34,065 research outputs found

    Imide/arylene ether copolymers

    Get PDF
    Imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly(arylene ethers) in polar aprotic solvents and by chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The resulting block copolymers have one glass transition temperature or two, depending upon the particular structure and/or the compatibility of the block units. Most of these block copolymers form tough, solvent resistant films with high tensile properties

    Heparin-containing block copolymers, Part I: Surface characterization

    Get PDF
    Newly synthesized heparin-containing block copolymers, consisting of a hydrophobic block of polystyrene (PS), a hydrophilic spacer-block of poly(ethylene oxide) (PEO) and covalently bound heparin (Hep) as bioactive block, were coated on aluminium, glass, polydimethylsiloxane (PDMS), PS or Biomer substrates. Surfaces of coated materials were characterized by transmission electron microscopy (TEM), contact angle measurements and X-ray photoelectron spectroscopy for chemical analysis (XPS). It was demonstrated by TEM that thin films of PS-PEO and PS-PEO-Hep block copolymers consisted of heterogeneous microphase separated structures. Using sessile-drop and Wilhelmy plate dynamic contact angle measurements, insight was provided into the hydrophilicity of the surfaces of the coatings. Measurements with hydrated coatings of PS-PEO and PS-PEO-Hep block copolymers revealed that the surfaces became more hydrophilic during immersion in water, due to relaxation/reorientation, or swelling of PEO or PEO-Hep domains, respectively. XPS results for PS, PEO, heparin and PS-PEO as powder agreed well with qualitative and quantitative predictions. XPS results for films of PS-PEO and PS-PEO-Hep block copolymers showed enrichments of PEO in the top layers of the coatings. This effect was more pronounced for hydrated surfaces. Only small amounts of heparin were detected at the surface of coatings of PS-PEO-Hep block copolymers

    Synthesis, thermal behavior, and aggregation in aqueous solution of poly(methyl methacrylate)-b-poly(2-hydroxyethyl methacrylate)

    Get PDF
    Indexación: ScieloABSTRACT Amphiphilic block copolymers of poly(methyl methacrylate) PMMA and poly(2-hidroxyethyl methacrylate) PHEMA were synthesized by a two-step atom transfer radical polymerization (ATRP). Copolymers with various degrees of polymerization and different relative block sizes were obtained. The structure of the resulting polymers have been characterized and verified by FT-IR and 1H-NMR, molecular weight were determined by size exclusion chromatography analyses. The thermal properties of these polymers were investigated by differential scanning calorimetry DSC and thermogravimetric analysis TGA. The glass transition temperature of mono halogenated PMMA increases from 116 °C to 123 °C with increasing molecular weight, whereas the glass transition temperature of block copolymers depends slightly on polymer structure. The derivatives of TGA curves indicate that thermal degradation occurs in one stage. The self-assembly of PMMA-b-PHEMA in aqueous solution have been investigated by fluorescence probing methods. The critical micelle concentrations are in the range 10-6 - 10-7 M. The micropolarity sensed by pyrene is higher than in aggregates formed by block copolymers based on polystyrene. Keywords: Block copolymers, glass transition temperature, thermogravimetric analysis, critical micelle concentration, fluorescence probing methods

    Orienting Ion-Containing Block Copolymers Using AC Electric Field

    Full text link
    We consider orientation mechanisms for block copolymers in an electric field. Theoretical and experimental studies have shown that nonuniformity of the dielectric constant gives rise to a preferred orientation of the melt with respect to the applied field. We show that the presence of ions, as found in anionically prepared copolymers, may increase the alignment effect markedly. Time-varying (ac) and static (dc) fields are considered within a unified framework. We find that orientation of block copolymers can in principle be achieved without a dielectric contrast if there is a mobility contrast. The presence of ions is especially important at small field frequencies, as is in most experiments. Unlike the no-ions case, it is found that orienting forces depend on the polymer chain lengths. The mobile-ions mechanism suggested here can be used to reduce the magnitude of orienting fields as well as to discriminate between block copolymers of different lengths.Comment: 8 pages, 2 figure

    Stereo block copolymers of L- and D-lactides

    Get PDF
    Sequential diblock copolymers composed of L- and D-lactic acid residues were synthesized through a living ring-opening polymerization of L- and D-lactide initiated by aluminium tris(2-propanolate). The composition of the block copolymers was varied by changing the reaction conditions and monomer over initiator ratio and confirmed by 1H NMR analysis, molecular weight determination and optical rotation measurements. Molecular weights ranged from 1,3 to 2,0 · 104 with 1,2 < Mw/Mn < 1,4. Stereocomplex formation in all block copolymers was determined using differential scanning calorimetry showing melting temperatures of about 205°C

