40 research outputs found

    Blockchain-based PKI for Crowdsourced IoT Sensor Information

    Full text link
    The Internet of Things is progressively getting broader, evol-ving its scope while creating new markets and adding more to the existing ones. However, both generation and analysis of large amounts of data, which are integral to this concept, may require the proper protection and privacy-awareness of some sensitive information. In order to control the access to this data, allowing devices to verify the reliability of their own interactions with other endpoints of the network is a crucial step to ensure this required safeness. Through the implementation of a blockchain-based Public Key Infrastructure connected to the Keybase platform, it is possible to achieve a simple protocol that binds devices' public keys to their owner accounts, which are respectively supported by identity proofs. The records of this blockchain represent digital signatures performed by this Keybase users on their respective devices' public keys, claiming their ownership. Resorting to this distributed and decentralized PKI, any device is able to autonomously verify the entity in control of a certain node of the network and prevent future interactions with unverified parties

    A blockchain approach for decentralized V2X (D-V2X)

    Get PDF
    New mobility paradigms have appeared in recent years, and everything suggests that some more are coming. This fact makes apparent the necessity of modernizing the road infrastructure, the signalling elements and the traffic management systems. Many initiatives have emerged around the term Intelligent Transport System (ITS) in order to define new scenarios and requirements for this kind of applications. We even have two main competing technologies for implementing Vehicular communication protocols (V2X), C-V2X and 802.11p, but neither of them is widely deployed yet. One of the main barriers for the massive adoption of those technologies is governance. Current solutions rely on the use of a public key infrastructure that enables secure collaboration between the different entities in the V2X ecosystem, but given its global scope, managing such infrastructure requires reaching agreements between many parties, with conflicts of interest between automakers and telecommunication operators. As a result, there are plenty of use cases available and two mature communication technologies, but the complexity at the business layer is stopping the drivers from taking advantage of ITS applications. Blockchain technologies are defining a new decentralized paradigm for most traditional applications, where smart contracts provide a straightforward mechanism for decentralized governance. In this work, we propose an approach for decentralized V2X (D-V2X) that does not require any trusted authority and can be implemented on top of any communication protocol. We also define a proof-of-concept technical architecture on top of a cheap and highly secure System-on-Chip (SoC) that could allow for massive adoption of D-V2X.10.13039/501100011011-Junta de Andalucía (Grant Number: P18-TP-3724) 10.13039/501100004837-Ministerio de Ciencia e Innovación (Grant Number: PID2019-110565RB-I00

    Leveraging and Fusing Civil and Military Sensors to support Disaster Relief Operations in Smart Environments

    Get PDF
    Natural disasters occur unpredictably and can range in severity from something locally manageable to large scale events that require external intervention. In particular, when large scale disasters occur, they can cause widespread damage and overwhelm the ability of local governments and authorities to respond. In such situations, Civil-Military Cooperation (CIMIC) is essential for a rapid and robust Humanitarian Assistance and Disaster Relief (HADR) operation. These type of operations bring to bear the Command and Control (C2) and Logistics capabilities of the military to rapidly deploy assets to help with the disaster relief activities. Smart Cities and Smart Environments, embedded with IoT, introduce multiple sensing modalities that typically provide wide coverage over the deployed area. Given that the military does not own or control these assets, they are sometimes referred to as gray assets, which are not as trustworthy as blue assets, owned by the military. However, leveraging these gray assets can significantly improve the ability for the military to quickly obtain Situational Awareness (SA) about the disaster and optimize the planning of rescue operations and allocation of resources to achieve the best possible effects. Fusing the information from the civilian IoT sensors with the custom military sensors could help validate and improve trust in the information from the gray assets. The focus of this paper is to further examine this challenge of achieving Civil-Military cooperation for HADR operations by leveraging and fusing information from gray and blue assets

    Decentralized self-enforcing trust management system for social Internet of Things

    Get PDF
    The Internet of Things (IoT) is the network of connected computing devices that have the ability to transfer valued data between each other via the Internet without requiring human intervention. In such a connected environment, the social IoT (SIoT) has become an emerging trend where multiple IoT devices owned by users support communication within a social circle. Trust management in the SIoT network is imperative as trusting the information from compromised devices could lead to serious compromises within the network. It is important to have a mechanism where the devices and their users evaluate the trustworthiness of other devices and users before trusting the information sent by them. The privacy preservation, decentralization, and self-enforcing management without involving trusted third parties are the fundamental challenges in designing a trust management system for SIoT. To fulfill these challenges, this article presents a novel framework for computing and updating the trustworthiness of participants in the SIoT network in a self-enforcing manner without relying on any trusted third party. The privacy of the participants in the SIoT is protected by using homomorphic encryption in the decentralized setting. To achieve the properties of self-enforcement, the trust score of each device is automatically updated based on its previous trust score and the up-to-date tally of the votes by its peers in the network with zero-knowledge proofs (ZKPs) to enforce that every participant follows the protocol honestly. We evaluate the performance of the proposed scheme and present evaluation benchmarks by prototyping the main functionality of the system. The performance results show that the system has a linear increase in computation and communication overheads with more participants in the network. Furthermore, we prove the correctness, privacy, and security of the proposed system under a malicious adversarial model

