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Abstract

Deterministic symmetric encryption is widely used in many cryptographic applications.
The security of deterministic block and stream ciphers is evaluated using cryptanaly-
sis. Cryptanalysis is divided into two main categories: statistical cryptanalysis and
algebraic cryptanalysis. Statistical cryptanalysis is a powerful tool for evaluating the
security but it often requires a large number of plaintext/ciphertext pairs which is not
always available in real life scenario. Algebraic cryptanalysis requires a smaller number
of plaintext/ciphertext pairs but the attacks are often underestimated compared to statis-
tical methods. In algebraic cryptanalysis, we consider a polynomial system representing
the cipher and a solution of this system reveals the secret key used in the encryption.
The contribution of this thesis is twofold.
Firstly, we evaluate the performance of existing algebraic techniques with respect to
number of plaintext/ciphertext pairs and their selection. We introduce a new strategy
for selection of samples. We build this strategy based on cube attacks, which is a well-
known technique in algebraic cryptanalysis. We use cube attacks as a fast heuristic to
determine sets of plaintexts for which standard algebraic methods, such as Gröbner ba-
sis techniques or SAT solvers, are more efficient.
Secondly, we develop a new technique for algebraic cryptanalysis which allows us to
speed-up existing Gröbner basis techniques. This is achieved by efficient finding spe-
cial polynomials called mutants. Using these mutants in Gröbner basis computations
and SAT solvers reduces the computational cost to solve the system.
Hence, both our methods are designed as tools for building polynomial system repre-
senting a cipher. Both tools can be combined and they lead to a significant speedup,
even for very simple algebraic solvers.

keywords: algebraic cryptanalysis, symmetric encryption, KATAN32, LBlock, SIMON,
cube attacks, selection of samples
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Résumé

De nombreuses applications cryptographiques utilisent le chiffrement symétrique déter-
ministe : le chiffrement par bloc et le chiffrement par flot. On évalue leur sécurité à
l’aide de la cryptanalyse. Celle-ci est divisée en deux catégories principales : la crypt-
analyse statistique et la cryptanalyse algébrique. La cryptanalyse statistique est un outil
puissant qui permet d’évaluer la sécurité mais qui requiert souvent un grand nombre
de couples de messages en clair et chiffrés ce qui n’est pas toujours faisable dans un
scénario réaliste. La cryptanalyse algébrique requiert moins de couples, mais ces at-
taques sont souvent sous-estimées par rapport aux méthodes statistiques. En cryptanal-
yse algébrique, nous considérons un système d’équations polynomiales qui représente
le système de chiffrement. La clé secrète utilisée pour le chiffrement est solution de ce
système d’équations polynomiales.
Les contributions de cette thèse sont doubles. Tout d’abord, nous évaluons les perfor-
mances des méthodes algébriques existantes par rapport à la quantité de couples néces-
saires à l’attaque. Nous étudions aussi la façon de choisir ces couples et proposons
une nouvelle stratégie. Nous basons cette stratégie sur les attaques dites cube attacks
qui sont une technique très connue en cryptanalyse algébrique. Nous utilisons ces cube
attacks afin de trouver rapidement des ensembles de textes clairs pour lesquels des méth-
odes algébriques standards, comme le calcul de bases de Gröbner ou les SAT-solveurs,
sont plus efficaces.
Deuxièmement, nous développons une nouvelle technique en cryptanalyse algébrique
qui nous permet d’accélérer le calcul de bases de Gröbner. Nous arrivons à ce résultat
en trouvant de façon efficace des polynômes mutants, un type spécial de polynôme.
L’utilisation de ces polynômes mutants dans le calcul de bases de Gröbner ou dans un
SAT-solveur permet de réduire la complexité temps de ces algorithmes.
Nos deux méthodes sont conçues sous la forme d’outils qui permettent de construire un
système d’équations polynomiales qui représente le chiffrement. Ces deux outils peu-
vent être combinés et permettent un gain de temps significatif, même pour des solveurs
algébriques simples.
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Mots-clés: cryptanalyse algébrique, chiffrement symétrique, KATAN, LBlock, SIMON,
cube attacks, choix d’échantillons
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1
Introduction to cryptography

The word “cryptography” is derived from Greek kryptos [kryptós] which means
“hidden, secret” and grafein [graphein] which means writing. Its focus is to study
techniques for secure communication in hostile enviroment. Cryptography is divided
into two principal categories: symmetric and asymmetric cryptography. In the symmet-
ric setting, both the sender and the receiver share the same secret key κ. Meanwhile in
asymmetric cryptography, the receiver has a private key and also publishes a public key
which is the same for everyone who wishes to communicate with him.

In this thesis, we focus on symmetric setting where Alice and Bob communicate and
Eve is trying to decrypt the communication as in Figure 1.1.

Alice encryptionκ channel decryptionκ

Eve

Bob
ciphertext ciphertext

Figure 1.1: Secure communication

In 1883, Kerckhoffs stated six design principles for ciphers [Ker83]. The most famous
one is: “It should not require secrecy, and it should not be a problem if it falls into en-
emy hands.” It was reformulated in 1945 by Shannon in [Sha49] as “one ought to design
systems under the assumption that the enemy will immediately gain full familiarity with
them”. Hence, the secrecy should only apply to the secret key. We follow the Kerck-
hoffs’ priniciple and assume that Eve knows the encryption and decryption algorithms
but not κ. Moreover, we often allow her to query some encryptionκ and decryptionκ
black boxes before she observes the ciphertext. Typically, she collects some plaintex-
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t/ciphertext pairs, finds key κ which is consistent with the samples and decrypts the
ciphertext with κ. In what follows, we formalize the possible attack scenarios.

known plaintext attack. In this scenario, Eve gets access to plaintext-ciphertext pairs
which are being transmitted. In practice, Eve can observe a predictable commu-
nication such as encrypted headers.

chosen plaintext attack. In this scenario, we assume Eve gets access to an encryption
oracle. Hence, she can select plaintexts which would be encrypted. Obviously,
Eve is more powerful in this scenario than in the previous case. In practice, it
can be for instance a “visitor” of an unlocked unattended office. In the case of
contactless wireless devices, it can be a fellow passenger of public transport who
performs queries with our credit card or RFID chip which we use as an electronic
door key.

chosen ciphertext attack. In this scenario, we assume Eve gets access to an decryption
oracle and she can select ciphertexts for decryption. Attacks in chosen plaintext
scenarios are often possible in chosen ciphertext scenario as well. In practice, we
can consider a USB token which performs the encryption and decryption and Eve
gains access to this device over a lunch break or a weekend.

ciphertext only attack. In this scenario, Eve gets access only to ciphertexts which are
being transmitted.

In this thesis, we concentrate on deterministic symmetric encryption. The deterministic
encryption refers to the fact that multiple encryptions of the same plaintext under the
same secret key always leads to the same ciphertext. For instance, we consider block
ciphers. A block cipher is a pair of algorithms (encryptionκ,decryptionκ) both accepting
two inputs: plaintext/ciphertext of mln bits and a key of kln bits. For example in 1977,
Data Encryption Standard (DES) [Des77] was proposed as a standard for a protection
of sensitive unclassified documents. In symmetric cryptography, we often use statistical
methods to evaluate the security of a cipher or another primitive. The most prominent
among statistical methods are linear and differential cryptanalysis. In linear cryptanaly-
sis, we look for affine approximation of the cipher. It was first used in cryptanalysis
of FEAL [MY92, OA94] and later, it was applied on DES [Mat93]. In differential
cryptanalysis, we study how differences in plaintexts affect differences in ciphertexts.
Then, observing the desired output difference (between two chosen or known plain-
texts) suggests possible key values. The original design of DES was slightly modified
in 1976 after consultation with NSA. The modification strenghten DES against differ-
ential cryptanalysis but weakened it against brute-force attacks. In 1991, Biham and
Shamir showed DES can be broken with differential cryptanalysis [BS91] and in 1993,
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Introduction to cryptography

Matsui showed DES can be broken with linear cryptanalysis [Mat93]. Later in 1998, an
international non-profit organization Electronic Frontier Foundation built DES cracker
(Deep Crack) and showed DES can be broken in 56 hours using brute force attack.
Following these results, NIST announced in 1997 a competition for a new encryption
standard. In 2000, NIST announced the winner Rijndael of AES competition [DR02]
and the AES standard was later published in [FIP01].

In cryptanalysis, statistical techniques are well explored and so far, they account for
much greater success than algebraic cryptanalysis. However, they usually lead to a high
data complexity and therefore, they are not well-suited for scenario where the attacker
has limited access to our cryptographic device. Conversely, algebraic attacks can be
successful even if the attacker has a limited access to an encryption/decryption device.

Algebraic cryptanalysis was considered as a tool for evaluation of security for a long
time. In 1959, Shannon stated the following: “if we could show that solving a certain
system requires at least as much work as solving a system of simultaneous equations
in a large number of unknowns, of a complex type, then we would have a lower bound
of sorts for the work characteristic”. In algebraic cryptanalysis, we model a cipher as
a polynomial system with special variables corresponding to plaintext, ciphertext and
key. We set plaintext-ciphertext pairs according to queries to an encryption/decryption
oracle and we solve the system. This gives us the secret key. This problem can be
mapped to a well-known NP-complete problem called “MQ”. The “MQ” takes as an
input a multivariate polynomial system over F2 and the task is to decide if it has a so-
lution/find a solution in F2. In 2002, advances in the XL algorithm and the XSL method
led to over-optimistic assumptions about strength of algebraic cryptanalysis. It was as-
sumed that AES is vulnerable to algebraic attacks [Sei02]. However up to now, the AES
algorithm is considered secure and the initial glorification and subsequent failures of al-
gebraic attacks inhibited the research in algebraic cryptanalysis in symmetric setting.
The XL algorithm and XSL method belong to a wider family of algebraic tools which
we will refer to as Gröbner basis techniques. These techniques have been well explored
by Faugère in the F4 and F5 algorithms and in the subsequent sparse Gröbner basis
algorithm [FSS14]. Another important tool of algebraic cryptanalysis are SAT solvers.
In this case, we model a cipher as a boolean formula where we set the plaintext and ci-
phertext accordingly. We know that such formula is satisfiable and we use SAT solvers
to find a satisfying assignment. In complexity theory, we refer to the “SAT” problem
which is also NP-complete. “SAT” takes as an input a boolean formula and returns
the satisfying assignment if this formula is satisfiable or empty set if it is not. To our
knowledge, the SAT solvers were introduced into algebraic cryptography in [MM00].
Unlike the Gröbner basis techniques which are deterministic, SAT solvers usually rely
on heuristics to find the satisfying assignment.
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The algebraic cryptanalysis has already brought about several important results. Many
schemes cryptanalysed by these techniques come from public key cryptography, as their
algebraic structure is well suited for algebraic attacks. Several results about HFE can
be found in [Cou01, Cou04b, DSW08, DH11], Broadcast NTRU in [DPD12], MQQ
cryptosystem in [MDBW09, FØPG10] and other multivariate public key cryptosys-
tems [DHN+07]. In the symmetric setting, the algebraic cryptanalysis builds on the
work [CM03, Cou03, Cou04a]. In later years, the stream cipher LILI was analysed in
[AHDHS07] and Dragon-based cryptosystems were analysed in [BBD+10]. Moreover,
the cipher KeeLoq which is used in electronic door control system of cars (such as
Toyota, Honda, Chrysler, Volkswagen, etc.) was analysed in [CBW08]. Furthermore,
algebraic analysis of DES was given in [CB07]. Later development in algebraic tech-
niques led to AIDA/Cube attacks [Vie07, DS09a]. The cube attack is applied against
any tweakable blackbox polynomial. This blackbox polynomial represents a circuit to
compute an output bit of a cipher. The tweakable polynomial means that we can select
plaintexts and encryption keys. The blackbox polynomial is partially reconstructed by
observing relations among inputs and outputs of the blackbox polynomial and we use
this partial reconstruction in the online phase. The cube attacks are rarely successfull, as
it is computationally expensive to find a good cube - set of plaintexts - which allows the
attacker to find simple relations among key bits. The original cube attack was finding
a cube producing a linear relation. The restriction was very significant. It speeds up the
precomputation phase but it severly reduces the number of polynomials we can find. A
cube attack leading to non-linear relations was explored in [ALRSS11]. An alternative
approach for extension of cube attacks was considered in [DS11]. The authors tweaked
a definition of a cube to reflect the behavioral of a cipher in first few rounds. They
defined a so called “dynamic cube attack” which was used against the full version of
Grain-128 [DS11].

About this dissertation

This dissertation consists of three chapters which follow an introduction to algebraic
cryptanalysis. These chapters are based on publications related to algebraic cryptanaly-
sis. The last chapter also contains some currently unpublished work. In our work, we
focus on algebraic cryptanalysis of symmetric deterministic ciphers.

In Chapter 3, we consider a fundamental algorithm of algebraic cryptanalysis called
ElimLin. This algorithm is used to simplify a polynomial system. However, the speci-
fication of the algorithm allows us to make choices which may lead to a more optimal
algorithm with respect to both time and memory complexity. In this chapter, we show
that results of ElimLin algorithm are invariant with respect to choices made during the
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Introduction to cryptography

algorithm.

In Chapter 4, we consider a new strategy for selection of samples for ElimLin algorithm.
We give an optimized version of ElimLin algorithm (which can handle large number of
samples more efficiently than previously available tools). Then, we demonstrate the
strength of our selection strategy by breaking reduced round versions of selected ci-
phers with significantly lower complexity than what was previously achieved by a more
sophisticated algebraic methods.

In Chapter 5, we develop a new technique in algebraic cryptanalysis which allows to
further speed up the computation of ElimLin and more advanced algebraic tools. We
suggest several new algorithms called Universal Proning, Mutant Proning and Iterative
Proning. We show relations of these algorithms to standard tools in algebraic crypt-
analysis. In real life cryptanalysis, we use heuristic versions of these algorithms which
significantly improves the computational requirements. However, we need to verify the
correctness of their results. Our Iterative Proning algorithm can be seen as a hybrid be-
tween two main techniques of algebraic cryptanalysis: Gröbner basis methods and SAT
solvers.

Besides the research in algebraic cryptanalysis, my research included work on WEP, the
cryptanalysis of ARX schemes and the design and analysis of cryptographic primitive
ARMADILLO. These results are not part of this dissertation.

My publications

• ARMADILLO: a Multi-Purpose Cryptographic Primitive Dedicated to Hardware
[BDN+10] presented at CHES’10.

• Fast Key Recovery Attack on ARMADILLO1 and Variants [SSV11] presented at
CARDIS’11.

• Multipurpose Cryptographic Primitive ARMADILLO3 [SV13] presented at
CARDIS’12.

• ElimLin Algorithm Revisited [CSSV12] presented at FSE’12 and part of Chap-
ter 3 and in Chapter 4.

• Smashing WEP in A Passive Attack [SSVV13] presented at FSE’13.

• Tuple cryptanalysis of ARX with application to BLAKE and Skein [ALM+11]
presented at ECRYPT II Hash Workshop.
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• On Selection of Samples in Algebraic Attacks and a New Technique to Find Hid-
den Low Degree Equations [SSV14] presented at ACISP’14 and part of Chapter 4
and Chapter 5.

• Combined Algebraic and Truncated Differential Cryptanalysis on Reduced-round
Simon [CMS+14] presented at SECRYPT2014 and part of Chapter 4.
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2
Introduction to algebraic cryptanalysis

We now describe methods of algebraic cryptanalysis in more details. An algebraic
attack can be divided into two steps: building a polynomial system and solving it. In the
following paragraphs, we elaborate on both parts and relate them to our contributions in
Chapter 3, Chapter 4 and Chapter 5.

