals; it is an estimate of how much a collateralized microvascular volume is 
reduced from its healthy volume. The hypoperfused volume represents penumbra 
which is likely sustained by collaterals.24–27 Therefore, the delayed perfusion time 
may be indicative of collateral status.28 This was confirmed in multiple MR 
perfusion studies that associated delayed perfusion time with collateral 
status.17,28–32 In addition to the delay, the microvascular blood volume of the 
hypoperfused area may be indicative of the dispersion of collateral flow.33–35 
Delay and dispersion are two important features for the accurate determination 
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of collateral status.34 For example, the late arrival time (delay), the speed of 
vessel filling, and the amount of contrast (dispersion) in pial arteries provide 
insights into leptomeningeal collateral status.36 The use of rCBV as CS-CTP relies 
on having a substantial amount of moderately hypoperfused volume at the time 
of measurement. This constraint avoids possible mirroring errors during 
contralateral mask creation. Additionally, sufficient volume suppresses noise 
which otherwise could negatively impact the reading accuracy. Consequently, the 
CTP-CS may not be suitable for patients with an insufficient penumbra volume. 

We expected that blood volume would be lower on the affected side compared 
with the unaffected side, resulting in an rCBV ranging from 0 to 1, with a higher 
rCBV indicating better collaterals.35,37 Interestingly, this did not seem to be the 
case as most rCBV medians were larger than 1. One possible explanation is the 
loss of vascular tone and the recruitment of capillaries in the penumbral 
microcirculation as a response to hypoxia.38 

A study on MR perfusion-based collateral assessment suggests that an arterial 
time delay of 2–6 s best describes the moderately hypoperfused volume.17 The 
follow-up study with CTP confirmed that an arterial time delay of 2–6 s was 
indicative of collateralization.39 We could not reproduce this finding in our CTP-
based study as the volume of brain tissue with a Tmax of 2–6 s, although 
showing the expected trend, was not significantly associated with either the CTA 
collateral score nor the ordinal mRS in our patient population. This discrepancy 
may stem from a bias selection in the population and the inherent differences 
between the hemodynamical parameters estimation methods employed between 
their study and ours: the arterial time delay parameter is a Bayesian-estimated 
Tmax as opposed to the Tmax derived from a singular value decomposition 
model.40 The 6 s threshold for determining hypoperfused tissue is consistent with 
other studies which use MR perfusion-weighted imaging on the DEFUSE study 
population.29,31,41 The volume of this hypoperfused tissue had been used to 
categorize the collateral extent in the infarcted hemisphere.31,42 The 
hypoperfusion intensity ratio, the volume of the tissue with a Tmax > 10 s divided 
by the volume of the tissue with a Tmax > 6 s, has shown to be significantly 
associated with a persistent perfusion profile for more than 38 h which may 
indicate favorable collaterals.43 A recent study on the CTP-based hypoperfusion 
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intensity ratio of 22 patients demonstrated significant associations between the 
ratio, using Tmax > 10 s and Tmax> 4 s, and a dynamic CTA-based collateral score 
and functional outcomes.44 The evaluation of such thresholds in our collateral 
formulation did not show an association between the CTA collateral score and 
the functional outcome. 

Most collateral grading methods require extensive assessment from experienced 
neuroradiologists, which might introduce bias.45 Inter-observer agreements for 
collateral grading in various imaging modalities were insufficiently investigated, 
although some studies reported fair to good agreements.36,46 The observer 
dependency is alleviated in our method because the entire process, from reading 
the CTP source images to generating the collateral score, is fully automated. 

We acknowledge several limitations in this study. We included only cases with a 
middle cerebral artery occlusion. The CTP-based collateral score could be 
generalized to more proximal or distal occlusion cases, although the perfusion 
characteristics of the tissue sustained by different types of collaterals may not 
share the same properties with the tissue supplied by leptomeningeal collaterals. 
Furthermore, the high threshold of Tmax for our CTP-CS may exclude benign 
oligemia, which is within the domain of collaterals. We did not investigate the 
potential contributions of slow flow from pervious thrombus or incomplete 
occlusions into the moderately hypoperfused tissue, thus confounding the 
collateral assessment. We also recognize that a considerable amount of 
penumbra volume is necessary to ensure that the signal to noise ratio is large 
enough to limit an inaccurate estimation of collateral capacity. Moreover, we 
found no significant association between CTA-based collateral scores and 
functional outcomes.47 This may be caused by imbalanced data due to the lack of 
samples in extreme grades, i.e., 4 patients with CTA-CS 0 and 9 patients of CTA-
CS 3. In addition, some difficult cases in intermediate grades may have 
complicated the reading. Finally, the prominent discrepancy between CTP 
software packages may require a fine-tuning of the perfusion parameters to 
achieve similar results.48,49 Further studies are warranted to evaluate the 
robustness of the CTP-based collateral score on different patient populations 
with a proximal anterior circulation occlusion. 
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CONCLUSION 

This study demonstrates that the CTP parameters Tmax and rCBV can be used to 
automatically assess collateral capacity in patients who underwent endovascular 
treatment for acute ischemic stroke due to a proximal anterior circulation 
occlusion. We selected the mean of relative CBVs of the area with a Tmax of 6–
10 s as the CTP collateral score because of its associations with both CTA 
collateral score and functional outcome. In addition, we showed that the 
multivariable prognostic model with the CTP-collateral score outperforms models 
without a collateral score or with the CTA-based collateral score, although these 
differences were not statistically significant. Because the perfusion parameters 
are automatically generated by CTP software, CTP-CS is quickly available and 
does not require an expert reader, potentially increasing its clinical utility in 
acute stroke settings. 
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Chapter 6

GENERAL DISCUSSION 
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Adequate tissue-level oxygenation through microvascular perfusion is crucial in 
maintaining physiological functions. Various medical imaging technologies allow 
visual inspection of perfusion by contrast injection.1 In addition to its direct 
objective to evaluate disease severity, periprocedural perfusion assessment can 
be used to assess therapeutic responses and adjust revascularization strategy. For 
example, in the brain, the perfusion score TICI 2b or better has been widely used 
as an indicator of successful revascularization in acute stroke management.2 In a 
patient with myocardial infarction, successful percutaneous coronary intervention 
is indicated by two criteria: stenosis diameter reduction of < 50% and grade 3 
TIMI flow.3 As another example, fluorescence-based microvascular perfusion 
assessment of post-esophagectomy gastric conduits may guide surgery, thereby 
potentially reducing anastomotic leaks.4 In addition, perfusion measures have 
also been demonstrated to be good predictors of functional outcome.2,5 

Objective assessment of perfusion is important to optimize clinical workflow and 
improve clinical decision-making. In this thesis, we report advancements toward 
reducing observer dependency by automating assessment and developing 
alternative quantitative measures for crude visual scales in several organs and 
imaging modalities. 