    Density Functional Theory for Block Copolymer Melts and Blends

    Full text link
    We derive an expression for the free energy of the blends of block copolymers expressed as a functional of the density distribution of the monomer of each block. The expression is a generalization of the Flory-Huggins-de Gennes theory for homo polymer blends, and also a generalization of the Ohta-Kawasaki theory for the melts of diblock copolymers. The expression can be used for any blends of homopolymers and block copolymers of any topological structure. The expression gives a fast and stable computational method to calculate the micro and macro phase separation of the blends of homopolymers and block copolymers.Comment: 25 pages, 9 figures, will appear in Macromolecule

    Synthesis of Fluorine-18 Functionalized Nanoparticles for use as in vivo Molecular Imaging Agents

    Get PDF
    Nanoparticles containing fluorine-18 were prepared from block copolymers made by ring opening metathesis polymerization (ROMP). Using the fast initiating ruthenium metathesis catalyst (H_2IMes)(pyr)_2(Cl)_2Ru=CHPh, low polydispersity amphiphilic block copolymers were prepared from a cinnamoyl-containing hydrophobic norbornene monomer and a mesyl-terminated PEG-containing hydrophilic norbornene monomer. Self-assembly into micelles and subsequent cross-linking of the micelle cores by light-activated dimerization of the cinnamoyl groups yielded stable nanoparticles. Incorporation of fluorine-18 was achieved by nucleophilic displacement of the mesylates by the radioactive fluoride ion with 31% incorporation of radioactivity. The resulting positron-emitting nanoparticles are to be used as in vivo molecular imaging agents for use in tumor imaging

    Efficient Synthesis of Narrowly Dispersed Brush Copolymers and Study of Their Assemblies: The Importance of Side Chain Arrangement

    Get PDF
    Efficient, one-pot preparation of synthetically challenging, high molecular weight (MW), narrowly dispersed brush block copolymers and random copolymers in high conversions was achieved by ring-opening metathesis (co)polymerization (ROMP) of various macromonomers (MMs) using the highly active, fast-initiating ruthenium olefin metathesis catalyst (H_2IMes)(pyr)_2(Cl)_2RuCHPh. A series of random and block copolymers were prepared from a pair of MMs containing polylactide (PLA) and poly(n-butyl acrylate) (PnBA) side chains at similar MWs. Their self-assembly in the melt state was studied by small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM). In brush random copolymers containing approximately equal volume fractions of PLA and PnBA, the side chains segregate into lamellae with domain spacing of 14 nm as measured by SAXS, which was in good agreement with the lamellar thickness measured by AFM. The domain spacings and order−disorder transition temperatures of brush random copolymers were insensitive to the backbone length. In contrast, brush block copolymers containing approximately equal volume fractions of these MMs self-assembled into highly ordered lamellae with domain spacing over 100 nm. Their assemblies suggested that the brush block copolymer backbone adopted an extended conformation in the ordered state

    On the crystallization behavior of syndiotactic-b-atactic polystyrene stereodiblock copolymers, atactic/syndiotactic polystyrene blends, and aPS/sPS blends modified with sPS-b-aPS

    No full text
    International audienceCrystallization and morphological features of syndiotactic-b-atactic polystyrene stereodiblock copolymers (sPS-b-aPS), atactic/syndiotactic polystyrene blends (aPS/sPS), and aPS/sPS blends modified with sPS-b-aPS, with different compositions in aPS and sPS, have been investigated using differential scanning calorimetry (DSC), polarized light optical microscopy (POM) and wide angle X-ray diffraction (WAXRD) techniques. For comparative purposes, the properties of parent pristine sPS samples were also studied. WAXRD analyses revealed for all the samples, independently from their composition (aPS/sPS ratio) and structure (blends, block copolymers, blends modified with block copolymers), the same polymorphic β form of sPS. The molecular weight of aPS and sPS showed opposite effects on the crystallization of 50:50 aPS/sPS blends: the lower the molecular weight of aPS, the slower the crystallization while the lower the molecular weight of sPS, the faster the crystallization. DSC studies performed under both isothermal and non-isothermal conditions, independently confirmed by POM studies, led to a clear trend for the crystallization rate at a given sPS/aPS ratio (ca. 50:50 and 20:80): sPS homopolymers > sPS-b-aPS block copolymers ∼sPS/aPS blends modified with sPS-b-aPS copolymers > sPS/aPS blends. Interestingly, sPS-b-aPS block copolymers not only crystallized faster than blends, but also affected positively the crystallization behavior of blends. At 50:50 sPS/aPS ratio, blends (Blend-2), block copolymers (Cop-1) and blends modified with block copolymers (Blend-2-mod) crystallized via spherulitic crystalline growth controlled by an interfacial process. In all cases, an instantaneous nucleation was observed. The density of nuclei in block copolymers (160,000−190,000 nuclei mm−3) was always higher than that in blends and modified blends (30,000−60,000 nuclei mm−3), even for quite different sPS/aPS ratio. At 20:80 sPS/aPS ratio, the block copolymers (Cop-2) preserved the same crystallization mechanism than at 45:55 ratio (Cop-1). On the other hand, the 20:80 sPS/aPS blend (Blend-4) and blend modified with block copolymers (Blend-4-mod) showed a spinodal decomposition
    • …
    corecore