2.1 Algebraic Representation of cryptographic primi-
tive

Building an algebraic system. In algebraic cryptanalysis, we usually build a polyno-
mial system representing a cipher by encoding an algorithm into a set of multivariate
polynomials over a boolean ring. Each variable of such system represents a state-bit
of the algorithm. Then, variables which correspond to state-bits from the initial round
are set according to values of the plaintext and similarly, variables which correspond to
state-bits from the last round are set according to the values of the ciphertext. Follow-
ing this approach, we can build a polynomial system for a single or multiple plaintext-
ciphertext pairs. This approach is described many times in existing literature, see for
instance [BD03].

In Chapter 5, we give an alternative view on building the polynomial system using a new
algorithm called Universal Proning. Afterwards, we derive a technique called Mutant
Proning. This technique is designed to find so called “mutant” polynomials which are
“interesting” polynomials when computing mXL. Finally, we extend Mutant Proning and
suggest a new algorithm to build polynomial system called Iterative Proning, which is
designed to mimic all step of mXL.

7



2.2 Tools for algebraic cryptanalysis

The polynomial system corresponds to a cipher and some plaintext/ciphertext pairs.
We have two fundamentally different techniques to solve it: Gröbner basis based algo-
rithms and SAT solvers. In the case of Gröbner basis, we perform arithmetic operations
to transform polynomial system into another with the same set of solutions. I.e, these
polynomials define an ideal and we work on finding a reduced representation of the
the ideal. Typically, we find polynomials of form ki−κi where ki is a variable repre-
senting a key bit and κi is 0 or 1, in addition to the equations defining the cipher. One
example of reduced representation is a (well-chosen) Gröbner basis. The Gröbner basis
can be computed using F4 [Fau99]/F5 [Jea02] algorithm and its alternatives such as XL,
mXL, mXL2 [MMDB08] and mXL3 [MCD+09]. The mXL3 algorithm was shown to be
equivalent (but slower) to F4 in [ACFP11]. Additionaly, we consider ad-hoc tools for
computation of Gröbner basis such as the XSL method [CP02], where we mimic XL
algorithm but we try to reduce memory requirements. The analysis of XSL was given in
[CL05, CYK09, LK07]. In our analysis, we focus on the ElimLin algorithm [BCN+10]
which is used by all methods above. Hence, understanding its limitations and improve-
ments is crutial for further advances of more sophisticated algorithms. Alternative tech-
nique to solve polynomial system is based on SAT solvers. This can be seen as guessing
a partial solution, and for each guess, we verify if it was consistent with the system. If
it is not consistent, we try to learn new formulas from incorrect guesses, in order not to
repeat the same incorrect guess. Both these strategies are discussed below.

2.2.1 Buchberger’s algorithm

The Buchberger’s algorithm [Buc06] is a method to transform a set of polynomials into
a list of polynomials generating the same ideal, and such that it is ordered according to
some monomial ordering, i.e, a Gröbner basis. The algorithm can be seen as a gener-
alization of the Euclid algorithm and the Gauss elimination. The algorithm takes as an
input a set of polynomials F over a polynomial ring R and it outputs G such that they
span the same ideal. Furthermore, the list of polynomials G is ordered according to
prescribed ordering.

Definition 1 (Monomial ordering). Monomial ordering on F2[V ] is a relation≺ on Z|V |+

that satisfies:

1. The relation ≺ is a total ordering.

2. If α≺ β and β ∈ Z|V |+ then α+ γ≺ β+ γ

3. The relation≺ is a well-ordering, i.e, every nonempty subset of Z|V |+ has a smallest
element.

8



Introduction to algebraic cryptanalysis

We have a natural bijection (a1, . . . ,an)←→ xa1
1 . . .xan

n . Hence, ≺ is actually a relation
on F|V |2 .
For x ∈V , a,b ∈ N, we recall some typical monomial orderings:

Lexicographic (lex): xa ≺ xb⇔∃ 0≤ i≺ n : a0 = b0, . . . ,ai−1 = bi−1,ai < bi

Degree reverse lexicographic (degrevlex): Let deg(xa) = a0 + · · ·+an−1, then

xa ≺ xb⇐⇒deg(xa)< deg(xb) or

deg(xa) = deg(xb) and ∃i 0≤ i < n such that

an−1 = bn−1, . . . ,ai+1 = bi+1,ai > bi

Additionally, we combine this monomial ordering into a product ordering. For x =

(x0, . . . ,xn−1) and y = (y0, . . . ,ym−1) where ≺1 and ≺2 are monomial orderings, we
define product ordering (≺1,≺2) which we now denote ≺. We say xayb ≺ xAyB ⇔
xa ≺1 xA or xa = xA and yb ≺2 yB.

Algorithm 1 Buchberger’s algorithm [Buc06]
1: G← F
2: repeat
3: select (i, j) such that

(
fi, f j

)
← G×G is not marked.

4: mark
(

fi, f j
)

5: gi← largest term of fi with respect to a given ordering.
6: g j← largest term of f j with respect to a given ordering.
7: ai j← least common multiple of gi and g j.

8: Si j←
(

ai j
gi

fi

)
9: for all g ∈ G do

10: if the largest term of g appears in Si j with a nonzero coefficient then
11: Si j← Si j mod g {use Euclid algorithm to compute mod “reductor” g}
12: end if
13: end for
14: if Si j ̸= 0 then
15: G← G∪

{
Si j
}

.
16: end if
17: until all G×G elements are marked
18: Output G

The Buchberger algorithm can follow different strategies for selection of critical pairs
and the selection of reductors (Step 3 and 9). Independently of these selections, the
Buchberger algorithm gives a correct result. However, these choices are important for
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the total running time. The Buchberger algorithm is very inefficient as it spends 90% of
time in step 11 by computing reductions to the zero. These are coming from relations
fi f j = f j fi and, in case of polynomial system containing field equations v2 = v for v∈V
(which is our case as well), from relations f 2

i = fi. Hence, a good implementation of
Buchberger algorithm should avoid these polynomials as they bring no new information
about the ideal. The state of the art algorithm for computing a Gröbner basis is F4/F5
which is described later in Section 2.2.3.

2.2.2 Macaulay matrix

Definition 2 (Definition 2.3 in [BDM14]). Given a set of polynomials F = { f1, . . . , fs}⊆
B, each of degree di. We consider the set B of all monomials of degree up to d of B[V ].
Then, the Macaulay matrix of degree d, which we denote as MacF (d), is the matrix of
elements from F2 with |B| columns in which the i-th row is the list of coefficients ai j of
the polynomial pi = ∑ j ai jb j where b j is j-th element of B (i.e, j-th monomial) and pi

is a product of one element of B and one element of F. We write

MacF (d) =



f1

x1 f1
...

xd−d1
n f1

f2

x1 f2
...

xd−ds
n fs


where each polynomial fi is multiplied with all monomials from degree 0 up to d− di

for all i = 1, . . . ,s. In what follows, by abuse of notation we also write

MacF (d) =
{

f1,x1 f1, . . . ,xd−d1
n f1, f2,x1 f2, . . . ,xd−ds

n fs

}
.

2.2.3 F4/F5

The F4 algorithm [Fau99] allows to significantly decrease the number of reductions to
zero using simple criteria. However, F4 still keeps many reductions to zero. In [JV11],
the authors gave a variant of F4 for algebraic cryptanalysis which avoids all reductions
to zero by using precomputation. The extension F5 [Jea02] computes the Gröbner basis
incrementally, i.e, the Gröbner basis of ideal ⟨Fi⟩= ⟨ f1, . . . , fi⟩ is computed using Gröb-
ner basis Gi−1 of ⟨Fi−1⟩. In [Ste06], the authors introduce a variant which uses Bi−1

to reduce generators of ⟨Fi⟩. In [EP10], the author further replaces the Gröbner basis

10
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Gi−1 by a reduced Gröbner basis Bi−1 to reduce the total number of reductions per-
formed by F5. In the case when ⟨Fi⟩= ⟨ f1, . . . , fi⟩ and ( f1, . . . , fi) is a so-called “regular
sequence”, the F5 algorithm was shown [Jea02] to perform no reduction to zero and
hence, it is a very efficient generic method to compute a Gröbner basis. F4/F5 com-
putes the Gröbner basis in degrevlex ordering and afterwards, we apply FGLM [FM13]
algorithm to change the ordering as to the prescribed ordering.

2.2.4 XL and its mutations

The XL and mXL family can be seen as alternatives to the F4 algorithm. In what follows,
we formulate the XL, mXL, mXL2 and mXL3 algorithms.

Definition 3 (level of polynomial, Definition 1 in [MMDB08]). Let g∈ ⟨S⟩. We express

g = ∑
p∈S

gp p

where gp ∈ F2[V ], p ∈ S . The level of this representation of g is defined to be

level(g) = max{deggp p : p ∈ S ,g = ∑
p∈S

gp p}

The level of polynomial g ∈ ⟨S⟩ is minimum level among its representations and we
denote it level(g) (or levelS (g) if the system S is not clear from the context).

Definition 4 (mutant, Definition 2 in [MMDB08]).
Let S ⊂ R. Then g ∈ ⟨S⟩ is called a mutant with respect to set S if its degree is smaller
than its level.

Sometimes, when we find a mutant polynomial (which is also called a fall polynomial),
we learn “a new information” about the ideal. Later in Chapter 5, we introduce univer-
sal and nonuniversal polynomials. The mutants which reveal new information about our
ideal are nonuniversal. Finally, in Iterative Proning, we give a method to build a polyno-
mial system from nonuniversal mutants, and the aim is to obtain a so much overdefined
system that it would be easy to find a solution.

XL. The XL algorithm was introduced in [CKPS00] as a new tool for solving overde-
fined systems of multivariate polynomial equations. In XL, we consider F ⊂ F2[V ] and
for D ∈ N the XLD algorithm builds the Macaulay matrix MacF (D) and runs the Gauss
elimination. The XL algorithm computes the Gröbner basis in a similar way as F4, but
it performs additional unnecessary computations [AFI+04].
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mXL. The mXLD algorithms takes as an input a polynomial system F and it returns an-
other polynomial system F ′ which has the same solution. We give a formal description
in Algorithm 2. Roughly speaking, it builds for some increasing d ∈ [1,D] polynomial
systems Fd such that Fd = mXLd(Fd). Each Fd is initialized as polynomials in the linear
span of F of polynomials of degree at most d. Then, we add to Fi all polynomials of de-
gree i of Macaulay matrix MacFd (d) and we continue with the computation of MacFi (i)
for i minimal such that Fi was changed. These new polynomials are called mutants (see
Definition 4). In the computation of mXL, we initially need to increase the degree sig-
nificantly. Then, we start to discover new mutants and hence, we will work again on
systems Fd for a smaller d. If the system has a unique solution, we find it eventually in
F1. The behavioral of this degree d was analysed in [YCY13].

Comparison XL/mXL/mXL2/mXL3. The advantage of mXL over XL is very significant
if we recover only a few mutants at each step of computation. The advantage of mXL
over XL is reduced when the system generates large number of mutants. This leads
to additional improvements mXL2 [MMDB08], mXL3 [MCD+09] and Mutant Based
Gröbner basis [BCDM10]. In these improvements, we limit the number of mutants
which we consider in the following iterations whenever we recover too many mutants.
The mXL was analysed in [TW10, MDB11]. It was used for instance in the cryptanalysis
of MQQ, see [MDB08]. The mXL3 was shown to be equivalent to F4 [ACFP11] for a so
called “normal selection strategy”. However, it does not prevent as many reductions to
zero as F4. The notion of mutant polynomials corresponds to fall polynomials in F4
which are also prefered by the “normal selection strategy”. In Iterative Proning which
we introduce in Chapter 5, we also recover mutant polynomials and similarly to mXL2,
we consider only few mutants per iteration for efficiency.

2.2.5 ElimLin

ElimLin is a basic tool for algrebraic cryptanalysis and it is used (directly or indirectly)
by all other Gröbner basis computation tools. In F4/mXL, it is hidden in the first itera-
tions of the algorithm. It performs Gauss eliminations and substitutions by linear terms.
Hence, the degree of the polynomial system never increases. However, such technique
does not guarantee to find a solution. We describe ElimLin in more details in Chapter 3,
and we investigate the properties of ElimLin and choices of plaintext/ciphertext pairs for
building the polynomial system.

2.2.6 Gauss Elimination

Most algebraic tools rely on Gauss elimination as a tool for simplification of a poly-
nomial system. Therefore, an efficient implementation of Gauss elimination plays vital
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Algorithm 2 mXL [MDB11]

Input: F ⊆ F2[V ], D ∈ N
Output: F1 ⊆ F2[V ] such that ⟨F1⟩= ⟨F⟩ and deg(F1)≤ 1.

1: for d < D do
2: Fd ←

linspan(F)
d

{i.e, polynomials bounded by degree d, see Notation 17}
3: end for
4: d← 1
5: repeat
6: D← d +1
7: for i = d−1 to 1 do
8: Mi←

linspan(MacFd (d))
i

9: if Mi ̸⊆ Fi then
10: Fi← Fi∪Mi {i.e, add mutants}
11: D← i {i.e, continue with smallest degree where mutants were found}
12: end if
13: end for
14: d← D
15: until dim(F1) = |V |

role in algebraic cryptanalysis. The efficiency can be improved if we use additional
properties of our polynomial system. For instance, in the case of algebraic cryptanaly-
sis, we work over a finite field and in many cases, we work over F2. This simplifies the
Gauss elimination algorithm and allows for an additional speedup. Moreover, when we
choose the best strategy for Gauss elimination, we need to consider the sparsity of our
system. Gauss elimination on dense systems was investigated in [AVBP11, ABH10] and
a very efficient implementation can be found in [ABP11]. Details about Gauss elimi-
nation for sparse systems can be found in [Vil97, Cop93, Kal93]. The sparse Gauss
elimination is beneficial when computing sparse Gröbner basis such as in [FSS14].
However, the mXL implementation usually uses M4RI library [ABP11] for dense matri-
ces. In our implementation of ElimLin we also use M4RI, i.e, the dense representation.
In Universal Proning, we compute a nullspace of a matrix that should look random and
hence, a dense representation is beneficial.

2.2.7 SAT

SAT solvers have been successfull in the cryptanalysis of various schemes. In [CBW07],
the authors gave a practical attack on KeeLoq. In [MZ06], the authors evaluated SAT
solvers on MD4 and MD5. In [KY10], the authors considered SAT solvers to recover
the secret key of AES from decayed memory image after cold restart. In [EDC09], the
authors compare Gröbner basis based attacks and SAT solvers based attack on SMS4. In

13



[BB11], the authors were able to break 8 rounds of PRINTCipher-48 using SAT solvers
and break the full PRINTCipher-48 assuming side channel leakage of Hamming weight.

2.2.8 Zero-dimensional ideals

The complexity of Gröbner basis computation can be doubly exponential. However,
in algebraic cryptanalysis, the Gröbner basis computation requires “only” exponential
time, as we work with so called “zero-dimensional ideal”. When we work over al-
gebraically closed field, an ideal is zero-dimensional if the associated variety is finite.
However, in the case of finite fields, we need to be more carefull as we always have a fi-
nite number of solutions. We give a definition of zero-dimensional ideal in Definition 5
and its characterization in Lemma 6.

Definition 5. Let F be a field and V a set of variables. An ideal I ⊆ F [V ] is zero dimen-
sional if and only if the F-vector space dimension of F [V ]/I is finite, i.e, dimF F [V ]/I <

∞.