Generally, there are clear benefits in automating and quantifying visual perfusion 
scales. A fully automated method removes observer bias from the assessment as 
only objective information is used. Additionally, it may reduce the workload of 
the clinician and improve disease management workflow. This is particularly 
important in acute settings where swift care is of importance. The quantitative 
aspect may add more resolution to the perfusion grading, which may improve 
accuracy in clinical decision-making. We discuss these automation and 
quantitative components further in the next sections. 

AUTOMATION OF IMAGING-BASED PERFUSION ASSESSMENT 

Rule-based vs data-driven 

Automation of imaging-based perfusion assessment essentially reduces and 
eventually removes the role of human judgment in perfusion grading based on 
medical images while maintaining similar or better performance compared to 
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assessment by radiologists. In chapter 3, the Quantitative Blush Evaluator (QuBE) 
method is addressed. QuBE automates myocardial perfusion assessment on 
coronary angiograms and, as such, reduces the manual activities down to drawing 
an area of interest. The Quantitative Treatment in Cerebral Ischemia (qTICI) scale 
achieved a similar degree of automation for brain perfusion assessment on DSA, 
as described in chapter 4. In chapter 5, a CTP-based collateral score (CTP-CS) was 
introduced as a method to automate collateral assessment using CTP images.  
These automations were achieved heuristically by employing a rule-based 
system. A rule-based system is developed by translating domain experts’ 
knowledge and activities into a series of computer logics or algorithms to achieve 
the desired outcome. A sequence of image processing techniques such as image 
enhancement, semantic segmentation, and pixel-wise quantification resulting in 
a perfusion score is an example of this approach. On the opposite end of the 
spectrum, data-driven approaches, i.e., machine learning, are gaining traction in 
clinical research because of their potential and versatility. Supervised learning, 
especially using convolutional neural networks, is a branch of machine learning 
currently often used to process imaging data. With supervised learning, 
relationship patterns between imaging data (input) and expert-annotated labels 
(output) are learned based on extensive data of input-output pairs. Such a 
resulting model can subsequently be used to, for example, prospectively assess 
perfusion based on new imaging data. Data-driven models, however, are 
commonly difficult to interpret and are therefore often regarded as black-box 
solutions. Figure 1 illustrates the difference between rule-based systems and 
machine learning approaches. 

In Chapter 3, the limitations of QuBE algorithms were analyzed. The algorithm-
level examination was possible because QuBE is a rule-based system. The success 
of the automation is measured from the match of the QuBE score with the 
Myocardial Blush Grade and by assessing the association with functional 
outcome. It is easy to presume that all the automated processes work 
appropriately in case of a good match. Yet, we found that the large-scale 
structure removal algorithm, which supposedly subtracts coronary arteries, the 
diaphragm, and the catheter from angiograms, did not adequately yield the 
intended result. This inaccurate pre-processing step indicates a potentially 
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compromised blush quantification. While this was a limitation of this approach, at 
least the rule-based design provides the level of transparency and explainability 
that is preferred for clinical end use.6 

TOWARDS A FULLY AUTOMATED PERFUSION ASSESSMENT 

A fully automated method of perfusion assessment is achieved when the imaging 
data can be processed to generate perfusion grades without any human inputs. 
QuBE provides partial automation because some human input is still required: An 

 
Figure 1. (A) Rule-based systems vs (B) machine learning approaches (supervised learning) in 
automating perfusion assessment. Rule-based systems require decomposing clinical insights into a 
programmable sequence of logics. This design allows inspection of each process, providing meaningful 
information and a clear workflow from processing medical images to generating perfusion grades. 
Supervised learning approaches learn the “sequence of logics” by modeling the complex interactions 
between a considerable amount of imaging features and the corresponding perfusion grade. The 
trained model is then used to provide the perfusion grading of the “unseen” medical images. Such a 
model, in most cases, is inscrutable. 



6 

 

123 

observer needs to draw an area of interest, the target downstream territory (TDT). 
Also, qTICI (chapter 4) is considered partial automation since TDT delineation is 
required.  

Why is TDT delineation difficult to automate? 

In brain perfusion, the TDT is the region of the brain that was previously supplied 
by the occluded vessel causing an acute ischemic stroke.7 Naturally, the boundary 
of this territory is dependent on multiple factors. First, the occlusion location 
affects the size and shape of the territory; the more distal the occlusion, the 
smaller the territory and the more sensitive it is to anatomical variation. QuBE 
and qTICI are performed on two-dimensional imaging modalities (coronary 
angiogram and DSA, respectively), complicating the three-dimensional TDT 
delineation. Such delineation is even more difficult in coronary angiograms, as 
the heart motion is a confounding factor. Also, the additional variability of the 
image acquisition projection affects the delineation. 

