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ON THE EIGENVALUES AND EIGENVECTORS OF BLOCK

TRIANGULAR PRECONDITIONED BLOCK MATRICES∗

JENNIFER PESTANA†

Abstract. Block lower triangular matrices and block upper triangular matrices are popular
preconditioners for 2×2 block matrices. In this note we show that a block lower triangular precondi-
tioner gives the same spectrum as a block upper triangular preconditioner and that the eigenvectors
of the two preconditioned matrices are related.

Key words. block triangular preconditioner, convergence, eigenvalues, eigenvectors, iterative
method, saddle point system

AMS subject classifications. 65F08, 65F10, 65F50, 65N22

1. Introduction. Nonsingular block matrices of the form

A =

[

A BT

B −C

]

, (1.1)

where A ∈ C
n×n, B ∈ C

m×n with rank(B) = m, C ∈ C
m×m, m ≤ n arise in a

number of applications, many of which are discussed in the survey paper by Benzi,
Golub and Liesen [5, Section 2]. Of particular interest are block matrices for which
C = 0 and/or for which A is symmetric positive definite and C is symmetric positive
semidefinite [5],[10, Chapters 5 and 7].

In many applications A in (1.1) is large and sparse, in which case linear systems
with A as the coefficient matrix are typically solved by a preconditioned iterative
method. Two popular preconditioners are the block lower triangular matrix [8, 16, 17]

PL =

[

PA 0
B PS

]

, (1.2)

and block upper triangular matrix [6, 13, 15, 16, 20]

PU =

[

PA BT

0 PS

]

, (1.3)

where PA ∈ C
n×n and PS ∈ C

m×m (and, consequently, PL and PU ) are nonsingular.
When A and C are Hermitian semidefinite it is known that P−1

U A and P−1
L A are

similar [14, Remark 2]. (The case in which A is positive definite was also recently
treated by Notay [16, Theorem 3.1].) For non-Hermitian matrices, Bai and Ng [3]
analysed the minimal polynomials of P−1

L A and P−1
U A when PA = A or PS is the

Schur complement, while Bai [1] obtained identical eigenvalue bounds for P−1
L A and

P−1
U A in the more general case of inexact PA and PS

1 . Additionally, Bai and Ren [4]
applied block triangular preconditioned GMRES [18] and BiCGStab [22] to nonsym-
metric 2 × 2 block systems arising from discretizations of third-order ODEs. They
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Abdullah University of Science and Technology (KAUST).
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1In fact the results of Bai and Ng [3] and Bai [1] are more general than ours since they do not
assume that the (1,2) and (2,1) blocks of A are transposes of each other.
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2 J. PESTANA

found that iteration counts for upper and lower triangular preconditioners were simi-
lar, while eigenvalue plots for P−1

L A and P−1
U A were indistinguishable. Additionally,

for M-matrices arising from Markov chains Benzi and Uçar [7] noticed little differ-
ence between the performances of block lower triangular and block upper triangular
preconditioners.

In this note we extend the theoretical results to the non-Hermitian case. We show
that P−1

L A and P−1
U A have identical spectra and relate the corresponding eigenvec-

tors. When C = 0 and P−1
L A and P−1

U A are diagonalizable, we bound the difference
between the condition numbers of the eigenvector matrices; this gives some insight into
when we might expect certain iterative methods to converge similarly for the block
lower and block upper triangular preconditioned systems. Our results are illustrated
on a numerical example.

Throughout Ip ∈ C
p×p denotes the identity matrix of dimension p and ‖ · ‖2

represents the Euclidean vector norm or the corresponding induced matrix norm.
The conjugate transpose of a matrix E is denoted by E∗, its range by range(E), its
nullspace by null(E) and its Moore-Penrose pseudoinverse by E†.

2. Eigenvalue, eigenvector and condition number relationships. In this
section we state our main results, starting with the equivalence of the spectra of P−1

U A
and P−1

L A.
Proposition 1. Let A, PL and PU be invertible. Then the spectra of P−1

L A and

P−1
U A are identical, as are the spectra of AP−1

L and AP−1
U .