Lemma 6 ([DF04] 26, page 705). Let I ⊆ F [V ] be an ideal. The following three state-
ments are equivalent:

1. I is zero-dimensional.

2. The variety VK (I ) is a finite set for every field K such that F [V ]⊆ K.

3. I ∩F2[v] is a finite set for every v ∈V .

2.3 Hybrid algorithms

The relation between algebraic methods have been extensively studied. ElimLin is a ba-
sic algorithm which is part of almost every algebraic tool. XSL is an ad-hoc method
for optimization of XL which was analyzed in [CL05]. The comparison between Gröb-
ner basis computation and SAT solver was done in [EDC09]. The complexity of SAT
was further studied in [LV99]. The asymptotic estimates of the complexity of XL and
Gröbner basis were given in [YCC04].

SAT + Gauss elimination. The cryptominisat [Soo10] accepts both OR clauses and
XOR clauses as an input and it performs Gauss elimination on XOR clauses before the
DPLL procedure takes place. In [HJ12], the authors considered Gauss-Jordan elimina-
tion. They obtained sparser XOR formulas which lead to more effective learning of new
clauses, and subsequently the speedup of the SAT solver. A similar approach together
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with comparisons with other SAT techniques can be found in [LJN12]. A natural exten-
sion is considering a substitution after Gauss elimination. This leads to SAT + ElimLin
technique.

SAT + ElimLin. ElimLin can find hidden linear relations of the polynomial system
efficiently. Hence, the SAT solver avoids learning clauses equivalent to these linear
relations which reduces the running time of a SAT solver. This technique is used by the
publicly available tool for algebraic cryptoanalysis from Courtois [Cou10].

SAT + mXL. The technique above (SAT + ElimLin) can be further extended by replac-
ing ElimLin with a degree bounded mXL (i.e, to SAT + mXLD). However, this strategy
results in a dense polynomial system which is usually difficult to solve for a SAT solver.
We now discuss an opposite strategy, i.e, we use SAT solver to “learn” new clauses and
we use these in mXL computation. This strategy is a long-standing proposal in algebraic
cryptanalysis, but we are not aware of any efficient implementation of this approach. In
Chapter 5, we develop a technique called Universal Proning. In Universal Proning, we
learn polynomials by computation of nullspace and hence, our Universal Proning can
be seen as a substitute for a SAT solver in the above scenario. Furthermore, we give an
extension called Iterative Proning, which iterarively reduces the keyspace by learning
new polynomials by the computation of nullspace. Hence, the technique developed in
Chapter 5 can be seen as a hybrid algorithm mixing the SAT solving and Gröbner basis
basis techniques.

2.4 Algrebraic Cryptanalysis

In algebraic cryptanalysis, the polynomial system has additional properties which may
be used to speed-up an algebraic attack.

Non random structure. Many cryptographic algorithms are based on iteration of a sim-
ple subroutine. This reflects into the structure of the corresponding polynomial
system. Hence, unlike an instance of MQ problem, an instance of a problem from
algebraic cryptanalysis is not a random problem of MQ and the generic complex-
ity of MQ problem is only an upper bound. Therefore, we should try to use the
structure of the polynomial system and develop a dedicated algorithm for solving
such polynomial systems. The idea of taking a structure into a consideration has
already appeared in the literature, for instance [FSS14]. To use such structure
efficiently, we want to select samples in such a way that the structure leads to
a system which can be highly simplified. Then in Chapter 5, we look for such
simplification without solving the polynomial system.
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Freedom of choice. Unlike in the MQ problem, we are allowed to choose plaintext/ci-
phertext pairs and hence, we tweak the polynomial system used for the algebraic
attack. This leads us to another algebraic attack called cube attack, which is spe-
cialized in selecting plaintexts in such a way that finding the secret key is espe-
cially easy. We show in Chapter 3 that a carefull selection of samples is beneficial
even in the case of ElimLin, which is the common ground for all algebraic tools.

Kerkhoff’s principle. Due to Kerkhoff’s principle, we can efficiently build a polyno-
mial system representing a cipher. Moreover, we can perform the encryption/de-
cryption algorithm for a known key. This allows us to adapt the polynomial sys-
tem by selecting plaintext/ciphertext pairs which lead to attacks with a smaller
computational requirements. We use this in Chapter 4 for selection of samples,
and in Chapter 5 to explore a hidden structure of our polynomial system.

2.5 Definition of a Polynomial System

Definition 7 (Boolean polynomial). Let V be a set of variables. Let b∈ F2[V ] be a poly-
nomial such that

b = ∑
W⊂V

aW ∏
w∈W

weW

where aW ∈ F2. Then b is called a boolean polynomial iff for all w ∈ W we have
ew ∈ {0,1}. We denote B[V ] the set of all boolean polynomials of ring F2[V ].

Definition 8. Given a set of variables W, we denote

FieldEq[W ] =
⟨
v2− v : v ∈W

⟩
F2[W ]

The ideal FieldEq[V ] is an ideal of trivial relations which exist due to computation in
function field.

Notation 9. We use kln to represent the key length. We use mln to represent the message
length and the length of the state vector. We use smpn to represent the number of
plaintext/ciphertext pairs (samples). We use rndn to represent the number of rounds of
the cipher.

We represent state bits and key bits by variables as in Notation 10.

Notation 10. Each state variable s j
p,r corresponds to a sample of index p, a round r,

and an index j in the state vector. The key is represented by key variables k1, . . . ,kkln.
The plaintext p is represented by s j

p,0 and the ciphertext is represented by s j
p,rndn and

round keys at round r are represented by kr
1, . . . ,k

r
kln.
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Notation 11. We denote the set of variables as

VK =
∪

t∈[1,kln]

{kt}

VS =
∪

p∈[1,smpn]
r∈[0,rndn]
j∈[1,mln]

{
s j

p,r
}

K =
∪

r∈[0,rndn]
j∈[1,mln]

{kr
1, . . . ,k

r
kln}

PT =
∪

p∈[1,smpn]
j∈[1,mln]

{
s j

p,0

}

CT =
∪

p∈[1,smpn]
j∈[1,mln]

{
s j

p,rndn

}

V =VK ∪K∪VS

The round function of the cipher is represented by a set of polynomials r j
r which take as

input all state variables at round r and return the j-th state variable at round r+ 1, i.e,
s j

p,r+1 is given by polynomial r j
r(s1

p,r, . . . ,s
mln
p,r ,k

r
1, . . . ,k

r
kln). We denote the corresponding

equation 1

Eqp
j,r = r j

r
(
s1

p,r, . . . ,s
mln
p,r ,k

r
1, . . . ,k

r
kln

)
− s j

p,r+1

where kr
j = rkr

j (k1, . . . ,kkln).

RK j,r = rkr
j (k1, . . . ,kkln)− kr

j

Notation 12 (system). We denote

S = FieldEq[V ]∪
∪

p∈[1,smpn]
r∈[0,rndn]
j∈[1,mln]

{
Eqp

j,r,RK j,r

}

The equations are taken over ring2 F2[V ], i.e, S ⊆ F2[V ], and they represent relations

1we use “equation” and “polynomial” as synonyms. Solving an equation means finding roots of
a polynomial.

2alternatively, we can consider boolean ring and avoid having FieldEq[V ] in polynomial system S
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between variables of round r and r+1. We further denote

Sχ,⋆,⋆ =S ∪
∪

p∈[1,smpn]
j∈[1,mln]

(
s j

p,0−χ j
p

)

S⋆,γ,⋆ =S ∪
∪

p∈[1,smpn]
j∈[1,mln]

(
s j

p,rndn− γ j
p

)

S⋆,⋆,κ =S ∪
∪

i∈[1,kln]

{ki−κi}

For a system S , we denote:

Sχ,⋆,κ = Sχ,⋆,⋆+S⋆,⋆,κ

S⋆,γ,κ = S⋆,γ,⋆+S⋆,⋆,κ

Sχ,γ,⋆ = Sχ,⋆,⋆+S⋆,γ,⋆

Sχ,γ,κ = Sχ,⋆,⋆+S⋆,γ,⋆+S⋆,⋆,κ

We say that Sχ,⋆,⋆ and S⋆,γ,⋆ are open-ended. We use notation Sχ,γ,κ to denote that we set
plaintext to χ, ciphertext to γ and key to κ. The symbol ⋆ at any position means that the
value is unset a priori. Hence, Sχ,⋆,⋆ is the system of equations when we fix the plaintexts
to χ and S⋆,γ,⋆ is the system when we fix the ciphertexts to γ. We later use Sχ,γ,⋆ which
thus represents the system in which we fix both the plaintext and the ciphertext.

Definition 13. We define a ring homomorphism Evalχ,γ,⋆ : F2[V ]→ F2[V ] which assigns
variables PT,CT to an element of F2 to plaintext and ciphertext variables.

Evalχ,γ,⋆ (V ) =


v→ χ j

p if v = s j
p,0

v→ γ j
p if v = s j

p,rndn

v→ v otherwise.

Actually, we have
⟨
Evalχ,γ,⋆ (S)

⟩
=
⟨
Sχ,γ,⋆

⟩
∩B [V \ (PT∪CT)].

Observation 14. The ideals
⟨
S⋆,γ,κ

⟩
resp.

⟨
Sχ,⋆,κ

⟩
are always maximal ideals for de-

terministic encryption.

Equivalently, the plaintext is uniquely determined by the key κ and the ciphertext γ resp.
ciphertext is uniquely determined by the key κ and the plaintext χ. Similarly, we assume
that χ and γ fully characterize the key κ:

Assumption 15. We assume that the ideal
⟨
Sχ,γ,⋆

⟩
is a maximal ideal.
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Lemma 16. An ideal I ⊆ F2[V ] such that FieldEq[V ] ⊆ I is maximal, if and only if,
either v or v+1 is in I but not both for each v ∈V .

Proof. We show that if FieldEq[V ]⊆ I and I+ ⟨v⟩= I+ ⟨v+1⟩= F2[V ] then I = F2[V ].
If 1 ∈ I+ ⟨v⟩, then p = 1+Av for some p ∈ I and A ∈ F2[V ]. Similarly if 1 ∈ I+ ⟨v+1⟩,
then there is p′ ∈ I and B ∈ F2[V ] such that p′ = 1+B(v+1) . We have

• Ap+
(
A2 +A

)
v = A(v+1) =⇒ A(v+1) ∈ I

• Bp′+
(
B2 +B

)
(v+1) = Bv =⇒ Bv ∈ I

• Bp+Ap′ = B(Av+1)+A(1+B(v+1)) = A+B+AB =⇒ A+B+AB ∈ I

• B(A(v+1))+A(Bv) = AB =⇒ AB ∈ I

• p+ p′+A+B+AB+AB = B ∈ I

• p′+B(v+1) = 1 =⇒ 1 ∈ I

So, if I is maximal, either I + ⟨v⟩ ̸= F2[V ] or I + ⟨v+1⟩ ̸= F2[V ]. As the ideal cannot
be proper and larger, either v ∈ I or v+ 1 ∈ I. This holds for all v. The converse is
trivial.

We recall that smpn denotes the number of plaintext/ciphertext pairs. For the assump-
tion to be satisfied, we require that smpn is large enough to uniquely characterize κ.
Essentially, the key recovery problem consists of reducing each ki polynomial modulo⟨
Sχ,γ,⋆

⟩
to obtain κi. In general, reducing a polynomial modulo an ideal is hard. But

there are cases where this is easy. For instance, reducing modulo FieldEq[V ] is easy.

Notation 17. For a set S ⊆ F2[V ] and D ∈ N we denote a setS
D

= { f : f ∈ S ∩B[V ],deg( f )≤ D}

Furthermore, we denoteS
D

= { f : f ∈ S ∩B[V ],deg( f )> D}

This is the case of
⟨
Sχ,⋆,κ

⟩
and

⟨
S⋆,γ,κ

⟩
.

Definition 18. Let V ′ be a set of variables such that V ∩V ′ =VK∪K and |V |= |V ′|. Let
us consider a bijective function Dup : V → V ′ where Dup(k) = k for each k ∈ VK ∪K
which is homomorphically extended from F2[V ] to F2[V,Dup(V )]. We further define
Dup(Dup(v)) = Dup(v) for all v ∈V .
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Notation 19. Let q ∈ F2[V,Dup(V )]. Let us consider the unique polynomial q′ ∈ B[V ]

such that q = q′ (mod ⟨v+Dup(v) : v ∈V ⟩F2[V,Dup(V )]). We denote the polynomial
q′ as JqKV . Actually, we consider the mapping JKV as a ring homomorphism JKV :
F2[V,Dup(V )]−→ F2[V ].

The JKV is another case where reducing a polynomial modulo an ideal is easy.

2.6 Boolean Polynomials

Notation 20. For q ∈ F2[V ] we define Var(q) ⊆ V as the smallest W ⊆ V such that
q ∈ F2[W ].

Notation 21. Let V be a set of variables. For G ⊆ F2[V ], we denote ⟨G⟩F2[V ] the ideal

of the ring F2[V ] spanned by G. For W =
∪

q∈G

Var(q), we denote ⟨G⟩F2[W ] as ⟨G⟩.

Theorem 22 (Theorem 41 in [BDG+09]). The composition

B[V ] ↪→ F2[V ] 7→ F2[V ]/FieldEq[V ]

is a bijection.

Corollary 23 (technical lemma). ∀p ∈ F2[VK] p ∈ FieldEq[VK]⇐⇒∀κ ∈ Fkln
2 p(κ) = 0

Notation 24. Due to Theorem 22, for each q ∈ F2[V ], there exists a unique q′ ∈ B[V ]

such that q′ ≡ q mod FieldEq[V ]. We denote it by q′ = q mod FieldEq[V ].

Note that reduction modulo FieldEq[V ] is easy.

Corollary 25 (Proposition 43 in [BDG+09]). Polynomials of F2[V ] are in the same
residue class modulo

⟨
v2− v : v ∈V

⟩
F2[V ]

iff they generate the same function.

Theorem 26 (Theorem 44 in [BDG+09]). The map µ from the set of boolean polyno-
mials B[VK] to the set of boolean functions Func

(
Fkln

2 ,F2
)

by mapping a polynomial to
its polynomial function is an isomorphism of F2-vector-spaces.

Corollary 27 (Corollary 45 in [BDG+09]). Every boolean polynomial p ̸= 1 has a zero
over F2. Every boolean polynomial p ̸= 0 has a one over F2.

Notation 28. For Q⊆ F2[V ], we denote linspan(Q) =
{

p : p = ∑q∈Q aqq,aq ∈ F2
}

.

Notation 29. For q⊆ F2[V ], such that

q = ∑
W⊆V

aW ∏
w∈W

wew,W
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we denote

degq = max

{
∑
W

ew,W : W ⊆V ∧aW ̸= 0

}
In this thesis, we work over the ring B[V ] in which case we consider

degq = max{|W | : W ⊆V ∧aW ̸= 0}
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3
The ElimLin algorithm

Algebraic attacks consist of building an appropriate polynomial system and solving
it. In ElimLin, we consider a polynomial system such as in Section 2.5 which is easy
to build. Our aim is to find samples so that such system can be solved by ElimLin.
The ElimLin algorithm is rarely considered by itself as a solving method for algebraic
cryptanalysis. It is commonly used as the first step before applying other algebraic
techniques. Therefore, we study strategies for an improvement of ElimLin which gives
a basis for advances in other algebraic techniques. Our goal is to build a polynomial
system so that ElimLin performs better than in a random case. As ElimLin is a building
block in other techniques, our strategies will be applicable in large varieties of algebraic
attacks. In this chapter, we want to evaluate the advantage of chosen-plaintext attacks
over known-plaintext attacks. We define a strategy for choosing the plaintexts based on
other algebraic attack (cube attack), and we show that it significantly outperforms both
known-plaintext attacks and other suggested strategies of chosen-plaintext attacks. We
give attacks against LBlock, KATAN32 and SIMON to support our claims.