Besides QuBE and qTICI, there are several other perfusion assessment automation 
studies that performed a manual delineation of the region of interest. In a study 
that evaluated angiographic parametric imaging to automatically locate infarct 
core in DSA, the downstream territory was indicated manually to prevent 
extension into the extracranial space.8 A study evaluating the DSA of foot 
perfusion following infrapopliteal angioplasty utilized user-specified regions of 
interest.9 A study on automatic flow analysis suggested a different approach to 
avoid manual selection of regions of interest by analyzing flow according to the 
imaging phase.10 Another effort on automating TICI redefined TDT to simplify the 
delineation of the downstream area.11 In that study, the TDT was defined as only 
the non- or under-perfused area regardless the supply origin. With this definition, 
TDT is severely underestimated, especially when it includes large areas of 
overlapping vessels from different arterial circulations. Figure 2 shows such TDT 
compared to the recommended definition of TDT.  
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Leveraging machine learning for full automation 

With machine learning approach, the delineation of TDT is irrelevant, as 
demonstrated by a recent study that automated the TICI scoring using a deep 
learning model.12 

Various machine learning models trained on medical images and their derivatives 
have been quite successful in automating perfusion assessment for different 
organs.13–15 A study addressing myocardial CTP shows that deep learning 
techniques can automatically distinguish well-perfused myocardium from 
perfusion defects.13 A similar success was found in an angiographic optical 
coherence tomography study. Here, automated segmentation of the nonperfusion 
area, an important biomarker for diabetic retinopathy, by a convolutional neural 
network exhibited higher performance than human experts.14 In another study, a 
convolutional neural network trained using diffusion-weighted and perfusion-
weighted imaging maps to predict lesions in an acute stroke setting 

 

Figure 2. TDT according to Su et.al11(left) and the recommended definition of TDT (right) of M1 
occlusion in lateral view. The M1 segment supplies the entire middle cerebral artery region. Therefore 
the TDT is the full middle cerebral artery downstream region. In the lateral view, the middle cerebral 
artery superior division superpositions with parts of the anterior cerebral artery region, and this should 
be included in the TDT, as shown on the right. The TDT delineation on the right requires domain 
knowledge of vascular anatomy and is considerably more difficult to achieve compared to the TDT on 
the left, which is obtainable by simple intensity thresholding. The left image is reprinted with 
permission from IEEE Transactions of Medical Imaging © 2021, IEEE. 
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outperformed other lesion prediction methods.15 Moreover, neural network 
models can be repurposed for other tasks through a process called transfer 
learning. In transfer learning, the existing model is used as a base to train 
another model; the trained parameters in each neuron are preserved before re-
training the neural network with the new data. This feature overcomes training 
data scarcity, supports mutual collaboration among studies and encourages 
gradual improvements by building upon the progress of other studies. For 
instance, a recent OCT study leveraged transfer learning and developed a 
convolutional neural network to automatically segment the microvasculature and 
intercapillary area in deep vascular complexes by fine-tuning an existing model 
for vessel segmentation in the foveal avascular zone.16 

QUANTIFICATION OF PERFUSION ASSESSMENT 

Visual perfusion scales are often coarse. Their definition is based on providing the 
most useful set of perfusion grades for supporting clinical decision-making. 
However, such scales may be adapted to maintain robustness despite the limited 
capacity of human eyes. The grade 2 in the original TICI was redefined in the 
modified TICI because it is more difficult for humans to accurately estimate two 
third of TDT as compared to half of TDT.7 The meaningful distinction between 
grades is usually identified by statistically analyzing the differences with respect 
to functional improvement. However, higher resolution does not always translate 
to higher clinical value. The expanded TICI 2b67 scale, for instance, introduced a 
higher resolution to the TICI grading scale (see Table 1).17 It was found that this 
additional step in the resolution improves the accuracy of the procedural 
outcome and provides evidence that higher perfusion results in better functional 
outcome.18 However, this grading scale led to a higher grading discrepancy 
between observers.17 Furthermore, this grade is not indicative of treatment 
success. Therefore, despite the better resolution, the current grading scale has 
limited clinical value. 

Automated perfusion assessment can provide continuous, quantitative values, 
with the number of possible outcomes frequently only limited by image 
discretization. Such pseudo-precision should be interpreted with caution because 
of the diminutive covariance between meaningful physiological information and 
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perfusion score.21 This continuous value, however, provides a basis for new 
stratification of potentially more accurate and clinically relevant perfusion 
grades, unconstrained by human visual acumen.  

Quantitative estimation of perfusion parameters can also be extracted from bolus 
tracking derived from time-series medical images, e.g., cine-angiogram, near-
infrared fluorescent images, or CTP source images. In chapter 2, we developed a 
new perfusion estimator derived from time-intensity curves of simulated contrast 
flow in four demarcated areas of the gastric conduit model. We found that a low 
relative time-to-intensity threshold is predictive of perfusion deterioration. This 
finding is consistent with the theoretical basis of CTP, where high contrast delay, 
represented by a long time to the maximum of the residue function (also known 
as Tmax), indicates perfusion impairment.22 Moreover, the effect of various vessel 
configurations to contrast dynamics confirmed that similar to the time-to-peak of 
CTP, the time-to-intensity threshold is affected by arterial dispersion.23 This 
quantitative perfusion data allows such observation, which is difficult to achieve 
by visual inspection of the images alone. 

Table 1. Comparison of the existing TICI grading scale criteria 

TICI Grade Original TICI19 Modified TICI7 Modified TICI with 
2c20 

Expanded TICI17 

0/1 No/minimal 
reperfusion 

No/minimal 
reperfusion 

No/minimal 
reperfusion 

No/minimal 
reperfusion 

2a *Partial filling <2/3 
territory 

Partial filling < 50% 
territory 

Partial filling < 50% 
territory 

Partial filling < 50% 
territory 

2b Partial filling ≥ 2/3 
territory 

*Partial filling ≥ 
50% territory 

*Partial filling ≥ 
50% territory 

Partial filling 
(50%–66%) 

2b67 n/a n/a n/a Partial filling 
(67%–89%) 

2c n/a n/a Near complete 
perfusion except 
slow flow or few 
distal cortical 
emboli 

*Near complete 
filling (90%–99%) 

3 Complete perfusion Complete perfusion Complete perfusion Complete perfusion 

*Recommended angiographic target for endovascular treatment in ischemic stroke 
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In a more complex approach, modular quantification, in which multiple perfusion 
parameters are combined, can be used. This allows the inclusion of numerous 
quantifiable measures pertaining to perfusion into a single metric. In chapter 5, 
we investigated a multi-parametric approach of CTP to calculate collateral 
perfusion (CS-CTP) by multiplying the volume of interest derived from Tmax of 6-
10 seconds and its relative cerebral blood volume. The interpretation of this 
score is not so trivial, as collateral status is inferred through cerebral blood 
volume of hypoperfused tissue with delayed contrast arrival, indicating the extent 
of retrograde flux from the collateral network. Many CTP studies leveraged multi-
parametric approaches because several perfusion parameters are readily available 
from the standard package of CTP analysis.24–26 