Proof. Let

Y (λ) =

[

A− λPA BT

(1− λ)B −(C + λPS)

]

and Z(λ) =

[

A− λPA (1− λ)BT

B −(C + λPS)

]

. (2.1)

Then the eigenvalues λL of P−1
L A must be roots of det(Y (λL)) = 0 while the eigen-

values λU of P−1
U A must satisfy det(Z(λU )) = 0. Setting

J(λ) =

[

In 0
0 (1− λ)Im

]

, (2.2)

we see that, for any λ 6= 1, 0 = det(Y (λL)) = det(J(λL)
−1Y (λL)J(λL)) = det(Z(λL)).

Thus, the non-unit roots of det(Y (λ)) = 0 and det(Z(λ)) = 0 coincide. Additionally,
det(Y (1)) = det(Z(1)) = (−1)m det(A − PA) det(C + PS). The results for right pre-
conditioning follow from the similarity of P−1

L A and AP−1
L and of P−1

U A and AP−1
U .

The above result shows that if eigenvalues alone are important, there is nothing to
distinguish P−1

L A, AP−1
L , P−1

U A and AP−1
U . This may be the case when, for example,

we precondition to achieve self-adjointness and positive definiteness with respect to a
nonstandard inner product [8, 14, 17]. However, in many situations the eigenvectors
will also have an effect on convergence. We relate the eigenvectors of P−1

L A and P−1
U A

in the following proposition.
Proposition 2. Let A, PL and PU be nonsingular.

1. Suppose that λ 6= 1 is an eigenvalue of P−1
U A. If [uT

U ,v
T
U ]

T is the correspond-

ing eigenvector, then J(λ)[uT
U ,v

T
U ]

T = [uT
U , (1 − λ)vT

U ]
T is an eigenvector of

P−1
L A corresponding to this eigenvalue.

2. Suppose that λ = 1 is an eigenvalue of P−1
L A.

• If PS + C is nonsingular then the eigenvectors of P−1
L A corresponding

to λ are of the form [uT ,0T ]T , where u is any eigenvector of the matrix
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P−1
A A that corresponds to its unit eigenvalue. Moreover, the eigenvectors

of P−1
U A corresponding to λ are of the form [uT , ((PS + C)−1Bu)T ]T .

• If PA−A is nonsingular then the eigenvectors of P−1
U A corresponding to

λ are of the form [0T ,vT ]T where v is any eigenvector of −P−1
S C that

corresponds to its unit eigenvalue. Moreover, the eigenvectors of P−1
L A

corresponding to λ are of the form [((PA −A)−1BT
v)T ,vT ]T .

Proof. The first part follows immediately from Proposition 1, since if λ 6= 1 then
Z(λ) = J(λ)−1Y (λ)J(λ) where J(λ) is as in (2.2).

If λ = 1, then Y (1)wL = 0 is equivalent to

AuL +BT
vL = PAuL, (2.3)

PSvL + CvL = 0, (2.4)

while Z(1)wU = 0 is equivalent to

AuU − PAuU = 0, (2.5)

BuU − CvU = PSvU . (2.6)

Note that −P−1
S C does not have an eigenvalue at 1 if and only if PS + C is

nonsingular. In this case, (2.3) and (2.4) show that vL = 0 and that uL must be an
eigenvector of P−1

A A corresponding to the eigenvalue 1. Meanwhile, (2.5) and (2.6)
imply uU 6= 0, since otherwise nonsingularity of PS + C means that vU = 0. Thus,
uU is also an eigenvector of P−1

A A corresponding to the eigenvalue 1 and BuU =
(C + PS)vU . The last case is proved similarly.

Remark 1. The case that λ = 1 is an eigenvalue of both P−1
A A and −P−1

S C can
also be worked out but is of less interest so we omit it here.

Remark 2. It may be preferable to use right preconditioning rather than left
preconditioning, since doing so preserves the residual norm for methods such as GM-
RES [18]. However, if X is an eigenvector matrix of P−1A then PX is an eigenvector
matrix of AP−1 for any invertible preconditioner P. This allows the eigenvectors of
the right preconditioned block matrix to be determined. However, the eigenvector
matrices of AP−1

L and AP−1
U do not have as straightforward a relationship as those

of P−1
L A and P−1

U A and we do not consider them here.