In Section 3.1, we describe the ElimLin algorithm and give a constructive proof of its
invariance. Then in Section 3.2, we give an algebraic representation of ElimLin which
will be beneficial in Chapter 4. In Section 3.3, we describe our new implementation of
ElimLin.
The results of this chapter were published at FSE2012 [CSSV12].

3.1 The ElimLin Algorithm

The name ElimLin is derived from the main feature of the algorithm which is Elimination
of Linear equations. The ElimLin algorithm takes as an input a multivariate polynomial
system over F2 (usually of a low degree: 2, 3 or 4). The output of ElimLin is a multivari-
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ate polynomial system which has the same set of solutions and which contains (usually)
higher number of linear equations. Ideally, the ElimLin algorithm returns a linear sys-
tem. In this case, we say that ElimLin “broke” the system. ElimLin was proposed in
[Cou06, CB07] as a tool to evaluate the resistance of symmetric cipher. The 5-round
DES was analysed using ElimLin in [CB07]; the 5-round PRESENT was analysed using
ElimLin in [NSZW09] and Snow-2.0 stream cipher was analysed in [CD08]. However,
the analysis of success of ElimLin is an open problem. Given a multivariate polynomial
system, it is hard to predict whether ElimLin recovers more linear equations and whether
it can break the system completely. Our aim is to improve the performance of ElimLin
with respect to both running time and number of linear equations it recovers.

ElimLin is an iterative algorithm. In each round, we perform sequentially two operations:
Gauss elimination and substitution. In each round, we modify the polynomial system as
follows: we increase the number of linear equations in the system and at the same time,
we decrease the number of variables appearing in non-linear equations.

Gauss Elimination: We consider a linear basis of a set of linear equations given by
an intersection of the vector space spanned by all monomials of degree 1 and the
vector space spanned by all equations.

Substitution: The set of linear equations found in Gauss elimination step is used for
substitution. Each linear equation is used to eliminate one variable from the non-
linear system. Hence, the polynomial system after the substitution contain less
variables - but it may contain more non-linear terms.

Notation 30. The set Q mod FieldEq[W ] = {q mod FieldEq[W ],q ∈ Q } where q mod
FieldEq[W ] is defined by Notation 24.

Lemma 31. Let p ∈ B[V ], ℓ ∈
F2[V ]

1
, x ∈ Var(ℓ) and W ⊆V such that Var(p)⊆W

and Var(ℓ)⊆W. Then,(
⟨ℓ⟩F2[V ]+ p mod FieldEq[V ]

)
∩B[W \{x}] (3.1)

has a single polynomial.

Proof. We denote ℓ= x+ ℓ̃ and we select p0, p1 such that p= p0+xp1 and x /∈ Var(p0),
x /∈ Var(p1). This is feasible since p ∈ B[V ] so it has no x2 inside. We further denote
q′0 = p1ℓ̃+ p0 mod FieldEq[V ] and we have q′0 ∈ B[W \{x}]. So, we have q′0 in the set
from Eq. (3.1). We now show it is the only element there. Let

q′ ∈
(
⟨ℓ⟩F2[V ]+ p mod FieldEq[V ]

)
∩B[W \{x}].
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We want to show q′ = q′0.
Since

q′ ∈
(
⟨ℓ⟩F2[V ]+ p mod FieldEq[V ]

)
∩B[W \{x}]

we have
q′ = ℓq+ p mod FieldEq[V ]

for some q ∈ F2[V ]. We further consider q̃ such that q = p1 + q̃.
Then, we have

q′ = ℓq+ p mod FieldEq[V ]

=
(
x+ ℓ̃

)
(p1 + q̃)+ p0 + xp1 mod FieldEq[V ]

= p0 + p1ℓ̃+ q̃x+ q̃ℓ̃ mod FieldEq[V ]

We compute

q′−q′0 =
(

p0 + xq̃+ p1ℓ̃+ q̃ℓ̃
)
−
(

p1ℓ̃+ p0
)

mod FieldEq[V ]

=
(
x+ ℓ̃

)
q̃ mod FieldEq[V ] ∈ B[V \{x}]

We consider for i ∈ N polynomials q̃i ∈ F2[V \{x}] such that q̃ = ∑i q̃ixi and we denote

q̄ = q̃0 + x ∑
i≥1

q̃i = q̃0 + xq̄1.

Then,

q′−q′0 ≡
(
x+ ℓ̃

)
(q̃0 + xq̄1)≡ ℓ̃q̃0 + x

(
q̃0 + ℓ̃q̄1 + q̄1

)
(mod FieldEq[V ]).

Since q′− q′0 ∈ B[V \ {x}] and ℓ̃q̃0 has no x inside, we have 0 = q̃0 + ℓ̃q̄1 + q̄1 mod
FieldEq[V ]. Therefore, we also have
q̃0 ≡

(
ℓ̃+1

)
q̄1 (mod FieldEq[V ]) which implies

ℓ̃q̃0 ≡ ℓ̃
(
ℓ̃+1

)
q̄1 (mod FieldEq[V ]) and finally, we obtain

ℓ̃q̃0 ≡ 0 (mod FieldEq[V ]).
Therefore,

q′−q′0 = ℓ̃q̃0 mod FieldEq[V ] = 0

Hence, q′ = q′0 which is uniquelly defined by p and ℓ.

Definition 32 (substitution). Let QT ⊆ F2[x1,x2, . . . ,xn], ℓ ∈
F2[Var(QT )]

1
such that
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x1 ∈ Var(ℓ). Then,

Q ′T =
(
⟨ℓ⟩F2[Var(QT )]

+QT mod FieldEq[Var(QT )]
)
∩B[Var(QT )\{x1}]

is the polynomial system where we substitute x1 by x1 + ℓ.

Lemma 33. For all V such that Var(QT )⊆W ⊆V and x ∈ Var(ℓ)⊆W

Q ′T =
(
⟨ℓ⟩F2[V ]+QT mod FieldEq[V ]

)
∩B[W \{x}]

Proof. We start from Lemma 31 and for every q ∈ QT , we show there exists a unique
q′ ∈

(
⟨ℓ⟩F2[V ]+ p mod FieldEq[V ]

)
∩B[W \ {x}]. Sp, it matches the polynomial we

obtain by setting V =W = Var(QT )

Essentially, to eliminate x in q ∈QT by using ℓ, we add to q a multiple of ℓ and reduce it
modulo FieldEq[x1,x2, . . . ,xn] such that xi no longer appear. ElimLin repeats the steps
above until no new linear equation is found. The precise definition of the algorithm is
given in Algorithm 3.

The running time of ElimLin depends on the choices made in substitution steps 6, 13,
and 15. We now give an intuition why this is the case. We consider two sets A and
B of linearly independent linear equations which span the same vector space. When
we use linear equations from the set A for substitution, we obtain a large amount of
non-linear terms. When we use linear equations from the set B for substitution, we
obtain a dense polynomial system with small amount of non-linear terms. We give such
example later in Section 3.2.3. The first case is usually beneficial if our implementation
of Gauss elimination is optimized for a sparse polynomial system. The second case is
usually beneficial if our implementation of Gauss elimination is optimized for a dense
polynomial system. However in the case A, the substitution step usually takes more
time. Hence to optimize the running time of ElimLin, we would like to select the sets
such that the total running time is minimal.

In what follows, we show that the span of the resulting QL is invariant with respect to
choices made in steps 6, 13, and 15.

Example of the ElimLin computation We now consider a multivariate polynomial
system over B[x1 . . . ,x6].
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Algorithm 3 ElimLin algorithm. Algorithm 10.1 in [Sep12]
Input: Q 0 ⊆ B[V ].
Output: QT ,QL ⊆ B[V ] such that

⟨
Q 0⟩= ⟨QT ,QL⟩.

1: Set QL← /0 and QT ← Q 0 and k← 1.
2: repeat
3: Compute linear span of QT .

4: Set QL′ ←
linspan(QT )

1
.

5: Set flag.
6: for all ℓ ∈ QL′ do
7: if degℓ < 1 then
8: if ℓ ̸= 0 then
9: Output ( /0,{1}).

10: end if
11: else
12: Unset flag.
13: Let xtk ∈ Var(ℓ).

14: QT ←
(
⟨ℓ⟩F2[Var(QT )]

+QT mod FieldEq[Var(QT )]
)
∩B[Var(QT )\ xtk ]

15: Q ′L←
(
⟨ℓ⟩F2[Var(Q ′L)]

+Q ′L mod FieldEq[Var(Q ′L)]
)
∩B[Var(Q ′L)\ xtk ]

16: QL← QL∪{ℓ}.
17: k← k+1
18: end if
19: end for
20: until flag is set.
21: Output (QT ,QL).
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

x4x6 + x5x6

x2x6 + x3x6

x2 + x3 + x5 + x6 + x3x4

x1 + x3 + x4

x1x3 + x1x4 +1

x2x3 + x2x5 + x1x6

x3x6 + x3 +1

We consider linear equation x1 + x3 + x4 for a substitution x3 = x1 + x4 and we obtain

x4x6 + x5x6

x2x6 +(x1 + x4)x6 ⇒ x2x6 + x1x6 + x4x6

x2 +(x1 + x4)+ x5 + x6 +(x1 + x4)x4 ⇒ x2 + x1 + x4 + x5 + x6 + x1x4 + x4x4

x1 +(x1 + x4)+ x4 ⇒ 0

x1 (x1 + x4)+ x1x4 +1 ⇒ x1x1 +1

x2 (x1 + x4)+ x2x5 + x1x6 ⇒ x1x2 + x4x2 + x2x5 + x1x6

(x1 + x4)x6 +(x1 + x4)+1 ⇒ x1x6 + x4x6 + x1 + x4 +1

Since x2
1 = x1, we obtain a new linear equation x1 = 1.

x4x6 + x5x6

x2x6 + x1x6 + x4x6 ⇒ x2x6 + x6 + x4x6

x2 + x1 + x4 + x5 + x6 + x1x4 + x4x4 ⇒ x2 +1+ x4 + x5 + x6 + x4 + x4x4

0

x1x1 +1 ⇒ 0

x1x2 + x4x2 + x2x5 + x1x6 ⇒ x2 + x4x2 + x2x5 + x6

x1x6 + x4x6 + x1 + x4 +1 ⇒ x6 + x4x6 +1+ x4 +1

This gives us a new linear equation x2 + 1+ x4 + x5 + x6. We preform the substitution
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x2 = 1+ x4 + x5 + x6.

x4x6 + x5x6

x2x6 + x6 + x4x6 ⇒ x5x6 + x6

x2 +1+ x4 + x5 + x6 + x4 + x4x4 ⇒ 0

0

0

x2 + x4x2 + x2x5 + x6 ⇒ 1+ x4 + x5 + x4x6 + x5x6

x6 + x4x6 + x4 ⇒ x6 + x4x6 + x4

We compute the linear span of this system and we obtain a linear equation Eq2 +Eq6 +

Eq7 = (x5x6 + x6)+(1+ x4 + x5 + x4x6 + x5x6)+(x6 + x4x6 + x4) = 1+ x5.

x4x6 + x5x6

x5x6 + x6 ⇒ 0

0

0

0

1+ x4 + x5 + x4x6 + x5x6 ⇒ x4 + x4x6 + x6

x6 + x4x6 + x4 ⇒ x4 + x4x6 + x6

We compute the linear span of this system and we obtain a linear equation Eq1 +Eq2 +

Eq7 = (x4x6 + x5x6)+ (x5x6 + x6)+ (x4 + x4x6 + x6) = x4. This finally gives us x4 = 0
and subsequently x6 = 0.
In our example, we did not use the first equation x4x6+x5x6 until the very end of ElimLin.
Without this equation, ElimLin is unable to find the solution. However, the solution can
be found by XL algorithm if we compute x6Eq7 = x4x6 + x4x6x6 + x6x6 = x6 and after
the substitution, we would obtain x4 = 0.

3.2 Algebraic Representation of ElimLin

In this section, we give an algebraic representation of ElimLin. Some results of this
sections are standard results from algebraic theory. However, we give a constructive
proof which shed some light on the internal working of ElimLin. We use this to build an
optimized implementation. Techniques developed in this section help us to character-
ize polynomial systems where ElimLin succeeds. We give this characterization later in
Chapter 4.
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3.2.1 ElimLin as an Intersection of Vector Spaces

In this section, we consider different approaches for computation of ElimLin. We build
on our published paper at FSE2012 [CSSV12] and we give Corollary 40 which shows
an invariance of ElimLin with respect to an ordering of substitutions. ElimLin can
be formalized for any polynomial ring. However, we focus on the ring of boolean
polynomials. We use the notations from Section 2.5.
We now prove that the result of ElimLin depends only on the linear span of equations
which are used in the substitution. I.e, we show the result does not depend on the
selection of the linear equation in Step 6 and similarly, the result does not depend on the
selection of variable in Step 13.

Lemma 34. Let ℓ1, . . . , ℓm ∈
F2[V ]

1
with V = {xt1, . . . ,xtn} and xti ∈ Var(ℓi) where

Var(ℓi)⊆ {xti, . . . ,xtn}. For every q ∈ F2[V ] there exists q′ ∈ F2[xtm+1, . . . ,xtn] such that
q−q′ ∈ ⟨ℓ1, . . . , ℓm⟩F2[V ].

Proof. We have q = ∑
i∈[0,m]

qixi
t1 for some qi ∈ F2[V \{xt1}]. We denote

q̃ = ∑
i∈[1,m]

qi (xt1 + ℓ1)
i

and we compute q+ q̃= ∑
i≥1

qi

(
xi

t1 +(xt1 + ℓ1)
i
)
= ℓ1q′1 for some q′1 ∈F2[V ]. Hence, q=

q̃+ ℓ1q′1 for some q′1 ∈ F2[V ]. We iterate this process to eliminate variables xt2 , . . . ,xtm
and obtain q = q′+ ℓ1q′1 + · · ·+ ℓmq′m with q′i ∈ F2[V ].

Theorem 35. Let V = {x1, . . . ,xn} and Q 0
T ⊆ B[V ] be a vector space. Let xtm be the

variable substituted in the m-th substitution of Algorithm 3. Let ℓm be the linear equa-
tion chosen at the m-th step of Algorithm 3. We denote Q m

T the set QT after the m-th
substitution. Then,

Q m
T =

(
⟨ℓ1, . . . , ℓm⟩F2[V ]+Q 0

T mod FieldEq[V ]
)
∩B[xtm+1, . . . ,xtn]

Proof. We will prove by induction. In the first step of induction, we have

Q 0
T =

(
⟨0⟩F2[V ]+Q 0

T mod FieldEq[V ]
)
∩B[V ]

since Q 0
T ⊆ B[V ]. So the statement is true for m = 0. We assume

Q m−1
T =

(
⟨ℓ1, . . . , ℓm−1⟩F2[V ]+Q 0

T mod FieldEq[V ]
)
∩B[xtm , . . . ,xtn] (3.2)
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and we show

Q m
T =

(
⟨ℓ1, . . . , ℓm⟩F2[V ]+Q 0

T mod FieldEq[V ]
)
∩B[xtm+1, . . . ,xtn].