FUTURE DIRECTIONS AND OPPORTUNITIES 

This thesis has shown several automated quantification alternatives to visual 
assessment of perfusion in various imaging modalities. Although the potential 
clinical value of these automated scores compared to the manual counterparts 
was demonstrated, further studies are warranted to ascertain the robustness of 
the methods. Validation studies, i.e., the agreement of these scores with the 
consensus of expert observers’ assessment, should be performed to supplement 
the findings. In addition, the effect of variation in imaging modality vendors, scan 
quality, and patient population on the scoring result should be analyzed to 
measure the generalizability of the method. Perfusion quantification methods 
outlined in this thesis may especially be advantageous in clinical trials or 
registries of reperfusion treatment. In clinical trial, for example, an automated 
quantitative perfusion score can be employed as a surrogate endpoint to measure 
treatment success.27 In a typical clinical registry with a large dataset, automated 
perfusion assessment potentially allows for robust and rapid assessment, even for 
difficult cases. 

In general, the automation of medical image analysis is progressing rapidly 
alongside the increased computing power and the abundance of data. This trend 
directly ushered the deep learning era in computer-aided diagnosis fields.28 Due 
to the demonstrated versatility and performance, deep learning may become, if 
not already is, the state-of-the-art technology in automating medical image 
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analysis including perfusion assessment. Therefore, the following factors that 
improve deep learning overall performance in the future may support the 
advancement of such computer-aided perfusion assessment into clinical practice: 

• Advancement in computational architecture. More efficient and powerful 
processing units allow the development of larger and more sophisticated 
deep learning models. Historical trend on state-of-the-art models 
suggests that model size often corresponds with performance.29 

• Increasing collective effort of standardizing imaging data across different 
trials. This may substantially increase the number of high-quality imaging 
data available that can potentially be used for training deep learning 
models to solve clinical problems. 

• Advancements in imaging modalities and post-processing techniques. 
The progress in this domain may improve the quality of medical images, 
which is beneficial for both rule-based and data-driven approaches. For 
example, less noisy medical images simplify post-processing steps in the 
rule-based system. For a data-driven approach, better image quality often 
translates to the better overall performance of the predictive model. 

• Overcoming the shortage of annotated data. Despite the influx of 
imaging data, deep supervised learning is unusable without annotation. 
Rigorous data annotation is unfortunately expensive and time-
consuming. This is the main bottleneck in many medical image 
segmentation studies using, but not limited to, deep learning solutions. 
There have been many efforts to overcome this bottleneck. One approach 
is to develop more data-efficient models. Some studies eased the burden 
of annotation by automatically generating the annotation throughout the 
training process with a “human-in-the-loop” framework.30,31 Future 
progresses related to the efficiency improvement of the annotation 
digestion tract in supervised learning frameworks may reduce the 
reliance to annotated data. Another approach to tackle the scarcity of 
annotated data is the wide adoption of open data policy, for example by 
providing indexed and curated imaging datasets. There have been 
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distributed endeavors to collect annotated, anonymized medical images 
and to make them publicly available, including several segmentation 
challenges.32–37 Maintaining and expanding these databases will help 
accelerate AI-powered medical image segmentation studies across 
domains. 

• The emergence of new AI technologies:  

o Advancements of explainable models. For instance, the 
introduction of a new deep learning architecture: transformer 
architecture.38 This new architecture can process sequential data 
more efficiently by utilizing the attention mechanism while 
overcoming recurrent neural network limitations. In short, rather 
than committing all information into memory, the transformer 
includes context analysis to determine which information is the 
most significant and deserves more attention. In the context of 
medical image segmentation, this approach provides an attention 
map. This map can be overlaid with the input scan, thus 
indicating which region in the scan contributes the most to the 
outcome. A recent study, for example, successfully developed a 
transformer model to grade diabetic retinopathy.39 Debunking the 
black-box stigma of deep learning may increase its adoptability 
by clinicians with apprehension toward unexplainable 
technology. 

o Progressing towards unsupervised learning. As we discussed, 
decreasing the reliance on annotated data is of key importance. 
Reinforcement learning is one of the machine learning branches 
where the amount of annotated data becomes less important.40 
With this learning type, image segmentation is perceived as a 
sequential problem in which the model tries to predict the 
trajectory of the segmentation. The model gets rewarded when it 
finds the correct path and gets penalized otherwise. A recent 
study on left ventricle segmentation showed the efficacy of deep 
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reinforcement learning by using 10% of the annotated data with 
comparable results to the fully supervised method.41 

Although the rule-based approach is seemingly pale in comparison with the data-
driven approach, it is still valuable to solve simple medical image processing 
challenges in a perfusion assessment automation pipeline, e.g., image noise 
removal or motion correction. In this function, rule-based approaches can be 
coupled with deep learning models as pre-processing modules of raw data. These 
pre-processing modules may increase the quality and robustness of the input 
data, which may eventually improve the model performance. Such hybrid systems 
are continued to be used in some AI-powered medical applications.42,43 Further 
research in finding the best configuration between both approaches may build a 
foundation for future state-of-the-art automated perfusion assessment systems. 