Particularly important is the case C = 0 in A, for which the eigenvectors of P−1
L A

and P−1
U A are more simply related.

Corollary 3. Let A, PL and PU be nonsingular and let C = 0 in (1.1).

1. Suppose that λ 6= 1 is an eigenvalue of P−1
U A. If [uT

U ,v
T
U ]

T is the correspond-

ing eigenvector, then [uT
U , (1−λ)vT

U ]
T is an eigenvector of P−1

L A correspond-

ing to this eigenvalue.

2. Otherwise, λ = 1 is an eigenvalue of P−1
L A with corresponding eigenvector

[uT ,0T ]T , where u is any eigenvector of the matrix P−1
A A that corresponds

to its unit eigenvalue. Moreover, the eigenvectors of P−1
U A corresponding to

λ are of the form [uT , (P−1
S Bu)T ]T .

Proof. If C = 0, then P−1
S C = 0 and the last case in Proposition 2 does not apply.

Of interest for Krylov methods such as GMRES is the condition number of the
eigenvector matrix [18] when it is invertible.

Corollary 4. Let A, PL and PU be nonsingular and let C = 0 in A. As-

sume that both P−1
L A = XLΛX

−1
L and P−1

U A = XUΛX
−1
U are diagonalizable with p
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eigenvalues equal to 1, where

XU =

[

U (1) U (2)

V (1) V (2)

]

and XL =

[

U (1) U (2)

0 V (2)(I − Λ(2))

]

, (2.7)

with U (1) ∈ C
n×p, U (2) ∈ C

n×(n+m−p), V (1) ∈ C
m×p, V (2) ∈ C

m×(n+m−p) and Λ =
diag(Ip,Λ

(2)), Λ(2) = diag(λp+1, . . . , λn+m). For any matrix E let PE = (I − EE†)
and QE = (I−E†E) be orthogonal projectors onto null(E) and null(E∗), respectively.
Then the 2-norm condition numbers κ2(XL) of XL and κ2(XU ) of XU are related by

1

α
≤

κ2(XL)

κ2(XU )
≤ α (2.8)

where, when p = 0,

α =
(

1 + β
(

1 + ‖V (2)(I − Λ(2))(U (2))†‖2)
)(

1 + β
(

1 + ‖V (2)(U (2))†‖2)
)

,

β = ‖V (2)Λ(2)‖2
(

‖(U (2))†‖2 + ‖QU(2)(V (2))∗S−1‖2
)

,

and when p ≥ 1

α =
(

1 + ‖V (1)(U (1))†‖2 + ‖F‖2β1

)(

1 + ‖V (1)(U (1))†‖2 + ‖F‖2β2

)

,

β1 = ‖G†‖2 + ‖H†
1‖2

(

1 + ‖V (2)(I − Λ(2))‖2‖G
†‖2

)

,

β2 = ‖G†‖2 + ‖H†
2‖2

(

1 + ‖V (2) − V (1)(U (1))†U (2)‖2‖G
†‖2 + ‖V (1)(U (1))†‖2

)

.

Here, F = V (2)Λ(2) − V (1)(U (1))†U (2), G = PU(1)U2, H1 = V (2)(I − Λ(2))QG, H2 =
(V (2) − V (1)(U (1))†U (2))QG and S = V (2)QU(2)(V (2))∗.

Proof. It is clear from (2.7) that XU = XL +K, where

K =

[

0 0
V (1) V (2)Λ(2)

]

.

From Ipsen [12, Corollary 3.3], we have that

σmax(XL)

σmax(XU )
≤ 1 + ‖KX−1

U ‖2 and
σmin(XU )

σmin(XL)
≤ 1 + ‖KX−1

L ‖2, (2.9)

where σmax(X) = ‖X‖2 and σmin(X) = 1/‖X−1‖2 are the largest and smallest
singular values of X. Combining these results gives

κ2(XL)

κ2(XU )
≤ (1 + ‖KX−1

U ‖2)(1 + ‖KX−1
L ‖2). (2.10)

We now obtain expressions for KX−1
L and KX−1

U , starting with the case p = 0.