Following the substitution (Def. 32) from Q m−1
T ⊆ F2[xtm, . . . ,xtn] in Step 14 of Algo-

rithm 3 we obtain

Q m
T =

(
⟨ℓm⟩F2[Var(Q m−1

T )]+Q m−1
T mod FieldEq[Var

(
Q m−1

T

)
]
)
∩B[Var

(
Q m−1

T

)
\{xtm}]

and using Lemma 33 with W = {xtm, . . . ,xtn}, we obtain

Q m
T =

(
⟨ℓm⟩F2[V ]+Q m−1

T mod FieldEq[V ]
)
∩B[xtm+1, . . . ,xtn]

Eq. 3.2
=
(
⟨ℓm⟩F2[V ]

+
(
⟨ℓ1, . . . , ℓm−1⟩F2[V ]+Q 0

T mod FieldEq[V ]
)
∩B[xtm, . . . ,xtn]︸ ︷︷ ︸

Q m−1
T from induction

mod FieldEq[V ]
)

∩B[xtm+1, . . . ,xtn ]

We denote

Q m
T =

(
⟨ℓ1, . . . , ℓm⟩F2[V ]+Q 0

T mod FieldEq[V ]
)
∩B[xtm+1 , . . . ,xtn ]

Q̃ m
T =

(
⟨ℓm⟩F2[V ]

+
(
⟨ℓ1, . . . , ℓm−1⟩F2[V ]+Q 0

T mod FieldEq[V ]
)
∩B[xtm, . . . ,xtn]︸ ︷︷ ︸

Q m−1
T from induction

mod FieldEq[V ]
)

∩B[xtm+1, . . . ,xtn ]

and we prove Q m
T = Q̃ m

T .

Q̃ m
T ⊆ Q m

T : We consider p ∈ Q̃ m
T and we show p ∈ Q m

T and we express it in terms of
polynomials from ideals

qi ∈ F2[V ]

q0 ∈ Q 0
T

p = ℓmqm + ∑
i∈[1,m−1]

ℓiqi +q0 mod FieldEq[V ]
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where

∑
i∈[1,m−1]

ℓiqi +q0 mod FieldEq[V ] ∈ B[xtm, . . . ,xtn].

We write this as
p = ∑

i∈[1,m]

ℓiqi +q0 mod FieldEq[V ]

so p ∈ Q m
T which shows Q̃ m

T ⊆ Q m
T

Q m
T ⊆ Q̃ m

T : We consider p ∈ Q m
T and we will show p ∈ Q̃ m

T .

For some q0 ∈ Q 0
T and qi ∈ F2[V ], we have

p = ∑
i∈[1,m]

qiℓi +q0.

Using Lemma 34, we have q′m ∈ F2[xtm, . . . ,xtn] such that

qm = q′m + ∑
i∈[1,m−1]

ℓiqm,i,

with qm,i ∈ F2[V ]. Then,

p = ℓmq′m + ∑
i∈[1,m−1]

ℓi (qi + ℓmqm,i)+q0 mod FieldEq[V ].

Since, q′m ∈ F2[xtm , . . . ,xtn] we also have

∑
i∈[1,m−1]

ℓi (qi + ℓmqm,i)+q0 ∈ F2[xtm, . . . ,xtn].

Hence, p ∈ Q̃ m
T . Thus Q m

T ⊆ Q̃ m
T .

Lemma 36. Let i denote the i-th iteration of the repeat loop in Algorithm 3. and let mi

be the number of substitutions before entering the loop. We have

Q
mi+1

T +
⟨
ℓmi+1, . . . , ℓmi+1

⟩
F2[V ]
≡ Q mi

T +
⟨
ℓmi+1, . . . , ℓmi+1

⟩
F2[V ]

(mod FieldEq[V ]).

Proof. Using Theorem 35, we have for the set of variables W ⊆ V which were not
substituted by the “for” loop

Q
mi+1

T =
(⟨

ℓmi , . . . , ℓmi+1

⟩
F2[V ]

+Q mi
T mod FieldEq[V ]

)
∩B[W ]. (3.3)
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The now prove the inclusion

Q
mi+1

T +
⟨
ℓmi, . . . , ℓmi+1

⟩
F2[V ]
⊆ Q mi

T +
⟨
ℓmi , . . . , ℓmi+1

⟩
F2[V ]

+FieldEq[V ]. (3.4)

Let q ∈ Q
mi+1

T +
⟨
ℓmi, . . . , ℓmi+1

⟩
F2[V ]

. Then, we have for some p ∈ Q
mi+1

T and pℓ ∈⟨
ℓmi , . . . , ℓmi+1

⟩
F2[V ]

that q = p+ pℓ. Due to Eq. (3.3), we have

p = p′+ p′ℓ mod FieldEq[V ]

for some p′ ∈Q mi
T and p′ℓ ∈

⟨
ℓmi , . . . , ℓmi+1

⟩
F2[V ]

. Hence, q= p′+ p′ℓ+ pℓ mod FieldEq[V ]

which shows Eq. (3.4).
We now prove the opposite inclusion.

Q mi
T +

⟨
ℓmi , . . . , ℓmi+1

⟩
F2[V ]
⊆ Q

mi+1
T +

⟨
ℓmi , . . . , ℓmi+1

⟩
F2[V ]

+FieldEq[V ]. (3.5)

Let q ∈ Q mi
T +

⟨
ℓmi , . . . , ℓmi+1

⟩
F2[V ]

.

Let q′ and qℓ be such that q′ ∈ Q mi
T , qℓ ∈

⟨
ℓmi, . . . , ℓmi+1

⟩
F2[V ]

and q = q′+ qℓ. Due to
Lemma 31, we have the set{

q′′
}
=
(

q′+
⟨
ℓmi, . . . , ℓmi+1

⟩
F2[V ]

mod FieldEq[V ]
)
∩B[W ]

contains a single polynomial.
Hence for some q′ℓ ∈

⟨
ℓmi , . . . , ℓmi+1

⟩
F2[V ]

and q′F ∈ FieldEq[V ], we have

q′′ = q′+q′ℓ+q′F .

Since q′′ ∈ Q
mi+1

T , we have q = q′′+q′ℓ+q′F +qℓ which proves the inclusion.

Corollary 37.

Q
mi+1

T +
⟨
Q

mi+1
L

⟩
F2[V ]
≡ Q 0

T +
⟨
Q

mi+1
L

⟩
F2[V ]

(mod FieldEq[V ]).

Proof. We use induction and Lemma 36.

Lemma 38. We have

linspan
(
Q

mi+1
L

)
=
Q mi

T + ⟨Q mi
L ⟩F2[V ] mod FieldEq[V ]

1

Proof. We denote Q mi
L′ the set of linear equations discovered in i-th iteration of the

repeat loop. We have

linspan
(
Q

mi+1
L

)
= linspan

(
Q mi

L ,Q mi
L′
)
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We prove both inclusions:

⊆:
linspan

(
Q mi

L ,Q mi
L′
)
⊆
Q mi

T + ⟨Q mi
L ⟩F2[V ] mod FieldEq[V ]

1

follows from the definition of Q mi
L′ .

⊇: Q mi
T + ⟨Q mi

L ⟩F2[V ] mod FieldEq[V ]
1
⊆ linspan

(
Q mi

L ,Q mi
L′
)

Let q ∈
Q mi

T + ⟨Q mi
L ⟩F2[V ] mod FieldEq[V ]

1
and we consider q0 ∈ Q mi

T , q1 ∈
⟨Q mi

L ⟩F2[V ], qF ∈ FieldEq[V ] such that q = q0 +q1 +qF .

We substitute the variables in q following Lemma 34. We denote W = {xtm, ...,xtn}.
Then, we have q+ q′1 + q′F = q′ with q′1 ∈ ⟨Q

mi
L ⟩F2[V ], q′F ∈ FieldEq[V ] and q′ ∈

B[W ]. Since q′ = q0 +(q1 +q′1)+(qF +q′F) is boolean with variables in W, we
obtain q′ ∈ Q mi

T due to Corollary 37 and Theorem 35.

Since q′ is linear, either it is 0 or it is in Q mi
L′ by definition of Q mi

L′ .

But substituting variables in a linear polynomial q by using linear polynomials
is just making linear combinations. So, q+ q′ is a linear combination of Q mi

L
elements.

Hence, q ∈ linspan
(
Q mi

L ,Q mi
L′
)
.

Algorithm 4 Alternative ElimLin algorithm.
Input: Q 0 ⊆ B[V ].
Output: Q̃T , Q̃L ⊆ B[V ] such that

⟨
Q 0⟩= ⟨QT ,QL⟩.

1: Set Q̃T ← linspan
(
Q 0) mod FieldEq[V ].

2: repeat

3: Q̃L′ ←
Q̃T

1

4: if 1 ∈ Q̃L′ then
5: Output ( /0,{1}).
6: else
7: Q̃T ←

⟨
Q̃L′
⟩

F2[V ]
+ Q̃T mod FieldEq[V ]

8: end if
9: until Q̃T unchanged.

10: Output
(

Q̃T , Q̃L

)
.
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So, by defining Q̃ mi
T = Q mi

T + ⟨Q mi
L ⟩F2[V ] mod FieldEq[V ] and Q̃ mi

L = linspan(Q mi
L ), we

can compute Q̃ mi
T and Q̃ mi

L in sequence using Algorithm 4.

Corollary 39. The sets Q̃ mi
T and Q̃ mi

L are invariant with respect to the ordering of vari-
ables in ElimLin.

Corollary 40. If (QT ,QL) is the output of ElimLin, the sets linspan(QL) and QT +

⟨QL⟩F2[V ] mod FieldEq[V ] are invariant with respect to the ordering of variables.

Notation 41. Let Q be the initial set for ElimLin. Let QT ,QL be the resulting sets of
ElimLin (see Algorithm 3). We denote ELres(Q ) = QT ∪QL.

3.2.2 Incompleteness of ElimLin

In Section 2.2.4, we introduced the mXL algorithm. For efficiency, it often runs ElimLin
in preprocessing phase. We now show that ElimLin is weaker than mXL for any de-
gree bound. We consider a minimal degree bound for which we run mXL to be D =

max
{

degq : q ∈ Sχ,γ,⋆
}

. Let us consider D different linear polynomials ℓi ∈
F2[V ]

1
,

where i ∈ [1,D]. Let us assume that S = {∏i ℓi +1}. Then, mXLD (S) will find ℓi +1 ∈
⟨S⟩ while ElimLin will stop as there exists no linear polynomial in the system.

3.2.3 Sparsity and ElimLin

We now demonstrate that the order of substitutions can significantly reduce the perfor-
mance. We consider a system

x1 + x2 + x3 + x4

x2 + x5 + x6 + · · ·+ x100

x1x2 + x1x3 + x1x4 + x5

We first consider substitutions x1 = x2 + x3 + x4 and we obtain
x1 + x2 + x3 + x4

x2 + x5 + x6 + · · ·+ x100

(x2 + x3 + x4)x2 +(x2 + x3 + x4)x3 +(x2 + x3 + x4)x4 + x5

i.e, 
x1 + x2 + x3 + x4

x2 + x5 + x6 + · · ·+ x100

x2 + x2x3 + x2x4 + x2x3 + x3 + x3x4 + x2x4 + x3x4 + x4 + x5
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which is simplified to {
x2 + x5 + x6 + · · ·+ x100

x2 + x3 + x4 + x5

In this case, it was unnecessary to create additional monomials. However, we may also
run Gauss-Jordan elimination to obtain a system

x1 + x3 + x4 + x5 + x6 + · · ·+ x100

x2 + x5 + x6 + · · ·+ x100

x1x2 + x1x3 + x1x4 + x5

Then, the substitution x1 = x3 + x4 + x5 + x6 + · · ·+ x100 and x2 + x5 + x6 + · · ·+ x100

leads to the same result x2 + x3 + x4 + x5 but in this case, we had to consider additional
100 new monomials. This makes the matrix representation of ElimLin much larger and
it leads to significant performance limitations. Hence, it may be beneficial to postpone
some substitutions to keep the polynomial system sparse. The strategy for decreasing
the number of monomials has been studied in the XSL method.

3.3 Optimizing ElimLin

In this section, we give details about our implementation of ElimLin. As we showed in
Section 3.2.3, the sparsity is influenced by the order of substitutions and Gauss elim-
inations. Finding the most sparse representation is (to our knowledge) an open prob-
lem. The sparsity influences time and memory requirements of ElimLin. For ElimLin to
be successful it is necessary to consider a large polynomial system, i.e, a lot of sam-
ples. Hence, we need an method to store polynomial systems efficiently and this can be
achieved if we manage to keep the system sparse. Courtois provided a publicly avail-
able implementation of ElimLin in [Cou10] which is supposed to be well optimized for
sparsity. However, we observed a decrease in the speed of this ElimLin implementation
for the very large systems that we considered. Hence, we take a different approach. We
consider n∈N such that n divides smpn. We split our polynomial system Q= Sχ,γ,⋆ into
n smaller disjoint subsystems Ti for i ∈ [1,n] such that |Ti| =

∣∣T j
∣∣. Our aim is to find

most of linear equations from small systems with minimal requirements and then, we
use these linear equations to reduce the size of the entire system. Actually, we compute

Q′ =
∪

i, j∈[1,n]
ELres

(
Ti∪T j

)
followed by ELres

(
Q′
)

.
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Due to Theorem 35, we have

ELres

 ∪
i∈[1,n]

Ti

= ELres

 ∪
i, j∈[1,n]

ELres
(
Ti∪T j

)
As the result of ElimLin does not depend on the order of substitutions, we suggest an
optimization in Algorithm 5 for handling a large amount of samples. In our optimiza-
tion, we consider parameters m,n ∈ N and we split the large system into n subsystems.
Actually, we split (χ,γ) into n pairs (χi,γi) in Sχ,γ,⋆. We keep merging m subsystems
at a time by additional invocation of ElimLin as in divide-conquer strategy. However,
we observed that many linear equations which arise from merging different subsystems
can be found more efficiently than by a standard divide-conquer strategy. Hence, we
consider all

(n
2

)
pairs among all subsystems and we run ElimLin on all these pairs to

recover hidden linear equations. Then, we include these linear equations whenever we
merge the subsystems. This leads to a so-called “leaves preprocessing”. We present
this technique in Algorithm 5. In Step 5, we compute hidden linear equations among
different subsystems and we use them in a recursive call in Step 9. Each internal node
of the tree in Figure 3.1 is handled by a recursive call of algorithm ElimNode. The Al-
gorithm ElimNode takes as an input boundaries and a list of result of ElimLin applied on
descendant leaves. It calls recursively ElimNode in Step 8 if the boundaries are larger
than m and then, it uses standard ElimLin to merge outputs of recursive calls in Step 10.
The correctness of Algorithm 5 follows directly from Theorem 35. Even though we
have ElimNode(ℓ,h,L′) = ElimNode(ℓ,h, /0) in Step 8, we found experimentally that the
computation of ElimNode(ℓ,h,L′) in Step 8 is more efficient with respect to both time
and memory requirements than the standard divide-and-conquer approach, i.e, compu-
tation ElimNode(ℓ,h, /0). A progressive aggregation of ElimLin systems following the
tree structure was already described [Cou06].
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Algorithm 5 Divide-Conquer with leaves processing
ElimFast:
Input: Sχ,γ,⋆ ⊆ F2[V ], n ∈ N, m ∈ N.
Output: QT ,QL

1: select Sχi,γi,⋆ for i ∈ [1,n] disjoint such that Sχ,γ,⋆ =
∪

i∈[1,n]
Sχi,γi,⋆

2: for i ∈ [1,n] do
3: (QTi,QLi)← ElimLin

(
Sχi,γi,⋆

)
4: end for
5: for (i, j) ∈ [1,n]× [1,n] do
6: (QTi,QLi)← ElimLin

(
QTi ∪QLi ∪QTj ∪QL j

)
7: end for
8: L list of (QTi,QTi) for (i, j) ∈ [1,n]× [1,n]
9: return ElimNode(ℓ,n,L)

ElimNode:
Input: a,b ∈ [1,n], L list of T{i, j} for (i, j) ∈ [a,b]× [a,b]

Output: ElimLin
(

QT[a,b],QL[a,b]

)
1: if b ̸= a then
2: QT[a,b] ← /0
3: QL[a,b] ← /0
4: for t = 0 to m−1 do
5: ℓ← a + t b−a

m
6: h← a +(t +1)b−a

m

7: L′← list of
(

QT[a,b],QL[a,b]

)
for (i, j) ∈ [ℓ,h]× [ℓ,h]

8:
(

QT[a,b],QL[a,b]

)
←
(

QT[a,b],QL[a,b]

)
∪ElimNode(ℓ,h,L′)

9: end for
10: return ElimLin

(
QT[a,b] ∪QL[a,b]

)
11: else
12: return ElimLin

(
QT[a,b],QL[a,b]

)
13: end if
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Figure 3.1: Divide-Conquer with leaves processing, Algorithm 5 for m = 2
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4
The Selection of Samples

In this chapter, we investigate the performance of ElimLin. We first give simulations with
a random selection of samples. Then, we introduce the cube selection of samples and we
demonstrate that it outperforms a random strategy and more sophisticated techniques,
such as selection of samples using truncated differential.
In Section 4.1, we give attack simulations without the selection of samples.
Then, we introduce our strategy for selection of samples in Section 4.2. First in Sec-
tion 4.2.1, we discuss properties of systems where ElimLin succeeds. Then, we introduce
our strategy for the selection of plaintexts and then, we show a link to cube attack in
Section 4.2.3.
The results of this chapter were published at FSE2012 [CSSV12], ACISP14 [SSV14]
and SECRYPT14 [CMS+14].

