12 research outputs found

    Eliminating Variables in Boolean Equation Systems

    Get PDF
    Systems of Boolean equations of low degree arise in a natural way when analyzing block ciphers. The cipher's round functions relate the secret key to auxiliary variables that are introduced by each successive round. In algebraic cryptanalysis, the attacker attempts to solve the resulting equation system in order to extract the secret key. In this paper we study algorithms for eliminating the auxiliary variables from these systems of Boolean equations. It is known that elimination of variables in general increases the degree of the equations involved. In order to contain computational complexity and storage complexity, we present two new algorithms for performing elimination while bounding the degree at 33, which is the lowest possible for elimination. Further we show that the new algorithms are related to the well known \emph{XL} algorithm. We apply the algorithms to a downscaled version of the LowMC cipher and to a toy cipher based on the Prince cipher, and report on experimental results pertaining to these examples.Comment: 21 pages, 3 figures, Journal pape

    Computational and Algebraic Aspects of the Advanced Encryption Standard

    Get PDF
    Abstract. The new Advanced Encryption Standard (AES) has been recently selected by the US government to replace the old Data Encryption Standard (DES) for protecting sensitive official information. Due to its simplicity and elegant algebraic structure, the choice of the AES algorithm has motivated the study of a new approach to the analysis of block ciphers. While conventional methods of cryptanalysis (e.g. differential and linear cryptanalysis) are usually based on a “statistical ” approach, where an attacker attempts to construct statistical patterns through many interactions of the cipher, the so-called algebraic attacks exploit the intrinsic algebraic structure of a cipher. More specifically, the attacker expresses the encryption transformation as a set of multivariate polynomial equations and attempts to recover the encryption key by solving the system. In this paper we consider a number of algebraic aspects of the AES, and examine a few computational and algebraic techniques that could be used in the cryptanalysis of cipher. We show how one can express the cipher as a very large, though surprisingly simple, system of multivariate quadratic equations over the finite field F 2 8, and consider some approaches that can be used to solve this system

    Error-Tolerant Algebraic Side-Channel Attacks Using BEE

    Get PDF
    Algebraic side-channel attacks are a type of side-channel analysis which can recover the secret information with a small number of samples (e.g., power traces). However, this type of side-channel analysis is sensitive to measurement errors which may make the attacks fail. In this paper, we propose a new method of algebraic side-channel attacks which considers noisy leakages as integers restricted to intervls and finds out the secret information with a constraint programming solver named BEE. To demonstrate the efficiency of this new method in algebraic side-channel attacks, we analyze some popular implementations of block ciphers---PRESENT, AES, and SIMON under the Hamming weight or Hamming distance leakage model. For AES, our method requires the least leakages compared with existing works under the same error model. For both PRESENT and SIMON, we provide the first analytical results of them under algebraic side-channel attacks in the presence of errors. To further demonstrate the wide applicability of this new method, we also extend it to cold boot attacks. In the cold boot attacks against AES, our method increases the success rate by over 25%25\% than previous works

    Advanced Algebraic Attack on Trivium

    Get PDF
    This paper presents an algebraic attack against Trivium that breaks 625 rounds using only 40964096 bits of output in an overall time complexity of 242.22^{42.2} Trivium computations. While other attacks can do better in terms of rounds (799799), this is a practical attack with a very low data usage (down from 2402^{40} output bits) and low computation time (down from 2622^{62}). From another angle, our attack can be seen as a proof of concept: how far can algebraic attacks can be pushed when several known techniques are combined into one implementation? All attacks have been fully implemented and tested; our figures are therefore not the result of any potentially error-prone extrapolation, but results of practical experiments

    Variable Elimination - a Tool for Algebraic Cryptanalysis

    Get PDF
    Techniques for eliminating variables from a system of nonlinear equations are used to find solutions of the system. We discuss how these methods can be used to attack certain types of symmetric block ciphers, by solving sets of equations arising from known plain text attacks. The systems of equations corresponding to these block ciphers have the characteristics that the solution is determined by a small subset of the variables (i.e., the secret key), and also that it is known that there always exists at least one solution (again corresponding to the key which is actually used in the encryption). It turns out that some toy ciphers can be solved simpler than anticipated by this method, and that the method can take advantage of overdetermined systems

    D.STVL.7 - Algebraic cryptanalysis of symmetric primitives

    Get PDF
    The recent development of algebraic attacks can be considered an important breakthrough in the analysis of symmetric primitives; these are powerful techniques that apply to both block and stream ciphers (and potentially hash functions). The basic principle of these techniques goes back to Shannon's work: they consist in expressing the whole cryptographic algorithm as a large system of multivariate algebraic equations (typically over F2), which can be solved to recover the secret key. Efficient algorithms for solving such algebraic systems are therefore the essential ingredients of algebraic attacks. Algebraic cryptanalysis against symmetric primitives has recently received much attention from the cryptographic community, particularly after it was proposed against some LFSR- based stream ciphers and against the AES and Serpent block ciphers. This is currently a very active area of research. In this report we discuss the basic principles of algebraic cryptanalysis of stream ciphers and block ciphers, and review the latest developments in the field. We give an overview of the construction of such attacks against both types of primitives, and recall the main algorithms for solving algebraic systems. Finally we discuss future research directions