CONCLUSION 

In this thesis, we introduce quantitative assessments of brain perfusion and 
collaterals on DSA and CTP, respectively, and a quantitative model of 
fluorescence imaging to identify perfusion deficiency after esophagectomy. We 
also show limitations of the existing quantitative assessment of myocardial 
perfusion on coronary angiograms. We demonstrate that both quantitative 
perfusion and CTP-based collateral scores have significant associations with 
functional outcome. In the gastric model study, quantitative parameters derived 
from fluorescence dynamics are predictive of impaired perfusion. Additionally, the 
technical assessment of QuBE revealed that its image pre-processing algorithm 
might be inappropriate and ultimately lead to inaccurate perfusion reading. This 
thesis highlights the feasibility of automated and quantitative perfusion scores as 
an alternative to their corresponding visual grading methods. It also increases our 
understanding of the inner working of computer-assisted perfusion 
quantification. 
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SUMMARY 

Perfusion assessment can be used to determine disease severity, provide 
intraoperative guidance, indicate treatment success, and predict functional 
outcome. Physicians commonly visually evaluate perfusion on medical images 
according to a perfusion grading scale which often is ordinal and in low 
resolution. This crude classification may not precisely measure the actual tissue 
perfusion. Moreover, visual assessment is very subjective and prone to observer 
bias. Therefore, automating and quantifying this assessment is necessary to 
decrease such bias and increase the robustness and accuracy of the assessment. 
The aim of this thesis is to analyze medical images and their corresponding 
perfusion grading to form a base for new automated and quantitative alternatives 
to the qualitative perfusion scores. 

One of the emerging technologies that allow intraoperative evaluation of tissue 
perfusion is fluorescence imaging. Quantitative assessment of fluorescent 
dynamics may be valuable in detecting impaired perfusion. In chapter 2, we 
developed a perfusion model of the gastric tube after esophagectomy to analyze 
fluorescent dynamics in relation to impaired perfusion. A lumped-parameter 
model was used to represent the fundus and the distal regions of the gastric tube. 
We derived and evaluated a quantitative parameter from fluorescent dynamics, 
relative time-to-threshold (RTT), as a predictor of relative remaining flow (RRF). 
RTT of the fundus regions was expressed relative to that in the distal regions. 
RRF expresses the flow to each ROI post-ligation relative to pre-ligation. We 
evaluated thresholds for RTT ranging from 20% to 50% of the maximum intensity 
of the distal regions. Additionally, the effects of model parameters such as 
vascular conductance and volume on the RTT-RRF relation were evaluated over a 
large variation of parameter combinations. Our model showed a strong and 
complex dependency of the RTT-RRF relation on collateral conductance, large 
vessel conductance, and vascular volume. We demonstrated that vessel 
conductance positively related to RTT and RRF. Furthermore, the absolute volume 
of a vessel compartment was inconsequential to the RTT-RRF relation, while the 
volume ratio of the arterial compartment and venous compartment affected RTT-
RRF for high flows. We found that RTT is predictive of flow deterioration. The 
threshold of 20% was the best estimate of reduced perfusion in the anastomotic 
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ROIs. As this study was based on hypothetical data, the validity of the presented 
model remains a limitation. Further research using actual fluorescent imaging 
data is required to establish the clinical value of RTT as a predictor of perfusion 
deficiency. 

In the heart, the Myocardial Blush Grade (MBG) is a commonly used visual grading 
system for myocardial perfusion assessment. In chapter 3, we evaluated an 
alternative method to this scale: the quantitative blush evaluator (QuBE). QuBE is 
a computer-assisted method that quantifies myocardial perfusion based on 
coronary angiography images. We have identified insufficiencies in the pre-
processing methods of QuBE and proposed improvements through enhanced 
image analysis. We used coronary angiography images of 117 patients enrolled in 
the HEBE trial, in which the effects of intracoronary infusion of bone marrow 
mononuclear cells after primary percutaneous coronary intervention were 
evaluated. Within this patient population, we demonstrated that there was no 
significant association between MBG and QuBE scores. Furthermore, we found 
through qualitative assessment that the median filter that was used by QuBE to 
remove large structure related noise on the images was not sufficient. Various 
median filters and cardiac motion correction methods were evaluated but proved 
to be unable to improve the association between MBG and QuBE significantly. It 
was concluded that further improvements on QuBE are required to overcome 
such limitations in order for this score to become the standard for myocardial 
perfusion assessment. 

In chapter 4, we developed a semi-automated quantitative brain perfusion 
assessment for acute ischemic stroke patients as an alternative to the visual 
grading of perfusion using the treatment in cerebral ischemia (TICI) scale. We 
included patients with intracranial proximal large vessel occlusion with complete 
DSA runs in lateral and anteroposterior views. The so-called quantified TICI scale 
(qTICI) was developed using semantic segmentation techniques, including vessel 
removal and perfusion segmentation on a maximum intensity projection image. 
The target downstream territory was delineated by expert observers and was the 
only user input in this process. qTICI was defined as the reperfused area divided 
by the total target downstream territory. After evaluating qTICI using patients 
from the MR CLEAN Registry, we showed that qTICI is significantly associated 
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with the expanded TICI (eTICI) score and has a comparable discriminatory 
capacity of functional outcome. The results suggest that qTICI can be used as an 
alternative to the visual eTICI score during treatment. Moreover, qTICI can also be 
used to provide perfusion assessment in clinical trials or registries as a robust and 
objective cerebral perfusion grading across different patient populations. 

Ischemic tissue can be retrogradely perfused by collaterals. Collaterals may 
supply blood flow to tissue when the direct flow is obstructed and potentially 
diminish infarct progression. In chapter 5, we developed a cerebral collateral 
score based on multiple CT perfusion parameters (CTP-CS). We established 
collateral score candidates by first selecting moderately hypoperfused tissue, 
presumably collateral-supplied tissue, as determined by the time-to-maximum of 
the residue function (Tmax) value. Subsequently, we created a mask to cover 
tissue with Tmax values within various ranges. The mask included the 
contralateral side which was acquired by mirroring the ipsilateral mask using the 
midline. The total tissue volume covered by the mask was calculated. Pixel-wise 
cerebral blood volume (CBV) and their average per hemisphere side were 
calculated. Relative CBV was defined as the average of CBV in the ipsilateral side 
divided by the average of CBV in the contralateral side. We found that the mean 
relative CBV in the area with Tmax 6 to 10 seconds is indicative of collateral 
capacity and significantly associated with both CTA collateral score and 
functional outcome.  Furthermore, a multivariable prognostic model with CTP-CS 
outperformed other prognostic models, with and without CTA collateral score, 
although the differences were not statistically significant.  