4.1 Multiple Samples Effect on ElimLin

We present attack simulations against LBlock which extend the results from [CSSV12].
However since we had no access to source code of ElimLin implementation in [Cou10],
we run the tool using wine which may have led to a degradation in performance. The
experiments were performed on 8-core Intel i7 CPU (Q740) running at 1.73GHz with
8GB of RAM. In both cases, we build a system of polynomial equations Sχ,γ,⋆ where χ
represents a list of multiple plaintexts and γ represents a list of corresponding cipher-
texts obtained by an unknown secret key κ. This unknown key is recovered by running
ElimLin

(
Sχ,γ,⋆

)
. For a comparison with a brute force attack, we consider an optimized

implementation of cipher which requires 10 CPU cycles per round. All attacks in this
chapter are faster than exhaustive search. In general, we consider a cipher broken even
if we can recover only a few bits of the secret key.
We demonstrate the necessity of using multiple samples in algebraic attacks. We now
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Table 4.1: samples: 5, rounds: 8, guessed bits: 28LSB

iteration dimQT dimQL
1 7440 6372
2 1068 208
3 860 139
4 721 70
5 651 44
6 607 25
7 582 18
8 564 3
9 561 0

Table 4.2: samples: 5, rounds: 8, guessed bits: 30LSB

iteration dimQT dimQL
1 7440 6374
2 1066 210
3 856 146
4 710 77
5 633 46
6 587 25
7 562 18
8 544 3
9 541 0

concentrate only on the results against LBlock. The results on CTC and MIBS were
presented in [CSSV12]. LBlock is a Feistel-based block cipher for embedded devices.
It takes 80-bit key and it operates on 64 bit blocks. It was presented at ACNS 2011 in
[WZ11]. We present simulations of attacks against reduced round version of LBlock and
demonstrate the impact of increased number of samples.

We compare our attack with algebraic solver called PolyBoRi which, unlike ElimLin,
computes the Gröbner basis using the F4 algorithm. We consider an attack with 6
known plaintexts against 8-round LBlock. We further guessed 32-bits of secret key.
Even though ElimLin can successfully break the cipher in 16 minutes, PolyBoRi crashed
due to lack of memory.

In what follows, we show that the performance can be improved by selection of samples.
Hence in what follows, we will concentrate on chosen plaintext attacks.
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Table 4.3: samples: 5, rounds: 8, guessed bits: 32LSB

iteration dimQT dimQL
1 7440 6376
2 1064 214
3 850 152
4 698 93
5 605 64
6 541 26
7 515 16
8 499 3
9 496 0

Table 4.4: samples: 6, rounds: 8, guessed bits: 28LSB

iteration dimQT dimQL
1 8784 7524
2 1260 251
3 1009 176
4 833 93
5 740 58
6 682 36
7 646 18
8 628 4
9 624 0

Table 4.5: samples: 6, rounds: 8, guessed bits: 30LSB

iteration dimQT dimQL
1 8784 7526
2 1258 253
3 1005 184
4 821 103
5 718 63
6 655 37
7 618 18
8 600 4
9 596 0
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Table 4.6: samples: 6, rounds: 8, guessed bits: 32LSB

iteration dimQT dimQL
1 8784 7528
2 1256 257
3 999 191
4 808 122
5 686 84
6 602 40
7 562 16
8 546 16
9 530 19
10 511 123
11 388 102
12 286 94
13 192 147
14 45 45

Table 4.7: samples: 7, rounds: 8, guessed bits: 28LSB

iteration dimQT dimQL
1 10128 8676
2 1452 294
3 1158 211
4 947 123
5 824 75
6 749 49
7 700 21
8 679 0
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Table 4.8: samples: 7, rounds: 8, guessed bits: 30LSB

iteration dimQT dimQL
1 10128 8678
2 1450 296
3 1154 220
4 934 133
5 801 83
6 718 51
7 667 22
8 645 0

Table 4.9: samples: 7, rounds: 8, guessed bits: 32LSB

iteration dimQT dimQL
1 10128 8680
2 1448 300
3 1148 228
4 920 157
5 763 108
6 655 54
7 601 21
8 580 24
9 556 139

10 417 125
11 292 139
12 153 143
13 10 10
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Table 4.10: samples: 8, rounds: 8, guessed bits: 28LSB

iteration dimQT dimQL
1 11472 9828
2 1644 337
3 1307 248
4 1059 149
5 910 90
6 820 59
7 761 23
8 738 0

Table 4.11: samples: 8, rounds: 8, guessed bits: 30LSB

iteration dimQT dimQL
1 11472 9830
2 1642 339
3 1303 258
4 1045 160
5 885 100
6 785 61
7 724 24
8 700 0
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Table 4.12: samples: 8, rounds: 8, guessed bits: 32LSB

iteration dimQT dimQL
1 11472 9832
2 1640 343
3 1297 267
4 1030 189
5 841 130
6 711 65
7 646 23
8 623 21
9 602 156

10 446 145
11 301 153
12 148 141
13 7 7

Table 4.13: samples: 11, rounds: 8, guessed bits: 30LSB

iteration dimQT dimQL
1 15504 13286
2 2218 468
3 1750 373
4 1377 253
5 1124 161
6 963 113
7 850 30
8 820 2
9 818 2

10 816 0
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Table 4.14: samples: 12, rounds: 8, guessed bits: 30LSB

iteration dimQT dimQL
1 16848 14438
2 2410 511
3 1899 411
4 1488 289
5 1199 189
6 1010 136
7 874 39
8 835 32
9 803 229
10 574 232
11 342 243
12 99 99

4.2 Improvements in the Selection of Samples

In this section, we propose a new method for the selection of samples in algebraic at-
tack. We suggest a simple algorithm to determine sets of samples which allow ElimLin
to break a higher number of rounds. First in part 4.2.1, we give a characterization of
the system when ElimLin succeeds. We state Lemma 42 which introduces a polynomial
which evaluates to a constant iff ElimLin succeeds. Unlike in cube attack (which we re-
call in Section 4.2.3), we cannot evaluate this polynomial. Hence, we make a heuristic
assumption that this polynomial evaluates to a constant iff a cube attack/cube distin-
guisher on a reduced-round cipher is successful. We show this for LBlock, KATAN32
and SIMON. Table 4.19 shows the number of independent linear equations in key vari-
ables recovered by ElimLin in the case of SIMON. Our selection strategy is described in
part 4.2.2. This selection strategy is based on cube attacks which we recall in part 4.2.3.
In part 4.3, we show the performance of such a technique on LBlock, and compare our
results to previous algebraic attacks based on ElimLin. In part 4.2.4, we give further
insight of our method and directions for future testing and improvements.

4.2.1 Characterization of systems when ElimLin succeeds

We now explore the properties of systems for which ElimLin succeeds to recover the
secret key. We use this characterization in Part 4.2.2 to derive a selection strategy for
plaintexts.
We reformulate ElimLin (Algorithm 3) based on matrix operations. Let us consider
matrices over F2[V ], i.e, the original polynomial system Q = {Eq1, . . . ,Eqm0

} is repre-
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sented as

 Eq1
...

Eqm0

.

ElimLin performs Gauss elimination and substitutions. The Gauss elimination (step 14
of Algorithm 3), corresponds to the matrix multiplication.

1 0 0 0
1 1 0 0
...
0 0 0 1




Eq1
Eq2

...
Eqm0

=


Eq1

Eq1 +Eq2
...

Eqm0

 .

The substitution can be expressed as multiplication by a polynomial. Let us assume
substitution of x1 using linear polynomial Eq1 = x1 + ℓ(

→
x ). Assume that Eq2 = x1 p+q

where x1does not appear in ℓ, p and q. After substitution, we obtain ℓ(
→
x )p+q. Hence,

the substitution of x1 in Eq2 can be expressed as a matrix multiplication
1 0 0 0
p 1 0 0

...
0 0 0 1




Eq1
Eq2

...
Eqm0

=


(x1 + ℓ(

→
x ))

pEq1 +Eq2
...

Eqm0

 .

We use the asociativity and express ElimLin(Q ) by a single matrix multiplication, say
E ·Q . We implicitely assume that computations are done modulo FieldEq[V ].

Lemma 42. Consider a system S such that ElimLin applied to Sχ,γ,⋆ recovers the key bit
k j as value c j ∈ F2. Let E be the ElimLin transformation on Sχ,γ,⋆. We define S ′ as the
system Sχ,γ,⋆ where all equations s j

p,0−χ j
p and s j

p,rndn− γ j
p are replaced by 0. S ′ is thus

equivalent to S . Then,
Evalχ,γ,⋆

(
E ·S ′

)
= E ·Sχ,γ,⋆

and whenever the matrix E ·Sχ,γ,⋆ contains a polynomial k j+c j the matrix E ·S ′ contains
a line k j + c j +q′ with Evalχ,γ,⋆ (q′) = 0.

Proof. We consider the line α of matrix E ·Sχ,γ,⋆ leading to k j + c j.

k j + c j =
(
E ·Sχ,γ,⋆

)
α

=∑
i

pi,αEqi +∑
p j

qp j

(
s j

p,0−χ j
p

)
+∑

p j

rp j

(
s j

p,rndn− γ j
p

)
mod FieldEq[V ].

Let us write
q = ∑

i
pi,αEqi mod FieldEq[V ]
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and
q′ = q+ k j + c j.

Then,

Evalχ,γ,⋆
(
q′
)
= Evalχ,γ,⋆

(
∑
p j

qp j

(
s j

p,0−χ j
p

)
+∑

p j

rp j

(
s j

p,rndn− γ j
p

))
= 0.

In the first case, the line α contains polynomial k j + c j. Hence in the second case, we
also obtain the polynomial k j + c j. We set

q′ = k j + c j +∑
i

pi,αEqi +∑
p j

qp js
j
p,0 +∑

p j

rp js
j
p,rndn

and obtain the claim.

The polynomial q′ will be important in the selection strategy of the plaintexts. The
existence of such polynomial is essential for ElimLin to be able to recover the secret key.
At the same time, the chance of existence of such polynomial can be improved if we
select samples based on a successful cube attack.

We consider systems Sχ,⋆,⋆ and Sχ′,⋆,⋆. Then, we run ElimLin and recover matrices E

and E′ such that ElimLin
(
Sχ,⋆,⋆

)
= E · Sχ,⋆,⋆ and ElimLin

(
Sχ′,⋆,⋆

)
= E′ · Sχ′,⋆,⋆. Due to

Theorem 35, at one stage of ElimLinSχ∪χ′,⋆,⋆, we encounter an ElimLin matrix which
generates the same space as the matrix

(E
E′
)
. Let us now consider the rank of the matrix(E

E′
)
. The rank is minimal if hw(χ+χ′) = 0, i.e, χ = χ′. Similarly if hw(χ+χ′) = 1,

messages χ and χ′ are very close and hence, the ElimLin
(
Sχ,⋆,⋆

)
and ElimLin

(
Sχ′,⋆,⋆

)
perform many equivalent substitutions and hence, the intersection of vector spaces gen-
erated by lines of E and E′ is large and the rank of the matrix

(E
E′
)

is smaller than for
a random pair (χ,χ′). In the case of cube attack and a cube of “dimension” m, any
pair of messages (χ,χ′) has hw(χ+χ′) ≤ m. This suggest that cube attack is a good
candidate for selection of samples for ElimLin.

4.2.2 Cube Based Selection Strategy for Plaintexts in ElimLin

We gave a characterization of the polynomial system when ElimLin recovers the value of
the key k j in Lemma 42. We showed that ElimLin can succeed only if there exists a poly-
nomial q in the ideal spanned by the polynomial system ⟨S⟩, such that Evalχ,γ,⋆ (q) is
a linear polynomial in the key variables. We now consider the polynomial q′ from
Lemma 42. As we cannot choose simultaneously the plaintext and the ciphertext for
a single sample, we consider several different scenarios: selecting plaintexts only, ci-
phertexts only, selecting partly plaintexts and partly ciphertexts. The selection of re-
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lated plaintexts such that corresponding ciphertexts are also related is considered in
[CMS+14]. These pairs are constructed using higher order and/or truncated differential
cryptanalysis [Knu94]. In our scenario, we concentrate on the selection of only plain-
texts. We found no advantage in the selection of only ciphertexts. The selection of
part of plaintexts and part of ciphertexts is yet to be explored. The selection of related
plaintexts and corresponding ciphertexts is specific to a chosen cipher. However, our
goal is to determine an optimal generic selection of samples. We use Lemma 42 for
the selection of plaintexts. It specifies the properties of q′ which has to evaluate to 0
when we set plaintext and ciphertext variables, i.e, when we set χ and γ. However, we
would like to guarantee that q′ evaluates to 0 only when setting the plaintexts, as we
cannot control both the plaintexts and the ciphertexts. Hence, we are looking for a set
of samples that lead to an existence of such q′ when we set only plaintext variables. Let
degr(p) denote the total degree of the polynomial p in variables corresponding to round
r, i.e, sr

1,1, . . . ,s
r
smpn,mln. Provided the deg0(q

′) < D, we can build a set of 2D samples,
i.e, find χ, such that q′ evaluates to 0. This leads us to setting values χ according to
a cube recovered from cube attack.

4.2.3 Revisiting Cube Attacks

The cube attack [DS09a] can be seen as a tool to analyze a black-box polynomial which
we represent by f (x,k). Cube attack can be seen as a method to investigate the diffu-
sion of the cipher and the selection of the cube is the selection of plaintexts such that
diffusion is minimal. It was first described as Algebraic IV Differential Atack (AIDA).
The relation of cube attacks, cube testers, AIDA and High Order Differential attack was
explored in [ZGLC]. The aim is to derive a polynomial system which is easy to solve
and which is satisfied for all keys, i.e, for all values of k. The attacker does this in an
offline phase. Afterwards, in an online phase, the attacker finds the evaluation for each
polynomial and solves the system. We query this polynomial in an offline phase for
both parameters x and k. In the online phase, we are allowed to use queries only in the
first parameter x, as k is set to an unknown value κ.