    Crowdsourcing atop blockchains

    Get PDF
    Traditional crowdsourcing systems, such as Amazon\u27s Mechanical Turk (MTurk), though once acquiring great economic successes, have to fully rely on third-party platforms to serve between the requesters and the workers for basic utilities. These third-parties have to be fully trusted to assist payments, resolve disputes, protect data privacy, manage user authentications, maintain service online, etc. Nevertheless, tremendous real-world incidents indicate how elusive it is to completely trust these platforms in reality, and the reduction of such over-reliance becomes desirable. In contrast to the arguably vulnerable centralized approaches, a public blockchain is a distributed and transparent global consensus computer that is highly robust. The blockchain is usually managed and replicated by a large-scale peer-to-peer network collectively, thus being much more robust to be fully trusted for correctness and availability. It, therefore, becomes enticing to build novel crowdsourcing applications atop blockchains to reduce the over-trust on third-party platforms. However, this new fascinating technology also brings about new challenges, which were never that severe in the conventional centralized setting. The most serious issue is that the blockchain is usually maintained in the public Internet environment with a broader attack surface open to anyone. This not only causes serious privacy and security issues, but also allows the adversaries to exploit the attack surface to hamper more basic utilities. Worse still, most existing blockchains support only light on-chain computations, and the smart contract executed atop the decentralized consensus computer must be simple, which incurs serious feasibility problems. In reality, the privacy/security issue and the feasibility problem even restrain each other and create serious tensions to hinder the broader adoption of blockchain. The dissertation goes through the non-trivial challenges to realize secure yet still practical decentralization (for urgent crowdsourcing use-cases), and lay down the foundation for this line of research. In sum, it makes the next major contributions. First, it identifies the needed security requirements in decentralized knowledge crowdsourcing (e.g., data privacy), and initiates the research of private decentralized crowdsourcing. In particular, the confidentiality of solicited data is indispensable to prevent free-riders from pirating the others\u27 submissions, thus ensuring the quality of solicited knowledge. To this end, a generic private decentralized crowdsourcing framework is dedicatedly designed, analyzed, and implemented. Furthermore, this dissertation leverages concretely efficient cryptographic design to reduce the cost of the above generic framework. It focuses on decentralizing the special use-case of Amazon MTurk, and conducts multiple specific-purpose optimizations to remove needless generality to squeeze performance. The implementation atop Ethereum demonstrates a handling cost even lower than MTurk. In addition, it focuses on decentralized crowdsourcing of computing power for specific machine learning tasks. It lets a requester place deposits in the blockchain to recruit some workers for a designated (randomized) programs. If and only if these workers contribute their resources to compute correctly, they would earn well-deserved payments. For these goals, a simple yet still useful incentive mechanism is developed atop the blockchain to deter rational workers from cheating. Finally, the research initiates the first systematic study on crowdsourcing blockchains\u27 full nodes to assist superlight clients (e.g., mobile phones and IoT devices) to read the blockchain\u27s records. This dissertation presents a novel generic solution through the powerful lens of game-theoretic treatments, which solves the long-standing open problem of designing generic superlight clients for all blockchains