Let XL,U denote XL or XU as appropriate and let Ṽ (2) = V (2) for XU and Ṽ (2) =
V (2)(I−Λ(2)) for XL. Then the inverse of XL,U is X−1

L,U = X∗
L,U (XL,UX

∗
L,U )

−1, where

XL,UX
∗
L,U =

[

In
Ṽ (2)(U (2))† Im

] [

U (2)(U (2))∗

S

] [

In (Ṽ (U (2))†)∗

Im

]
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with S = Ṽ (2)QU(2)(Ṽ (2))∗. Since C = 0, P−1
U AXU = XUΛ implies that V (2)Λ(2) =

P−1
S BU (2). Thus, V (2)Λ(2)QU(2) = 0 and S = V (2)QU(2)(V (2))∗. Straightforward

calculation then yields

KX−1
L,U =

[

0
V (2)Λ(2)

]

[

(U (2))† QU(2)(V (2))∗S−1
]

[

In 0

−Ṽ (2)(U (2))† Im

]

and the upper bounds are obtained by bounding ‖KX−1
L ‖2 and ‖KX−1

U ‖2. When
p ≥ 1 we use Theorem 2.1 in Tian and Takane [21]. Since U (1) has linearly independent
columns, QU(1) = 0, and

KX−1
L =

[

0 0
V (1) V (2)Λ(2)

] [

Ip −(U (1))†U (2)

0 In+m−p

] [

(U (1))† 0

(I −H†
1V

(2)(I − Λ(2)))G† H†
1

]

=

[

0 0

V (1)(U (1))† + F (I −H†
1V

(2)(I − Λ(2)))G† FH†
1

]

.

Similarly, letting N = V (2) − V (1)(U (1))†U (2),

KX−1
U =

[

0 0
V (1) V (2)Λ(2)

] [

Ip −(U (1))†U (2)

0 In+m−p

] [

(U (1))† 0

(I −H†
2N)G† H†

2

] [

In 0
−V (1)(U (1))† Im

]

=

[

0 0

V (1)(U (1))† + F [(I −H†
2(V

(2) − V (1)(U (1))†U (2)))G† −H†
2V

(1)(U (1))†] FH†
2

]

.

The upper bound on the condition number again follows from bounding the norms.
Then, the lower bound on the condition number is achieved by bounding κ2(XU )/κ2(XL)
from above.

Although the expressions in Corollary 4 are quite complicated, they highlight
that the difference between the condition numbers depends not only on the matrices
that vary between XL and XU , namely V (1), V (2) and V (2)(I −Λ(2)), but also on the
conditioning of U (1) and U (2). This is not surprising since U (1) and U (2) affect the
conditioning of XL and XU .

More specifically, when p = 0, α is smaller when ‖(U (2))†‖2 is small, i.e., when
U (2) is well conditioned in the sense that its smallest (nonzero) singular value is not
too small, and when the rows of V (2) are almost orthogonal to the rows of U (2), so
that ‖V (2)(U (2))†‖2 is small. Also, since QU(2)(V (2))∗S−1 is a right inverse of V (2)

we expect its norm to be large when the rows of V (2) are almost linearly dependent.
This confirms that well conditioned XL and XU and a small perturbation V (2)Λ(2)

ensure that κ2(XL) and κ2(XU ) are close.
If p > 0, α depends on ‖V (1)(U (1))†‖2, ‖F‖2, β1 and β2. The term ‖V (1)(U (1))†‖2

is small when ‖V (1)‖2 is small but the smallest singular value of U (1) is not. Addi-
tionally, ‖F‖2 is small when ‖V (2)Λ(2)‖2 and ‖V (1)‖2 are small, and the columns
of U (1) are almost orthogonal to those of U (2). If range(U (2)) ⊂ range(U (1)), then
G = 0, G† = 0, QG = I and a sufficient condition for β1 and β2 to be small is
that ‖V (2)(I − Λ(2))‖2, ‖V (2)‖2 and ‖V (1)‖2 are small. Otherwise, ‖G†‖2 is not
too large if the columns of U (1) are orthogonal to those of U (2) with U (2) well
conditioned. The terms H1 and H2 are the most difficult to analyse. Although
H1 = 0 when range((V (2)(I − λ(2)))∗) ⊂ range(G∗) and H2 = 0 when range((V (2) −
V (1)(U (1))†U (2))∗) ⊂ range(G∗), these conditions may not hold in general. Alterna-
tively, if V (1)(U (1))†U (2) is small, a condition for H1 and H2 to be well conditioned is
that V (2)(I −Λ(2)) and V (2) are well conditioned on null(U (2)). Considering all these
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Table 3.1

Left preconditioned GMRES iterations for the Stokes problem.