The objective is to recover this κ. To achieve this, we find a hidden structure of f (x,k)
in the offline phase and use it to derive κ in the online phase. In the offline phase, we
find sets of plaintexts Ci such that ∑x∈Ci f (x,k) behaves like a linear function ℓi(k) and
ℓi’s are linearly independent. In the online phase, we ask the oracle for encryptions
of plaintexts from Ci and solve the system of linear equations. In the following, we
derive the algebraic expression of ∑x∈Ci f (x,k) and show that this function can indeed
behave like a function ℓ(k). Let f (x,k) be a black-box polynomial which can be for
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some coefficients aIJ ∈ F2 expressed as

f (x,k) = ∑
I⊆{0,1}mln

J⊆{0,1}kln

aIJ ∏
i∈I

xi ∏
j∈J

k j.

Definition 43. Let m ∈ {0,1}mln and t ∈ {0,1}mln such that t∧m = 0. We define Cm,t =

{x : x∧ m̄ = t}. We call Cm,t a “cube”, m a “mask”, and t a “template”, and we denote
Im = {i : 2i∧m ̸= 0}, where 2i represent the bitstring with 1 at position i.

Example: Let m = 00010110 and t = 11100001. Then, we have |Cm,t |= 23 and

Cm,t =



11110111,
11110101,
11110011,
11110001,
11100111,
11100101,
11100011,
11100001



Theorem 44. Let Cm,t be a cube, and f (x,k) = ∑
I⊆{0,1}mln

J⊆{0,1}kln

aIJ ∏
i∈I

xi ∏
j∈J

k j. Then,

∑
x∈Cm,t

f (x,k) = ∑
J⊆{0,1}kln,

I:Im⊆I

aIJ ∏
i∈I

ti ∏
j∈J

k j = ∑
J

a′J ∏
j∈J

k j

for a′J = ∑
I:Im⊆I

aIJ ∏
i∈I

ti.
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Proof.

∑
x∈Cm,t

f (x,k) = ∑
x∈Cm,t

∑
IJ

aIJ ∏
i∈I

xi ∏
j∈J

k j

= ∑
IJ

aIJ

(
∑

x∈Cm,t

∏
i∈I

xi

)
∏
j∈J

k j

= ∑
IJ

aIJ

((
∑

x∈Cm,t

∏
i∈I∩Im

xi

)
∏

i∈I\Im

ti

)
∏
j∈J

k j

⋆
= ∑

IJ
aIJ

(
1Im⊆I ∏

i∈I\Im

ti

)
∏
j∈J

k j

= ∑
J,

I:Im⊆I

aIJ ∏
i∈I

ti ∏
j∈J

k j

= ∑
J

(
∑

I:Im⊆I
aIJ ∏

i∈I
ti

)
∏
j∈J

k j

= ∑
J

a′J ∏
j∈J

k j

The equality ⋆ is satisfied, since

∑
x∈Cm,t

∏
i∈I∩Im

xi =

{
0 if I ̸⊆ Im

1 if I ⊇ Im

This holds because ∏ appears twice in the sum for every i ∈ I \ Im.

The success of cube attacks is based on finding enough cubes Cmi,ti , i.e, enough mis, tis,
such that

∑
χ∈Cmi,ti

f (x,k) = ∑
J⊆{0,1}kln

ai
J ∏

j∈J
k j (4.1)

are linearly independent low degree equations.

In the case of block ciphers, we have mln statebits we can consider for cube attack.
Hence, we characterize the cube Cm,t by the number of linear equations obtained from
cube attack.

Definition 45. Let Cm,t be a cube for r-round cipher and let f j be a blackbox polynomial
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corresponding to j-th bit of the state. Then, we call cuberank the number of equations
∑x∈Cm,t f j(x,k) which have the right-hand side in Eq. 4.1 linear.

Even though cube attacks may be a powerful tool in algebraic cryptanalysis, it has been
successful against only very few ciphers. The reduced round TRIVIUM [Can06] can be
attacked for 784 and 799 rounds [FV13], and can be distinguished with 230 samples
up to 885 rounds [ADMS09]. The full round TRIVIUM has 1152 rounds, which means
that 70% of the cipher can be broken by this simple algebraic technique. GRAIN128
[HJM07] was broken using the so called dynamic cube attack in [DS09a]. KATAN32
was attacked in [BCN+10] using the so called side-channel cube attack first introduced
in [DS09b]. In [ALRSS11], the authors considered cubes leading to non-linear relations
among key variables. While cube attacks and cube distinguishers celebrate success in
only few cases, we show that they can be used for selection of samples in other algebraic
attacks.

4.2.4 ElimLin and Cube Attacks

In this section, we explain the intuition behind using a cube attack for selecting samples
for ElimLin. We first elaborate on our observations about ElimLin’s ability to recover the
equation found by cube attack. Later, we compare our approach to classical cube attacks
and we give additional observations about the behavior of ElimLin with our selection of
samples.

Structure of the cube. Let Eκ denote the encryption under the key κ, and let us con-
sider two samples for the plaintexts χ and χ+∆, where ∆ has a low Hamming weight.
Many statebits in the first rounds of computation Eκ(χ) and Eκ(χ+∆) take the same
value, as they can be expressed by the same low degree polynomial in the key and
state variables. This can be detected by ElimLin and used to reduce the total number
of variables of the system. Therefore, good candidates for the selection of samples are
plaintexts which are pairwise close to each other — in other words, plaintexts from
a cube. Let us now consider χ = (χp : χp ∈Cm,t). We consider a blackbox polynomial
f (x,k) computing the value of state variable s j

x,r for a key κ, a plaintext x, a statebit j and
r rounds. This blackbox polynomial is formalized in Chapter 5, Definition 49 as eχ

∣∣
κ.

The cube attack gives an equation ∑χp∈Cm,t f (χp,k) = ℓ(k) for a linear function ℓ. We
observe that the equation ∑χp∈Cm,t f (χp,k) = ℓ(k) is found also by ElimLin in a majority
of cases. We further found that ElimLin can recover many pairs of indices (a,b), such
that s j

a,r equals to s j
b,r. We assume that this is the fundamental reason for the success of

cube attack. Thanks to such simple substitutions, ElimLin can break a higher number of
rounds while decreasing the running time. The strategy of selecting correlated samples
was also explored in [FP10]. The authors chose messages based on an algebraic-high

54



The Selection of Samples

order differential.

ElimLin vs. Cube Attacks. The attack based on cube attack consists of an expensive
offline phase, where we build the system of equations which is easy to solve, i.e, linear
(or low degree) equations in the key bits; and the online phase where we find evaluations
for these linear equations and solve the system. The attack based on ElimLin consists of
a cheap offline phase, as the system of equations represents the encryption algorithm,
and the online phase is therefore more expensive. Our attack can be seen as a mix of
these two approaches. We increase the cost of the offline phase to find a good set of
samples and run ElimLin on the system without the knowledge of ciphertext. Hence, we
simplify the system for the online phase which is subsequently faster.

Comparison of the number of attacked rounds by Cube Attacks and by ElimLin
with the same samples. In our attacks, we observed an interesting phenomena which
occurs for every cipher we tested. Our first phase consists of finding a cube attack
against a R round ciphers. In the next phase, we consider R+ r round cipher, build
a system of equations, set plaintext bits correspondingly, and run ElimLin to obtain a sys-
tem P. In the next step, we query the encryption oracle for ciphertexts, build a system
of equations corresponding to rounds [R,R+ r], and run ElimLin to obtain a system C.
We found that the success of ElimLin to recover the secret key of R+ r round cipher
strongly depends on the selection of plaintexts: random samples perform worse than
random cubes and random cubes preform worse than the ones which perform well in
cube attack. The plaintexts selected based on a cube allow ElimLin to find more linear
relations, which are in many cases of form s j

a,r = s j
b,r. Hence, we obtain a system with

significantly less variables. This allows us to recover the secret key. In the cases of
LBlock and KATAN32 we obtained r ≈ R

3 . These observation suggest a further research
in performance of ElimLin against ciphers such as TRIVIUM and GRAIN128, as cube
attacks against a significant number of rounds [FV13, DS11, ADMS09] already exists.

4.3 LBlock: Selection of plaintexts

In this section, we show that the selection of plaintexts based on the success of cube
attack is a good strategy for satisfying the condition from Section 4.2.1. We give an
attack against 10 rounds of LBlock. This attack outperforms the previous attempts of
algebraic cryptanalysis [CSSV12]. We compare our strategy of using samples for cube
attack to the strategy of selecting a random cube or a random set of samples.

Description of LBlock. LBlock is a lightweight block cipher which operates on block
size of 64-bit and the key size is 80-bit. The scheme is shown in Figure 4.1. LBlock
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is optimized for hardware implementation, but it has a good performance in software
as well. The proposal was analysed by authors in [WZ11] and subsequently analysed
in [WW14, SW12, SN12]. LBlock is a modified Fiestel scheme with a permutation
implemented using multiple S-boxes.

Breaking 8 rounds of LBlock. The previous result on breaking 8 rounds of LBlock
using ElimLin required 6 random plaintexts, and guessing 32 least significant bits of the
key (out of 80bits). These results can be found in Table 4.6. We found that if we select 8
plaintexts based on cube Cm,t for m=0x0000000000000007 and t=0xe84fa78338cd9fb0,
we break 8 rounds of LBlock without guessing any key bits. We verified this result for
100 random keys and in each case, we were able to recover the secret key using ElimLin.

Breaking 10 rounds of LBlock. We are not aware of any previous successful attempts
of breaking 10 rounds of LBlock by algebraic technique. Following the approach for 8
rounds, we found 16 plaintexts based on a cube Cm,t for m=0x0000000000003600 and
t=0xe84fa78338cd89b6, we break 10-rounds of LBlock without guessing any key bits.
We verified this result for 100 random keys. We were able to recover each of the 100
secret keys we tried using ElimLin. We tried to extend the attack to 11 rounds of LBlock,
however we have not found any cube of dimension 5 or 6 which would allow ElimLin to
solve the system.

Random vs Non-Random Selection of Plaintexts. We tested the performance of
ElimLin applied to 10-round LBlock for the same number of plaintext-ciphertext pairs.
Our results show that when ElimLin algorithm is applied to a set of n plaintexts from
a cube, the linear span it recovers is larger than for a set of n random samples. We also
show that ElimLin behaves better on some cubes, and that this behavior is invariant to
affine transformation. The results are summarized in Table 4.15. In LBlock, we found no
advantage between random and nonrandom template t. However in KATAN32, we found
the choice of the template t is very important. In Table 4.16, we show that 69 rounds
of KATAN32 was not solved for template t=0x00000000, t=0xf0000000, t=0x0f000000,
etc. But at the same time, we broke 70 rounds of KATAN32 using the same mask and
template t=0x39d88a02.

4.4 KATAN32: Selection of samples

KATAN is an efficient hardware oriented block cipher. It comes in three different ver-
sions: 32, 48 and 64 block sizes. They all share an 80-bit key. It also comes with an
even lighter version KTANTAN which has a different key scheduling algorithm.
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F ⊕

K1

X1

≪ 8

X0

F ⊕

K32

≪ 8

X32 X33

F

Ki

Xi

s7 s6 s5 s4 s3 s2 s1 s0

Figure 4.1: LBlock
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10 rounds of LBlock: Cm,t system of 24 samples solved remaining variables
m=0x0000000000003600 t=0xe84fa78338cd89b6 yes 0
m=0x0000000000d00001 t=0x856247de122f7eaa yes 0
m=0x0000000000003600 random yes 0
m=0x0000000000d00001 random yes 0

m=random deg4 random no ≈ 700
random set no ≈ 2000

Table 4.15: Results on 10-round LBlock
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KATAN32 uses two nonlinear functions fa and fb in each round. The nonlinear functions
are defined as follows.
fa (L1) = L1[x1]+L1[x2]+L1[x3]L1[x4]+L1[x5] · IR+ ka

fb (L2) = L2[y1] + L2[y2] + L2[y3]L2[y4] + L2[y5]L2[y6] + kb where IR is a so-called ir-
regular update rule and ka, kb are the two subkey bits. The values xi, yi are defined for
each variant separately. After the computation of nonlinear functions, the registers L1

ad L2 are shifted so that MSB of Li goes out and is loaded as LSB into Li+1 mod 2. The
representation of KATAN32 can be found in Figure 4.2. The key schedule of KATAN32
cipher loads 80-bit key into a linear feedback shift register (LFSR). At each round the
positions 0 and 1 of LFSR are generated as the round’s subkey k2i, k2i+1 and LFSR is
clocked twice. The feedback polynomial is

x80 + x61 + x50 + x13 +1

Hence the keyschedule is computed recursively as follows:

ki =

{
Ki if 0≥ i≤ 79

ki−80 + ki−61 + ki−50 + ki−13 otherwise

⊕∧

⊕ ⊕∧ ka

∧⊕
⊕

⊕kb

IR

L1

L2

fa

fb

∧

Figure 4.2: KATAN32

Previous results of algebraic cryptanalysis. The previous best algebraic attack is
given by Bard et al. [BCN+10]. They use SAT solvers against KATAN and they mana-
ged to break 79 rounds of KATAN32 using SAT solver using 20 chosen plaintexts with 45
guessed key bits. Furthermore, they broke 75 rounds of KATAN32 with 35 guessed key
bits. The authors further tried combine cube attack and SAT solver. They used samples
based on a relatively small cubes which lead to linear equations among key variables.
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Then, they converted this system into a boolean formula and applied SAT solver. Hence,
the SAT solver would obtain several linear equations among key bits which should help
to speed up the key search.
In our work, we take a different approach. First, we combine cube attack with ElimLin
which does not perform any guessing of key bits or state variables. This means we pro-
vide less information to ElimLin and hence, the SAT solver should perform significantly
better. However, this allows us to evaluate our strategy for selection of samples more
precisely. Second, we apply the cube attack on a smaller number of rounds than we
intend to attack. This results in finding smaller cubes. Then, we build a relatively large
system of samples in our cube and we solve it by ElimLin. However, previous imple-
mentations of ElimLin could not cope with systems as large as what we obtained from
cube attack and hence, we developed a new more optimized ElimLin solver.
We give the results of the attack against KATAN32 in Table 4.17. We performed the
measurements on 16 core Xeon 3.3GHz with 72GB of memory. In our attacks, we do
not guess any key bit and achieve a comparable number of rounds. However, we need
to use more plaintext ciphertext pairs (128−1024 instead of 20). The main advantage
of our attack is not only the fact that we do not need to guess the key bits, but also
its determinism. As the success of other algebraic attacks such as SAT solvers and
Gröbner basis depends on the performance of ElimLin, our results may be applied in
these scenarios for improving the attacks. In Table 4.16, we show that the selection
of samples is important for KATAN32. The reader can observe that in the case of 69
rounds, the template of the cube is important for ElimLin to succeed. In the case when
the template was selected based on cube attack for 55 rounds, the attack using ElimLin
was successful to recover the key. However, when we use the same mask but a random
template, ElimLin could not recover any key bit. We can also observe when the number
is maximal for this set of plaintexts: when we increase the number of rounds, ElimLin
fails to recover the key. The reader can also see that an increase in the number of
samples allows to break more rounds in some cases. In the case of 71 rounds, we
extend the mask of the cube by one bit and in one case we can recover the key using
ElimLin. In the other case, we cannot. In the case of 76 rounds, we were unable to
break the system for any cube attack for 55 rounds. However, we found a cube attack
of 59 rounds, which allowed ElimLin to solve the system for 76 round KATAN32 and
256 samples. In Table 4.17, we give successful results of attack by ElimLin applied on
reduced round KATAN32 for various number of rounds. The previous best algebraic
attacks can be found in [BCN+10]. The authors guess 35 out of 80 bits of the key and
solve the system using SAT solver. We can achieve the same amount of rounds without
any key guessing and with a running time within several hours.
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Table 4.16: Attack on KATAN32 using ElimLin: rounds vs. masks

rnd cube rnd mask template samples success time
69 55 m=0x00007104 t=0x39d88a02 32 yes <1 hour
69 55 m=0x00007104 t=0x65f30240 32 yes <1 hour
69 n.a m=0x00007104 t=0x00000000 32 no 2 hours
69 n.a m=0x00007104 t=0xf0000000 32 no 2 hours
69 n.a m=0x00007104 t=0x0f000000 32 no 2 hours
69 n.a m=0x00007104 t=0x00f00000 32 no 2 hours
70 55 m=0x00007104 t=0x39d88a02 32 no 3 hours
70 55 m=0x00007104 t=0x65f30240 32 no 3 hours
71 55 m=0x00007105 t=0x23148a40 64 yes 3 hours
71 55 m=0x00007904 t=0x20128242 64 no 7 hours
76 59 m=0x0004730c t=0x21638040 256 yes 3 days