Finally, the main findings were further discussed in chapter 6. We provided a 
future outlook with an emphasis on deep learning and hybrid systems, which 
combine rule-based and data-driven approaches as the potential state-of-the-art 
technology towards fully automated quantitative perfusion assessment.
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NEDERLANDSE SAMENVATTING 

Perfusiebeoordeling kan gebruikt worden voor het vaststellen van de ernst van de 
aandoening, het voorzien van intra-operatieve begeleiding, de bepaling van het 
behandelsucces en voor het voorspellen van de functionele uitkomst. Artsen 
evalueren de perfusie gewoonlijk door middel van visuele inspectie van medische 
beeldvorming, waarbij vaak een ordinale beoordelingsschaal met een lage 
resolutie gebruikt wordt. Deze grove classificatie geeft mogelijk geen nauwkeurig 
beeld van de daadwerkelijke weefselperfusie. Daarnaast is visuele beoordeling 
erg subjectief en gevoelig voor waarnemersbias. Het is daarom noodzakelijk om 
perfusiebeoordeling te automatiseren en kwantificeren om bias te verminderen 
en robuustheid en betrouwbaarheid te verhogen. Het doel van dit proefschrift is 
om medische beeldvorming en de daarbij horende perfusiebeoordeling te 
analyseren om een basis te leggen voor nieuwe geautomatiseerde en 
kwantitatieve alternatieven voor huidige kwalitatieve perfusiebeoordelingen. 

Een van de opkomende technologieën die intra-operatieve evaluatie van 
weefselperfusie mogelijk maakt is fluorescente beeldvorming. Kwantitatieve 
beoordeling van fluorescente dynamica is mogelijk waardevol voor het 
detecteren van verminderde perfusie. In hoofdstuk 2 ontwikkelden we een 
perfusiemodel van de buismaag na slokdarmresectie, om fluorescente dynamica 
te analyseren in relatie tot verminderde perfusie. Een model op basis van vaste 
elementen is gebruikt om de fundus en de distale gebieden van de maagbuis 
weer te geven. We hebben een kwantitatieve parameter van de fluorescente 
dynamiek, de relatieve tijd-tot-drempelwaarde (RTT), afgeleid en geëvalueerd als 
een voorspeller voor de relatieve resterende stroming (RRF). De RTT van de 
fundus is relatief bepaald ten opzichte van de distale gebieden. De RRF drukt de 
post-ligatie stroming naar de gebieden van interesse relatief uit ten opzichte van 
de pre-ligatie situatie. We evalueerden drempelwaarden voor RTT variërend 
tussen 20% en 50% van de maximale intensiteit van de distale regio's. 
Aanvullend hebben we geëvalueerd wat de effecten zijn van variaties in model-
parameters zoals vasculaire geleiding en volume op de RTT-RRF relatie. Ons 
model liet zien dat de RTT-RRF relatie een sterke en complexe afhankelijkheid 
heeft van de collaterale geleiding, grote vaten geleiding en het vasculaire 
volume. We demonstreerden dat vaatgeleiding positief gerelateerd is aan RTT en 
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RRF. Bovendien was het absolute volume van een vatcompartiment niet van 
invloed op de RTT-RRF-relatie, terwijl de volumeverhouding van het arteriële en 
het veneuze compartiment de RTT-RRF beïnvloedde voor hoge stromingen. We 
ontdekten dat RTT voorspellend is voor verslechtering van de bloedstroming. De 
drempel van 20% gaf de beste schatting van verminderde perfusie in de gebieden 
van anastomose. De validiteit van het gepresenteerde model is mogelijk beperkt, 
aangezien deze studie is gebaseerd op hypothetische data. Aanvullend onderzoek 
met behulp van werkelijke fluorescerende beeldvormingsgegevens is 
noodzakelijk om de klinische waarde van RTT als voorspeller van 
perfusiedeficiëntie vast te stellen. 

In het hart is de Myocardial Blush Grade (MBG) een veelgebruikt visueel 
graderingssysteem voor de beoordeling van de myocardperfusie. In hoofdstuk 3 
evalueerden we een alternatieve methode voor deze schaal: de Quantitative 
Blush Evaluator (QuBE). QuBE is een computerondersteunde methode voor de 
kwantificatie van de myocardperfusie gebaseerd op coronaire angiografiebeelden. 
We hebben tekortkomingen in de voorbereidende methoden van QuBE 
geïdentificeerd en verbeteringen voorgesteld door middel van verbeterde 
beeldanalyse. We gebruikten coronaire angiografiebeelden van 117 patiënten die 
deelnamen aan de HEBE-studie, waarin de effecten van intracoronaire infusie van 
mononucleaire beenmergcellen na primaire percutane coronaire interventie 
werden geëvalueerd. Binnen deze patiëntenpopulatie hebben we aangetoond dat 
er geen significant verband was tussen MBG- en QuBE-scores. Daarnaast 
ontdekten we door middel van kwalitatieve beoordeling dat het mediaanfilter dat 
door QuBE werd gebruikt om ruis van grote structuren te verwijderen niet 
voldoende werkt. Verschillende mediaanfilters en correctiemethoden voor 
cardiale bewegingen werden geëvalueerd, maar bleken niet in staat om de 
associatie tussen MBG en QuBE significant te verbeteren. Verdere verbeteringen 
aan QuBE zijn nodig zijn om dergelijke beperkingen te overkomen, voordat deze 
score de standaard kan worden voor de beoordeling van myocardperfusie. 