    Enhancing Electromagnetic Side-Channel Analysis in an Operational Environment

    Get PDF
    Side-channel attacks exploit the unintentional emissions from cryptographic devices to determine the secret encryption key. This research identifies methods to make attacks demonstrated in an academic environment more operationally relevant. Algebraic cryptanalysis is used to reconcile redundant information extracted from side-channel attacks on the AES key schedule. A novel thresholding technique is used to select key byte guesses for a satisfiability solver resulting in a 97.5% success rate despite failing for 100% of attacks using standard methods. Two techniques are developed to compensate for differences in emissions from training and test devices dramatically improving the effectiveness of cross device template attacks. Mean and variance normalization improves same part number attack success rates from 65.1% to 100%, and increases the number of locations an attack can be performed by 226%. When normalization is combined with a novel technique to identify and filter signals in collected traces not related to the encryption operation, the number of traces required to perform a successful attack is reduced by 85.8% on average. Finally, software-defined radios are shown to be an effective low-cost method for collecting side-channel emissions in real-time, eliminating the need to modify or profile the target encryption device to gain precise timing information

    Algebraic Cryptanalysis of Deterministic Symmetric Encryption

    Get PDF
    Deterministic symmetric encryption is widely used in many cryptographic applications. The security of deterministic block and stream ciphers is evaluated using cryptanalysis. Cryptanalysis is divided into two main categories: statistical cryptanalysis and algebraic cryptanalysis. Statistical cryptanalysis is a powerful tool for evaluating the security but it often requires a large number of plaintext/ciphertext pairs which is not always available in real life scenario. Algebraic cryptanalysis requires a smaller number of plaintext/ciphertext pairs but the attacks are often underestimated compared to statistical methods. In algebraic cryptanalysis, we consider a polynomial system representing the cipher and a solution of this system reveals the secret key used in the encryption. The contribution of this thesis is twofold. Firstly, we evaluate the performance of existing algebraic techniques with respect to number of plaintext/ciphertext pairs and their selection. We introduce a new strategy for selection of samples. We build this strategy based on cube attacks, which is a well-known technique in algebraic cryptanalysis. We use cube attacks as a fast heuristic to determine sets of plaintexts for which standard algebraic methods, such as Groebner basis techniques or SAT solvers, are more efficient. Secondly, we develop a~new technique for algebraic cryptanalysis which allows us to speed-up existing Groebner basis techniques. This is achieved by efficient finding special polynomials called mutants. Using these mutants in Groebner basis computations and SAT solvers reduces the computational cost to solve the system. Hence, both our methods are designed as tools for building polynomial system representing a cipher. Both tools can be combined and they lead to a significant speedup, even for very simple algebraic solvers

    Design of Stream Ciphers and Cryptographic Properties of Nonlinear Functions

    Get PDF
    Block and stream ciphers are widely used to protect the privacy of digital information. A variety of attacks against block and stream ciphers exist; the most recent being the algebraic attacks. These attacks reduce the cipher to a simple algebraic system which can be solved by known algebraic techniques. These attacks have been very successful against a variety of stream ciphers and major efforts (for example eSTREAM project) are underway to design and analyze new stream ciphers. These attacks have also raised some concerns about the security of popular block ciphers. In this thesis, apart from designing new stream ciphers, we focus on analyzing popular nonlinear transformations (Boolean functions and S-boxes) used in block and stream ciphers for various cryptographic properties, in particular their resistance against algebraic attacks. The main contribution of this work is the design of two new stream ciphers and a thorough analysis of the algebraic immunity of Boolean functions and S-boxes based on power mappings. First we present WG, a family of new stream ciphers designed to obtain a keystream with guaranteed randomness properties. We show how to obtain a mathematical description of a WG stream cipher for the desired randomness properties and security level, and then how to translate this description into a practical hardware design. Next we describe the design of a new RC4-like stream cipher suitable for high speed software applications. The design is compared with original RC4 stream cipher for both security and speed. The second part of this thesis closely examines the algebraic immunity of Boolean functions and S-boxes based on power mappings. We derive meaningful upper bounds on the algebraic immunity of cryptographically significant Boolean power functions and show that for large input sizes these functions have very low algebraic immunity. To analyze the algebraic immunity of S-boxes based on power mappings, we focus on calculating the bi-affine and quadratic equations they satisfy. We present two very efficient algorithms for this purpose and give new S-box constructions that guarantee zero bi-affine and quadratic equations. We also examine these S-boxes for their resistance against linear and differential attacks and provide a list of S-boxes based on power mappings that offer high resistance against linear, differential, and algebraic attacks. Finally we investigate the algebraic structure of S-boxes used in AES and DES by deriving their equivalent algebraic descriptions
    corecore