8 research outputs found

    Blockchain leveraged decentralized IoT eHealth framework

    Get PDF
    Blockchain technologies recently emerging for eHealth, can facilitate a secure, decentral- ized and patient-driven, record management system. However, Blockchain technologies cannot accommodate the storage of data generated from IoT devices in remote patient management (RPM) settings as this application requires a fast consensus mechanism, care- ful management of keys and enhanced protocols for privacy. In this paper, we propose a Blockchain leveraged decentralized eHealth architecture which comprises three layers: (1) The Sensing layer –Body Area Sensor Networks include medical sensors typically on or in a patient body transmitting data to a smartphone. (2) The NEAR processing layer –Edge Networks consist of devices at one hop from data sensing IoT devices. (3) The FAR pro- cessing layer –Core Networks comprise Cloud or other high computing servers). A Patient Agent (PA) software replicated on the three layers processes medical data to ensure reli- able, secure and private communication. The PA executes a lightweight Blockchain consen- sus mechanism and utilizes a Blockchain leveraged task-offloading algorithm to ensure pa- tient’s privacy while outsourcing tasks. Performance analysis of the decentralized eHealth architecture has been conducted to demonstrate the feasibility of the system in the pro- cessing and storage of RPM data

    Fog computing security and privacy issues, open challenges, and blockchain solution: An overview

    Get PDF
    Due to the expansion growth of the IoT devices, Fog computing was proposed to enhance the low latency IoT applications and meet the distribution nature of these devices. However, Fog computing was criticized for several privacy and security vulnerabilities. This paper aims to identify and discuss the security challenges for Fog computing. It also discusses blockchain technology as a complementary mechanism associated with Fog computing to mitigate the impact of these issues. The findings of this paper reveal that blockchain can meet the privacy and security requirements of fog computing; however, there are several limitations of blockchain that should be further investigated in the context of Fog computing

    Device agent assisted blockchain leveraged framework for Internet of Things

    Get PDF
    Blockchain (BC) is a burgeoning technology that has emerged as a promising solution to peer-to-peer communication security and privacy challenges. As a revolutionary technology, blockchain has drawn the attention of academics and researchers. Cryptocurrencies have already effectively utilized BC technology. Many researchers have sought to implement this technique in different sectors, including the Internet of Things. To store and manage IoT data, we present in this paper a lightweight BC-based architecture with a modified raft algorithm-based consensus protocol. We designed a Device Agent that executes a novel registration procedure to connect IoT devices to the blockchain. We implemented the framework on Docker using the Go programming language. We have simulated the framework on a Linux environment hosted in the cloud. We have conducted a detailed performance analysis using a variety of measures. The results demonstrate that our suggested solution is suitable for facilitating the management of IoT data with increased security and privacy. In terms of throughput and block generation time, the results indicate that our solution might be 40% to 45% faster than the existing blockchain. © 2013 IEEE

    Rapid health data repository allocation using predictive machine learning

    Get PDF
    Health-related data is stored in a number of repositories that are managed and controlled by different entities. For instance, Electronic Health Records are usually administered by governments. Electronic Medical Records are typically controlled by health care providers, whereas Personal Health Records are managed directly by patients. Recently, Blockchain-based health record systems largely regulated by technology have emerged as another type of repository. Repositories for storing health data differ from one another based on cost, level of security and quality of performance. Not only has the type of repositories increased in recent years, but the quantum of health data to be stored has increased. For instance, the advent of wearable sensors that capture physiological signs has resulted in an exponential growth in digital health data. The increase in the types of repository and amount of data has driven a need for intelligent processes to select appropriate repositories as data is collected. However, the storage allocation decision is complex and nuanced. The challenges are exacerbated when health data are continuously streamed, as is the case with wearable sensors. Although patients are not always solely responsible for determining which repository should be used, they typically have some input into this decision. Patients can be expected to have idiosyncratic preferences regarding storage decisions depending on their unique contexts. In this paper, we propose a predictive model for the storage of health data that can meet patient needs and make storage decisions rapidly, in real-time, even with data streaming from wearable sensors. The model is built with a machine learning classifier that learns the mapping between characteristics of health data and features of storage repositories from a training set generated synthetically from correlations evident from small samples of experts. Results from the evaluation demonstrate the viability of the machine learning technique used. © The Author(s) 2020

    Hybrid Blockchain Platforms for the Internet of Things (IoT): A Systematic Literature Review

    Get PDF
    In recent years, research into blockchain technology and the Internet of Things (IoT) has grown rapidly due to an increase in media coverage. Many different blockchain applications and platforms have been developed for different purposes, such as food safety monitoring, cryptocurrency exchange, and secure medical data sharing. However, blockchain platforms cannot store all the generated data. Therefore, they are supported with data warehouses, which in turn is called a hybrid blockchain platform. While several systems have been developed based on this idea, a current state-of-the-art systematic overview on the use of hybrid blockchain platforms is lacking. Therefore, a systematic literature review (SLR) study has been carried out by us to investigate the motivations for adopting them, the domains at which they were used, the adopted technologies that made this integration effective, and, finally, the challenges and possible solutions. This study shows that security, transparency, and efficiency are the top three motivations for adopting these platforms. The energy, agriculture, health, construction, manufacturing, and supply chain domains are the top domains. The most adopted technologies are cloud computing, fog computing, telecommunications, and edge computing. While there are several benefits of using hybrid blockchains, there are also several challenges reported in this study. 2022 by the authors. Licensee MDPI, Basel, Switzerland.Funding: This research was funded by Molde University College-Specialized Univ. in Logistics, Norway for the support of Open Access fund.Scopus2-s2.0-8512412355

    Az IoT-koncepción alapuló egészségügyi eszközök fogyasztók közötti elterjedését befolyásoló faktorok vizsgálata

    Get PDF
    Napjainkban számos területen érezhetjük a digitalizáció pozitív hatását. Nincs ez máshogy az egészségügy területén sem, ahol az IoT-koncepció (Internet of Things) adatgyűjtéssel, illetve a Big Data koncepció adatkezeléssel kapcsolatos megoldásai hozzájárulnak az adatorientált, személyre szabott egészségügyi döntésekhez. Jelen kutatás célja a fogyasztók témakörrel kapcsolatos véleményének felmérése, illetve a technológiai megoldások diffúzióját befolyásoló faktorok meghatározása annak érdekében, hogy a kutatás folytatásaként az igényekhez illeszkedő hardver- és szoftverplatform kialakítására nyíljon lehetőség. Az elfogadottságot befolyásoló tényezők vizsgálata érdekében kérdőíves felmérés történt öt fő témakört érintően, beleértve a különböző eszközökről és szolgáltatásokról alkotott véleményt. Az általános változók mellett a UTAUT2-technológia elfogadásának és használatának kiegészített modellje került alkalmazásra, a területhez való alkalmazkodás érdekében. Az elemzés során strukturális egyenletek modellezése (PLS-SEM) zajlott, majd az egyes tényezők látens változókra gyakorolt hatása ordinális logisztikus regresszióval került górcső alá, ezzel vizsgálva a modell fejlesztésének lehetőségeit
    corecore