In hoofdstuk 4 hebben we een semi-automatische kwantitatieve bepaling van de 
hersenperfusie ontwikkeld voor patiënten met een acute ischemische beroerte, 
als alternatief voor de visuele beoordeling van perfusie met behulp van de 
Treatment In Cerebral Ischemia (TICI)-schaal. We includeerden patiënten met 
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intracraniële proximale occlusies van grote vaten met volledige digitale 
substractie-angiografie beeldvorming (DSA) in laterale en anteroposterieure 
richtingen. De zogenaamde gekwantificeerde TICI-schaal (qTICI) is ontwikkeld 
met behulp van semantische segmentatietechnieken, waaronder verwijdering van 
bloedvaten en perfusiesegmentatie op maximale intensiteit projecties. Het 
stroomafwaartse doelgebied werd omlijnd door expert waarnemers en was de 
enige benodigde gebruikersinput in dit proces. qTICI werd gedefinieerd als het 
gereperfundeerde gebied gedeeld door het totale stroomafwaartse doelgebied. 
Na evaluatie van qTICI voor patiënten uit de MR CLEAN Registry, toonden we aan 
dat qTICI significant geassocieerd is met de uitgebreide TICI-score (eTICI) en een 
vergelijkbaar discriminerend vermogen heeft voor functionele uitkomst. De 
resultaten suggereren dat qTICI kan worden gebruikt als alternatief voor de 
visueel eTICI-score tijdens de behandeling. Bovendien kan qTICI worden gebruikt 
om perfusie te beoordelen in klinische onderzoeken of registers als een robuuste 
en objectieve cerebrale perfusie gradatie voor verschillende patiëntenpopulaties. 

Ischemische weefsels kunnen retrograad worden geperfuseerd door collateralen. 
Collateralen kunnen de bloedstroom naar het weefsel leveren wanneer de directe 
stroom wordt belemmerd, waardoor mogelijk de progressie van het infarct 
afneemt. In hoofdstuk 5 hebben we een cerebrale collaterale score ontwikkeld op 
basis van meerdere CT-perfusieparameters (CTP-CS). We hebben kandidaten voor 
collaterale scores vastgesteld door eerst matig onder-geperfundeerde weefsels te 
selecteren, vermoedelijk weefsels gevoed vanuit collateralen, bepaald door 
middel van de tijd-tot-maximale restfunctie (Tmax) waarde. Vervolgens hebben 
we een masker gemaakt voor weefsels met Tmax-waarden binnen een bepaald 
bereik. Het masker omvatte de contralaterale zijde die werd verkregen door het 
ipsilaterale masker te spiegelen met behulp van de middellijn. Het totale 
weefselvolume bedekt door het masker werd berekend. Het pixel-gewijze 
cerebraal bloedvolume (CBV) en gemiddelden per hersenhelft werden berekend. 
Relatieve CBV werd gedefinieerd als het gemiddelde van CBV in de ipsilaterale 
zijde gedeeld door het gemiddelde van CBV in de contralaterale zijde. We 
ontdekten dat de gemiddelde relatieve CBV in het gebied met Tmax 6 tot 10 
seconden indicatief is voor de collaterale capaciteit en significant geassocieerd is 
met zowel de CTA collaterale score als de functionele uitkomst. Daarnaast 



146

presteerde een multivariabel prognostisch model met CTP-CS beter dan andere 
prognostische modellen, met en zonder CTA collaterale score, hoewel de 
verschillen niet statistisch significant waren. 

Tot slot werden de belangrijkste bevindingen verder besproken in hoofdstuk 6. 
We hebben een toekomstperspectief gegeven met de nadruk op deep learning en 
hybride systemen, die regels-gebaseerde en datagedreven benaderingen 
combineren als de potentiële state-of-the-art technologie voor volledig 
geautomatiseerde kwantitatieve perfusiebeoordeling.
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RINGKASAN 

Pengukuran perfusi dapat digunakan untuk mengestimasi tingkat keparahan 
penyakit, memandu operasi, mengindikasikan keberhasilan pengobatan, dan 
memprediksi hasil akhir fungsional paska operasi. Dokter, pada umumnya, 
mengukur perfusi melalui pengamatan citra medis secara visual berdasarkan 
skala penilaian perfusi yang biasanya ordinal dan memiliki tingkat resolusi yang 
rendah. Klasifikasi yang kasar ini berpotensi menghasilkan pengukuran perfusi 
yang tidak presisi. Selain itu, penilaian secara visual sangat subjektif dan rentan 
akan bias observasi. Karena itu, otomatisasi dan kuantifikasi pengukuran perfusi 
diperlukan untuk mengurangi bias tersebut serta meningkatkan konsistensi dan 
akurasi pengukuran perfusi. Tujuan dari tesis ini adalah untuk menganalisa citra 
medis dan penilaian perfusi yang sesuai untuk membentuk landasan dalam 
mengembangkan kuantifikasi perfusi secara otomatis. 

Salah satu teknologi baru dalam pengukuran perfusi jaringan intraoperatif adalah 
pencitraan fluorosensi. Pengukuran kuantitatif dinamika sinyal fluoresen dapat 
digunakan dalam mendeteksi gangguan perfusi. Di bab 2, kami mengembangkan 
model perfusi dari tabung lambung yang direkonstruksi paska esofagektomi 
untuk menganalisa sinyal fluoresen dan hubungannya dengan gangguan perfusi. 
Model dengan parameter tunggal digunakan untuk merepresentasikan area 
fundus dan area distal dari tabung lambung. Parameter kuantitatif, waktu tempuh 
relatif ke batas atas (RTT), diperoleh dan dievaluasi dari sinyal fluoresen sebagai 
prediktor dari sisa aliran relatif (RRF). RTT dari area fundus adalah waktu tempuh 
sinyal ke batas atas area fundus dibandingkan dengan waktu tempuh sinyal ke 
batas atas area distal. RRF adalah aliran fluoresen di area tertentu di tabung 
lambung paska ligasi dibandingkan dengan aliran tersebut sebelum ligasi. Kami 
mengevaluasi beberapa batas atas untuk RTT dimulai dari 20% intensitas 
fluoresen maksimal dari area distal hingga 50%. Selain itu, efek dari parameter 
model seperti konduktansi dan volume vaskular dievaluasi dalam banyak variasi 
dari kombinasi parameter-parameter model untuk menyelidiki hubungan 
parameter tersebut dengan RTT dan RFF. Model kami menunjukkan adanya 
hubungan dependensi yang kuat dan kompleks antara RTT-RFF dengan 
konduktansi kolateral, konduktansi pembuluh darah besar, dan volume vaskular. 
Kami memperlihatkan bahwa konduktansi pembuluh darah memiliki hubungan 
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positif dengan RTT dan RRF. Selain itu, volume absolut dari kompartemen 
pembuluh darah tidak mempengaruhi hubungan RTT dan RRF. Rasio volume dari 
kompartemen arteri dan vena mempengaruhi RTT dan RRF untuk aliran yang 
tinggi. Kami menemukan bahwa RTT dapat memprediksi penurunan aliran. Batas 
atas 20% menghasilkan estimasi penurunan perfusi terbaik di area anastomosis. 
Karena studi ini berdasarkan data hipotetikal, validitas model dianggap sebagai 
limitasi studi. Penelitian lanjut menggunakan data aktual pencitraan fluoresensi 
dibutuhkan untuk membuktikan nilai klinis RTT sebagai prediktor penurunan 
perfusi.  