Grid IC AMG
PL PU PL PU

4× 12 132 135 65 65
8× 24 194 202 85 85
16× 48 313 323 89 90
32× 96 553 590 91 93

conditions together, we see that again α is small when V (1) and V (2)Λ(2) are small
in norm and XL and XU are well conditioned. We note that additional special cases
might also result in well conditioned matrices XL and XU and that Corollary 4 may
be useful for checking these.

Of course, neither XU and XL, nor their condition numbers, are uniquely defined
(see, for example, the discussion in Bai, Benzi and Chen [2, Remark 3.1]). In our
experiment we consider the eigenvector matrices for which each eigenvector has unit
norm. To this end let us fix the columns [uT

i , v
T
i ]

T , i = 1, . . . , n+m, of XU in (2.7) to
have unit length, so that ‖ui‖

2
2+‖vi‖

2
2 = 1. Then, the column scaling that transforms

XL to X̂L, an eigenvector matrix with unit-length columns, is given by the diagonal
matrix D = diag(d11, . . . , dn+m,n+m), where

d−2
ii =

{

1− ‖vi‖
2, i ≤ p,

1 + (|λi|
2 − 2ℜ(λi))‖vi‖

2, i > p.
(2.11)

3. Numerical example. In our experience with incompressible Stokes and
Navier-Stokes examples and preconditioners in IFISS [9, 19] and with time-harmonic
Maxwell equations [11] we find, similarly to [4, 7], that there is often little difference
between iteration counts achieved with P−1

L A and P−1
U A. This seems to be true re-

gardless of whether left or right preconditioning is used. However, there are certainly
examples for which the condition numbers differ as we now show.

Our linear system comes from an incompressible Stokes problem that describes a
flow over a backward facing step in two dimensions and is described in detail in Elman
et al. [10, Example 5.1.2]. The equations are discretized by Q2−Q1 finite elements in
Matlab using IFISS with default parameters. We apply left-preconditioned GMRES
with a zero initial guess and terminate when the preconditioned residual decreases by
eight orders of magnitude—although it may be desirable to consider the unprecondi-
tioned residual, the preconditioned residual is more closely connected with the theory
of Section 2. In both of our preconditioners PS is the diagonal of the pressure mass
matrix. The first choice for PA is a no-fill incomplete Cholesky (IC) factorization
(produced by the Matlab command ichol) of A0, the vector Laplace matrix obtained
with natural boundary conditions. The second is the algebraic multigrid (AMG) pre-
conditioner implemented in IFISS. The eigenvector matrix XU is computed by the
Matlab function eig while XL is computed from XU using Corollary 3. Both XL and
XU are scaled to have unit-length vectors.

We first consider the incomplete Cholesky preconditioner. The eigenvalues of
P−1
L A (and P−1

U A) lie in [−2.3,−0.046]∪ [0.19, 1.2]. Additionally, there are 20 eigen-
values within 10−14 of 1 that we assume are unit eigenvalues. The iterations for
different mesh sizes are given in Table 3.1, from which we see that the iteration
counts are consistently lower for PL than PU . For the problem on the 8×24 grid this
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Table 3.2

Condition numbers of eigenvector matrices and norms of quantities in Corollary 4 for the
problem on the 8× 24 grid and the incomplete Cholesky preconditioner.

