160 research outputs found

    Some Preconditioning Techniques for Saddle Point Problems

    Get PDF
    Saddle point problems arise frequently in many applications in science and engineering, including constrained optimization, mixed finite element formulations of partial differential equations, circuit analysis, and so forth. Indeed the formulation of most problems with constraints gives rise to saddle point systems. This paper provides a concise overview of iterative approaches for the solution of such systems which are of particular importance in the context of large scale computation. In particular we describe some of the most useful preconditioning techniques for Krylov subspace solvers applied to saddle point problems, including block and constrained preconditioners.\ud \ud The work of Michele Benzi was supported in part by the National Science Foundation grant DMS-0511336

    Null-space preconditioners for saddle point systems

    Get PDF
    The null-space method is a technique that has been used for many years to reduce a saddle point system to a smaller, easier to solve, symmetric positive-definite system. This method can be understood as a block factorization of the system. Here we explore the use of preconditioners based on incomplete versions of a particular null-space factorization, and compare their performance with the equivalent Schur-complement based preconditioners. We also describe how to apply the non-symmetric preconditioners proposed using the conjugate gradient method (CG) with a non-standard inner product. This requires an exact solve with the (1,1) block, and the resulting algorithm is applicable in other cases where Bramble-Pasciak CG is used. We verify the efficiency of the newly proposed preconditioners on a number of test cases from a range of applications

    Monolithic Multigrid for Magnetohydrodynamics

    Full text link
    The magnetohydrodynamics (MHD) equations model a wide range of plasma physics applications and are characterized by a nonlinear system of partial differential equations that strongly couples a charged fluid with the evolution of electromagnetic fields. After discretization and linearization, the resulting system of equations is generally difficult to solve due to the coupling between variables, and the heterogeneous coefficients induced by the linearization process. In this paper, we investigate multigrid preconditioners for this system based on specialized relaxation schemes that properly address the system structure and coupling. Three extensions of Vanka relaxation are proposed and applied to problems with up to 170 million degrees of freedom and fluid and magnetic Reynolds numbers up to 400 for stationary problems and up to 20,000 for time-dependent problems

    On the eigenvalues and eigenvectors of block triangular preconditioned block matrices

    Get PDF
    Block lower triangular matrices and block upper triangular matrices are popular preconditioners for 2×22\times 2 block matrices. In this note we show that a block lower triangular preconditioner gives the same spectrum as a block upper triangular preconditioner and that the eigenvectors of the two preconditioned matrices are related
    • …
    corecore