    Trustworthy Decentralized Last Mile Delivery Framework Using Blockchain

    Get PDF
    The fierce competition and rapidly growing eCommerce market are painful headaches for logistics companies. In 2021, Canada Post’s parcel volume peaked at 361 million units with a minimum charge of $10 per each. The Last-Mile Delivery (LMD) is the final leg of the supply chain that ends with the package at the customer’s doorstep. LMD involves moving small shipments to geographically dispersed locations with high expectations on service levels and precise time windows. Therefore, it is the most complex and costly logistics process, accounting for more than 50% of the overall supply chain cost. Innovations like Crowdshipping, such as Uber and Amazon Flex, help overcome this inefficiency and provide an outstanding delivery experience by enabling freelancers willing to deliver packages if they are around. However, apartfrom the centralized nature of the Crowdshipping platforms, retailers pay a fee for outsourcing the delivery process, which is rising. Besides, they lack transparency, and most of them, if not all, are platform monopolies in the making. New technologies such as blockchain recently introduced an opportunity to improve logistics and LMD operations. Several papers in the literature suggested employing blockchain and other cryptographic techniques for parcel delivery. Hence,this thesis presents a blockchain-based free-intermediaries crowd-logistics model and investigates the challenges that could harbor adopting this solution, such as user trust, data safety, security of transactions, and tracking service quality. Our framework combines a security assessment that examines the possible vulnerabilities of the proposed design and suggestions for mitigation and protection. Besides, it encourages couriers to act honestly by using a decentralized reputation model for couriers’ ratings based on their past behavior. A security analysis of our proposed system hasbeen provided, and the complete code of the smart contract has been publicly made available on GitHub

    SoK: Applying Blockchain Technology in Industrial Internet of Things

    Get PDF
    The proliferation of the Internet of Things (IoT) technology has made ubiquitous computing a reality by broadening Internet connectivity across diverse application domains, thus bridging billions of devices and human beings as well for information collection, data processing, and decision-making. In recent years, IoT technology and its applications in various industrial sectors have grown exponentially. Most existing industrial IoT (IIoT) implementations, however, are still relying on a centralized architecture, which is vulnerable to the single point of failure attack and requires a massive amount of computation at the central entity. The emerging blockchain technology is currently undergoing rapid development and has the full potential to revolutionize the IIoT platforms and applications. As a distributed and decentralized tamper-resistant ledger, blockchain maintains the consistency of data records at different locations and holds the potential to address the issues in traditional IIoT networks, such as heterogeneity, interoperability, and security. Integrating the blockchain technology into IIoT platforms requires to address several critical challenges that are inherent in IIoT and blockchain themselves, such as standardization, scalability, and interoperability. This paper provides a comprehensive review on the recent advances in architecture design and technology development towards tackling these challenges. We further provide several representative industrial use cases that can benefit from the integration of blockchain technology, and discuss the recent research trends and open issues in blockchain-enabled IIoT platforms

    IGD-ScoreChain: A Lightweight and Scalable Blockchain Based on Node Sharding for the Internet of Things

    Get PDF
    Due to the significant development of the intelligence industry worldwide, various initiatives have increasingly recognized the value of the Internet of Things (IoT). IoT systems, however, are often hin- dered by fundamental challenges, such as the need for a central server to manage them. Decentralizing these systems can be achieved through the use of blockchains. Recently, there has been an increase in the popularity of blockchain in various fields, such as banking, IoT, and the intelligence industry, and human societies have taken notice of it. One of the main problems is with the scalability of such systems as the network size grows. This paper examines how to overcome this challenge in blockchain-based IoT systems. We introduce a sharding-based blockchain that is lightweight and scalable. In the proposed method, the nodes are assigned to a number of shards based on their history of activity. As part of this study, the Improved Byzantine Fault Tolerance with Graceful performance Degradation (IGDBFT) consensus algorithm is introduced within the proposed scheme for intra-shard consensus. A solution to storing blocks and cross-shard transactions has been developed using a global chain containing parent blocks in the cloud layer. Finally, we analyze the security and efficiency of our scheme and compare our sharding-based protocol with previous protocols

    How Physicality Enables Trust: A New Era of Trust-Centered Cyberphysical Systems

    Full text link
    Multi-agent cyberphysical systems enable new capabilities in efficiency, resilience, and security. The unique characteristics of these systems prompt a reevaluation of their security concepts, including their vulnerabilities, and mechanisms to mitigate these vulnerabilities. This survey paper examines how advancement in wireless networking, coupled with the sensing and computing in cyberphysical systems, can foster novel security capabilities. This study delves into three main themes related to securing multi-agent cyberphysical systems. First, we discuss the threats that are particularly relevant to multi-agent cyberphysical systems given the potential lack of trust between agents. Second, we present prospects for sensing, contextual awareness, and authentication, enabling the inference and measurement of ``inter-agent trust" for these systems. Third, we elaborate on the application of quantifiable trust notions to enable ``resilient coordination," where ``resilient" signifies sustained functionality amid attacks on multiagent cyberphysical systems. We refer to the capability of cyberphysical systems to self-organize, and coordinate to achieve a task as autonomy. This survey unveils the cyberphysical character of future interconnected systems as a pivotal catalyst for realizing robust, trust-centered autonomy in tomorrow's world
    corecore