κ2(XL) κ2(XU ) ‖V (1)‖2 ‖V (2)Λ(2)‖2 ‖V (1)(U(1))†‖2 ‖F‖2

23 54 2.1 6.4 10.6 6.5

‖G†‖2 ‖H†
1‖2 ‖H†

2‖2 ‖V (2)(I − Λ(2))‖2 ‖V (2) − V (1)(U(1))†U(2)‖2 α

6.9 3.1 3.1 4.7 6.6 α = 8.8 × 106

Table 3.3

Condition numbers of eigenvector matrices and norms of quantities in Corollary 4 for the
problem on the 8× 24 grid and the algebraic multigrid preconditioner.

κ2(XL) κ2(XU ) ‖V (2)Λ(2)‖2 ‖V (2)(U(2))†‖2 ‖V (2)(I − Λ(2))(U(2))†‖2

265 59 13.5 11.7 14.1
‖S‖2 α

1.6 α = 1.7 × 107

is reflected in the condition numbers of XL and XU (see Table 3.2). To further in-
vestigate the disparity in these condition numbers, we also list in Table 3.2 quantities
related to Corollary 4. Since ‖XL‖2 = 2.9 and ‖XU‖2 = 5.7, the perturbations V (1)

and V (2)Λ(2) are relatively large in norm. Moreover, ‖(U (1))†‖2 = 9.1, so that U1

is not so well conditioned, and as a consequence ‖V (1)(U (1))†‖2 is large. Relative to
‖V (1)(U (1))†‖2, the remaining terms in α are reasonably small and we conclude that
the most significant contributions to the difference between κ2(XL) and κ2(XU ) are
U (1) and the perturbations V (1) and V (2)Λ(2). We note that although the bounds in
Corollary 4 are not quantitatively descriptive for this problem they give insight into
why the condition numbers of XL and XU differ.

The eigenvalues of the AMG-preconditioned matrix lie in [−2.5,−0.01]∪[0.009, 58]
and no eigenvalue is within 10−14 of 1. The iteration counts appear to be mesh-
independent and are much lower than for the incomplete Cholesky preconditioner in
spite of the wider distribution of eigenvalues (see Table 3.1). Additionally, P−1

U A
and P−1

L A give similar iteration counts, with the latter performing slightly better
for larger problems. Thus, the eigenvector condition numbers are not necessarily
good predictors of convergence for this problem since, at least for the 8 × 24 grid,
κ2(XL) > κ2(XU ). Nevertheless, we can investigate why the condition numbers
differ by applying Corollary 4. Compared to ‖XL‖2 = 4.5 and ‖XU‖2 = 2.9,
‖V (2)Λ(2)‖2 and ‖(U (2))†‖2 = 20.6 are large. Consequently, ‖V (2)(U (2))†‖2 and
‖V (2)(I − Λ(2))(U (2))†‖2 are large relative to the other terms in α. From this we
deduce that the norm of (U (2))† and the size of the perturbation V (2)Λ(2) are the
main causes of the difference between κ2(XL) and κ2(XU ).

For this problem the condition number bound (2.8) overestimates κ2(XU )/κ2(XL).
We note that there are other examples for which (2.8) is tight—these are typically
problems for which κ2(XU ) and κ2(XL) are close. When the difference between the
condition numbers increases, the bound (2.8) is usually not as tight, with (2.10) over-
estimating κ2(XU )/κ2(XL) and the subsequent bounds on ‖KX−1

U ‖2 and ‖KX−1
L ‖2

then causing (2.10) to be overestimated.

4. Conclusion. In summary, when the eigenvalues are important, or when the
eigenvector matrices XL and XU are fairly well conditioned, there is no benefit in
choosing PL over PU or vice versa. (Note that since the eigenvector matrix is not
uniquely defined, the conditioning could be related to the particular choice of matrix.)
We have shown that the eigenvectors of P−1

L A and P−1
U A can differ significantly,
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and this can affect the condition numbers of the eigenvector matrices (when P−1
U A

and P−1
L A are diagonalizable). However, the convergence rate of GMRES remains

weakly sensitive to these factors for the problems examined, and for others in the the
literature. When C = 0 and P−1

L A and P−1
U A are diagonalizable, we can bound the

ratio of the condition numbers of the eigenvector matrices XL and XU , which depend
not only on difference between XL and XU , contained in V (1) and V (2)Λ(2), but also
on U (1) and U (2).
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