Di jantung, skala pengukuran perfusi miokardium (MBG) merupakan sistem skala 
visual yang umum digunakan dalam mengukur perfusi miokardium. Di bab 3, 
kami mengevaluasi metode alternatif dari skala ini: evaluator kuantitatif perfusi 
(QuBE). QuBE adalah metode dengan bantuan komputer yang dapat 
mengkuantifikasi perfusi miokardium berdasarkan citra angiografi koroner. Kami 
berhasil mengidentifikasi kekurangan dari metode pra-pengolahan citra QuBE 
dan merekomendasikan koreksi melalui analisis perbaikan citra. Kami 
menggunakan citra angiografi koroner dari 117 pasien yang terdaftar di uji coba 
klinis HEBE, di mana efek dari infusi intrakoroner sel mononuklear sum-sum 
tulang paska intervensi koroner perkutan primer dievaluasi. Dalam populasi 
pasien tersebut, kami menunjukkan bahwa tidak terdapat asosiasi signifikan 
antara MBG dan skor QuBE. Kami menyimpulkan bahwa diperlukan perbaikan 
lebih lanjut pada QuBE sebelum QuBE bisa menjadi standar pengukuran perfusi 
miokardium. 

Di bab 4, kami mengembangkan metode kuantitatif pengukuran perfusi otak 
semi-otomatis untuk pasien stroke iskemik akut sebagai alternatif dari penilaian 
perfusi secara visual menggunakan skala pengobatan iskemia serebral (TICI). 
Kami melibatkan pasien dengan oklusi pembuluh darah besar proksimal 
intrakranial yang memiliki citra DSA lateral dan anteroposterior. Skala TICI 
kuantitatif (qTICI) dikembangkan menggunakan teknik segmentasi semantik yang 
meliputi subtraksi pembuluh darah dan segmentasi perfusi pada citra proyeksi 
intensitas maksimum. Batas area hilir target diindikasikan oleh pengamat ahli 
dan merupakan satu-satunya input manual dalam proses ini. qTICI didefinisikan 
sebagai area reperfusi dibagi dengan total area hilir target. Setelah mengevaluasi 
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qTICI menggunakan pasien dari MR CLEAN Registry, kami menunjukkan bahwa 
qTICI berasosiasi signifikan dengan skor TICI ekspansif dan memiliki kapasitas 
diskriminatif hasil akhir fungsional yang sebanding dengan skor TICI ekspansif. 
Hasil ini menunjukkan bahwa qTICI dapat digunakan sebagai alternatif untuk skor 
visual TICI ekspansif di dalam masa pengobatan. Selain itu, qTICI juga dapat 
digunakan dalam uji klinis atau registri data sebagai metode pengukuran perfusi 
otak yang konsisten dan objektif lintas populasi pasien. 

Jaringan iskemik dapat mengalami perfusi mundur dari pembuluh darah kolateral. 
Pembuluh darah kolateral dapat menyalurkan aliran darah ke jaringan ketika 
aliran utama terhambat sehingga perkembangan infark dapat dikurangi. Di bab 5, 
kami mengembangkan skor kolateral otak berdasarkan sejumlah parameter CT 
perfusi (CTP-CS). Kami menetapkan kandidat skor kolateral dengan pertama-tama 
menyeleksi jaringan hipoperfusi sedang, dengan asumsi bahwa jaringan ini 
disuplai oleh kolateral, sebagaimana terindikasikan oleh nilai Tmax di citra CT 
perfusi. Selanjutnya, kami membuat citra layar berdasarkan berbagai rentang nilai 
Tmax. Citra layar ini meliputi sisi kontralateral yang diperoleh dengan 
mencerminkan citra layar sisi ipsilateral terhadap garis tengah citra CT perfusi. 
Volume jaringan total yang diliputi citra layar ini dihitung. Volume darah otak 
(CBV) setiap pixel dan nilai rata-ratanya per belahan otak juga dihitung. CBV 
relatif didefinisikan sebagai rata-rata CBV di sisi ipsilateral dibagi dengan rata-
rata CBV di sisi kontralateral. Kami menemukan bahwa rata-rata CBV relatif di 
area dengan Tmax antara 6 hingga 10 detik mengindikasikan kapasitas kolateral 
dan berasosiasi signfikan dengan skor kolateral CTA dan hasil akhir fungsional. 
Selain itu, model prognostik multivariabel dengan CTP-CS mengungguli model 
prognostik lain dengan dan tanpa skor kolateral CTA, walaupun perbedaannya 
tidak signifikan secara statistik.  

Akhir kata, temuan utama didiskusikan lebih lanjut di bab 6. Prediksi pengukuran 
perfusi otomatis di masa depan terutama dalam hubungannya dengan deep 
learning dan sistem hybrid juga didiskusikan, di mana kombinasi pendekatan 
berdasarkan aturan dan data berpotensi menjadi teknologi utama menuju 
otomatisasi penuh pengukuran perfusi kuantitatif.
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Mariaconcetta Mele 2016 2.0 

Emeric Barrier 2017 2.0 
Dronika Debisarun 2017 0.25 

Stephen Broeils 2017 0.25 
Hugo Hoving 2017 0.25 
Maarten Both 2017 0.25 

Thabiso Epema 2017-2018 2.0 
Merel van der Stelt 2018 2.0 
Lisa MH Vermeulen 2018 1.0 

Marc T Visser 2018 1.0 
   

Parameters of Esteem Year 
Grants   

Research Grant, the Indonesian Endowment Fund for 
Education 

2015-2019 
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assessment in medical images
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