Table 4.17: Attack on KATAN32 using ElimLin

rnd cube rnd mask template samples solved/tests time
71 55 m=0x0002700c t=0xf2b50080 64 5/5 <1 hour
70 55 m=0x0c007104 t=0xa2d88a61 128 5/5 <1 hour
70 55 m=0x00a07104 t=0x50570043 128 5/5 <1 hour
71 55 m=0x00007105 t=0x23148a40 64 10/10 3 hours
72 55 m=0x00a07104 t=0x50570043 128 20/20 7 hours
72 55 m=0x0c007104 t=0xa2d88a61 128 60/60 7 hours
73 55 m=0x0c007104 t=0xa2d88a61 128 5/5 7 hours
73 55 m=0x0002d150 t=0x20452820 128 20/20 8 hours
73 55 m=0x0002d150 t=0xffd40821 128 20/20 8 hours
74 56 m=0x10826048 t=0xca458604 128 5/5 9 hours
75 56 m=0x80214630 t=0x76942040 256 5/5 23 hours
75 56 m=0x1802d050 t=0x267129a8 256 5/5 23 hours
75 56 m=0x908a1840 t=0x6b05c0bd 256 5/5 23 hours
75 56 m=0x08030866 t=0x8620f000 256 5/5 23 hours
75 56 m=0x52824041 t=0x0d288d08 256 5/5 23 hours
75 56 m=0x10027848 t=0xcf758200 256 5/5 23 hours
76 59 m=0x0004730c t=0x21638040 256 3/3 3 days
77 59 m=0x03057118 t=0x2cb20001 1024 3/3 8 days
78 59 m=0x03057118 t=0x2cb20001 1024 2/2 9 days
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4.5 SIMON: Selection of samples

In this section, we show that the selection of samples based on the cube attack can sig-
nificantly improve the performance of algebraic attacks against SIMON. In [CMS+14],
the authors show that the selection of samples based on Truncated Differential gives
a substantial advantage over the random selection of samples. They present an attack
against 10 round SIMON using ElimLin. In what follows, we present an attack against
13-round SIMON using ElimLin. We achieve this improvement by selecting the samples
such that a cube attack on 10 round SIMON can find a linear (or constant) equation in
key bits.

4.5.1 General Description of SIMON

SIMON is a family of lightweight block ciphers with the aim to have optimal hardware
performance [BSS+13]. It follows the classical Feistel design paradigm, operating on
two n-bit halves in each round, and thus the general block size is 2n. The SIMON
block cipher with an n-bit word is denoted by SIMON-2n, where n = 16,24,32,48 or 64
and if it uses an m-word key (equivalently mn-bit key), we denote it as SIMON-2n/mn.
In this paper, we study the variant of SIMON with n = 32 and m = 4 (i.e 128-bit key).
Each round of SIMON applies a non-linear, non-bijective (and as a result non-invertible)
function F : Fn

2→ Fn
2 to the left half of the state which is repeated for 44 rounds. The

operations used are as follows:

1. bitwise XOR, ⊕

2. bitwise AND, ∧

3. left circular shift, S j by j bits.

We denote the input to the i-th round by Li−1∥Ri−1 and in each round the left word Li−1

is used as input to the round function F defined by,

F(Li−1) = (Li−1 ≪ 1)∧ (Li−1 ≪ 8)⊕ (Li−1 ≪ 2)

Then, the next state Li||Ri is computed as follows (cf. Fig. 4.3),

Li = Ri−1⊕F(Li−1)⊕Ki−1

Ri = Li−1

The output of the last round is the ciphertext.
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⊕

Li−1

≪ 8

Ri−1

≪ 1
∧

≪ 2 ⊕

RiLi

Figure 4.3: The round function of SIMON

The key schedule of SIMON is based on an LSFR-like procedure, where the nm-bits of
the key are used to generate the keys K0,K1, ...,Kr−1 to be used in each round. There
are three different key schedule procedures depending on the number of words that the
secret key consists of (m = 2,3,4).
At the beginning, the first m words K0,K1, ...,Km−1 are initialized with the secret key,
while the remaining are generated by the LSFR-like construction. For the variant of our
interest, where m = 4, the remaining keys are generated in the following way:

Y = Ki+1⊕ (Ki+3 ≫ 3)

Ki+4 = Ki⊕Y ⊕ (Y ≫ 1)⊕ c⊕ (z j)i

The constant c = 0xff...fc is used for preventing slide attacks and attacks exploiting
rotational symmetries [BSS+13]. In addition, the generated subkeys are xored with
a bit (z j)i, that denotes the i-th bit from the one of the five constant sequences z0, ...,z4.
These sequences are defined in [BSS+13] and for our variant we use z3. The equation
generator of SIMON and SPECK ciphers can be found in [Son14].

4.5.2 Limitations of Cube Selection

We set up an offline phase of cube attack against 10 and 11 round SIMON to select
plaintext/ciphertext pairs used to build a polynomial system of 13 round SIMON which
is afterwards solved by ElimLin. We rank the results from offline phase of cube attack
as follows. In Section 4.2.3, we reviewed the cube attacks as an attack against a black-
box polynomial f (x,k). In the case of n-bit block ciphers, we can consider up to n
different black-box polynomial for each round. We study SIMON with n = 32 and
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m = 4. Hence, we consider up to 64 different black box polynomials and we consider
cubes with highest possible cuberank (Definition 45).

In our experiment, we fixed a secret key and considered 10 round cubes of cuberank
3 and 4. Then, we construct the polynomial system and run ElimLin. Table 4.18 and
Table 4.19 shows how many polynomials in the key variables were recovered for each
cube.
In the next step, we found 20 cubes of 221 plaintexts of rank 1. We give these cubes
in Table 4.20. As our implementation of ElimLin is not suitable for systems of 221

plaintext/ciphertext pairs, we selected subcubes of 25 and tested the preformance of
ElimLin against 13 rounds as in Section 4.5.2. Even though these subcubes had cuberank
64, we did not recover any polynomial in key variables. This phenomena is still an open
problem.
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Cm,t system of 25 samples key polynomials recovered
m t

0x0000001400000051 0x91E961A895DDFFAA 8
0x00000028000000A2 0x8F7049C053D5CE00 0
0x0000005000000144 0x4AEC0722CA7CD632 8
0x0000028000000A20 0x5DF80042CD90648F 9
0x0000028000000A20 0xC022AC2273E1818B 9
0x0000050000001440 0x1BB44000FFA88283 4
0x0000050000001440 0xE09C20551A6F0BB6 7
0x00000A0000002880 0x29F2E0A84802D018 8
0x00000A0000002880 0x6CBA814A4D784111 8
0x0000140000005100 0xAEE108C463EDA072 7
0x0000140000005100 0xF8C140111876A869 8
0x000028000000A200 0x92A0520276DD08EE 7
0x000028000000A200 0xACC006A4FB4E15E0 9
0x000028000000A200 0xF4491689436808E3 6
0x0000A00000028800 0x25A64EA2686516B0 8
0x0000A00000028800 0xA20456140D1077B4 8
0x0001400000051000 0xE91830236128AA78 8
0x00028000000A2000 0xAA192A4B24B483AF 7
0x0005000000144000 0x8D0A65161C88280F 7
0x000A000000288000 0x0A150A7266176D7B 7
0x000A000000288000 0x10558985C513531E 8
0x000A000000288000 0x12152B9F06875130 7
0x000A000000288000 0x4A41CA6F9B5173E7 8
0x000A000000288000 0x8021827B80554735 8
0x0014000000510000 0x8461C1640A087257 9
0x0014000000510000 0xA400D49ABE8A0E33 7
0x0014000000510000 0xB4629121E684C6F6 8
0x0028000000A20000 0x621124BAB25CF6A5 9
0x0050000001440000 0x058F5B37E2915BCF 8
0x0050000001440000 0x12AE464784A89D89 7
0x0050000001440000 0xC5A74459282A67DA 9
0x0500000014400000 0x683089C8CA1E1FD8 9
0x1400000051000000 0x6245E094A44B67EE 7
0x28000000A2000000 0x5286BB0911464FF6 8
0x4000000110000005 0xA04D0812444FC0DA 7
0x5000000044000001 0x285CEDC7A0CD7C14 8
0x5000000044000001 0x2C4C76C6B01A63D2 7
0x800000022000000A 0x70E79C3D8B02C534 7

Table 4.18: results for cuberank 3 for 10 round SIMON, attacked 13 rounds
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Cm,t system of 25 samples key polynomials recovered
m t

0x0000001400000054 0x846870006BF32D29 8
0x00000028000000A8 0x071C214742C05A06 7
0x0000005000000150 0x1EED04016076E803 8
0x0000005000000150 0x5EF38680EF07120B 8
0x0000005000000150 0x5EF6C68922707428 6
0x0000014000000540 0x42EC563DAF599011 6
0x000028000000A800 0xC7A18482AAE8160F 10
0x0000500000015000 0x1A040F0501788339 10
0x0000500000015000 0x7105054FA0348A1F 8
0x0000A0000002A000 0x4A8E1419E3D002F5 6
0x0005000000150000 0xC1426136AEE2397A 10
0x000A0000002A0000 0x42C18178B0857A68 9
0x0014000000540000 0xC041400FD3838E7C 0
0x0028000000A80000 0x885721591251F364 9
0x0050000001500000 0x51AF1118C02D8689 11
0x0050000001500000 0x82A60186AA8E321E 11
0x0050000001500000 0xD0A00F2FDE80FEC4 9
0x0140000005400000 0x5C8909B508B02190 10
0x028000000A800000 0xAC104EF0604D3456 7
0x0500000015000000 0x3A8159DDEA8B307E 9
0x28000000A8000000 0x552E6520033B1F98 11
0x5000000050000001 0x234ED3D6A7DDF6E4 7
0x800000028000000A 0x10A948BC1D9FF684 7
0x800000028000000A 0x7A3C3E184CD06DE0 11
0xA0000000A0000002 0x0AAC7AA5101927F8 10

Table 4.19: results for cuberank 4 for 10 round SIMON, attacked 13 rounds
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The Selection of Samples

Cm,t system of 221 samples
m t

0x2202116805826bb1 0x8c244810b0699448
0x4e810001bb031b06 0x0142630840e0a480
0x46810011bb034b06 0x8062be4044c02009
0x031835000035f852 0x68e6027625000188
0xb8095149c0018586 0x02c60000234a7810
0x0a820ce2284c3281 0x841920100510017a
0x43a40081e6dc0111 0x9010df5e0002a2ce
0x82202c320340b0ec 0x50d18005cc264602
0x0463b2420187e042 0x030804bd40501f00
0x80011b0640180edf 0x570c6461a6a13120
0x22116b0004e1b142 0x1508949e68040e18
0x0870885032cb3018 0x33881725002002c0
0x8d000006be1402dd 0x0290c0d041625500
0x40c451d452118650 0x06010228a1e2612c
0x18e8122065f88200 0x631164169801355e
0x15045e8024596e00 0x404881474b8491c2
0x0804906a00a4e1b5 0x11c361119b5a0e00
0x01201cea012c38ac 0x0ed30211c0914452
0x840a5068481061f4 0x70f5218121019a01
0xba00889c6c021038 0x408b35001029ea02

Table 4.20: Cubes of 221 samples against 11 round SIMON

67





5
Proning Techniques

In this chapter, we develop a technique called Proning. The technique is designed to
derive low degree polynomials which belong to the ideal

⟨
Sχ,γ,⋆

⟩
but which are not given

in the description of the polynomial system Sχ,γ,⋆. We use these low degree polynomials
together with polynomials from Sχ,γ,⋆ as an input to standard algebraic techniques such
as ElimLin, mXL/F4 and SAT solvers. In the case of ElimLin, we observed increased
performance on such larger system and similar results are expected for mXL/F4 and
SAT.

Originally, the Proning technique was designed as an extension of cube attacks to find
additional polynomials which were not found by ElimLin. Then, we extended the tech-
nique to find polynomials which would speed-up mXL/F4/SAT computation.

Our technique consist of two steps. In the first step called Universal Proning, we find
universal polynomials. These are polynomials which are “satisfied” for all values of the
secret key. Then in the second step, we map these universal polynomials onto polyno-
mials from the ideal spanned by the polynomial system Sχ,γ,⋆.

We give a memory efficient method to perform Universal Proning and we introduce
a heuristic which reduces the time complexity of Universal Proning. Unlike standard
techniques such as mXL/F4, Universal Proning allows us to focus on a small set of
polynomials and look for universal polynomials in this set. Then, we select this set so
that after the second step, we obtain so called “mutant” polynomials that would be found
by the first iteration of mXL. This method is called Mutant Proning. Finally, we show
how to recover mutant polynomials from subsequent iteration using a new algorithm
called Iterative Proning.

In Section 5.1, we relate our technique to a well-known method for recovering S-box
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equations. In Section 5.2, we introduce our technique to recover universal polynomials
and give related proofs. In Section 5.2.3, we give a more efficient algorithm to recover
universal polynomials with respect to memory complexity, and in Section 5.2.4, we give
a heuristic method to recover universal polynomials more efficiently. In Section 5.3, we
study the transformation of universal into nonuniversal polynomials and we develop an
algorithm called Mutant Proning which recovers mutants from mXL. In this case, our
results show that a heuristic approach can be used to recover mutants. We tested this on
75-rounds of KATAN32. However, mutants found by this algorithm form only a small
subset of mutants found by mXL. Hence, we use extend Mutant Proning and develop an
algorithm called Iterative Proning which mimics working of mXL.
The results in this chapter are an extension of the work published at ACISP14 [SSV14].

5.1 Dual View on Polynomial System of Cipher

In this section, we give another approach to find the system of equation S using the
same technique used for recovering a polynomial system representing an S-box. We
build a polynomial system representing the entire cipher based on the same approach.
However, we consider a fixed set of samples in order to “customize” the polynomial
system for a given problem. Hence, the encryption and decryption algorithm is trans-
formed into a black box which is queried with a key and it outputs values of state bits
from encryption and decryption. Due to the Kerckhoffs principle, we know the al-
gorithm for encryption and decryption and hence, we can apply this technique to any
cipher for which the algorithm is public. We formalize this in Section 5.2.

Recovering ANF of S-box

We demonstrate the method in Table 5.1. We recover an algebraic expression of an
S-Box defined by a non-linear cycle (07532461). The S-Box satisfies the following
equations. For an input (x0,x1,x2) and output (y2,y1,y0) = S(x2,x1,x0). These can be
derived as follows. We consider input and output bits xi and y j which are represented
by the first 6 rows and additionally, we consider monomials among input bits xi. We
build the matrix M as shown in Table 5.1 and we find the kernel of the matrix M.

ker(M) =

 1 1 0 0 0 0 1 0 1 0 0
1 0 1 0 0 1 1 0 0 1 0
1 0 0 1 1 1 1 1 0 0 0


This is a maximum rank matrix such that ker(M)M = 0. Its rows are equations which
hold for any input x2x1x0 and therefore they describe the S-box in Algebraic Normal
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Proning Techniques

0→ 7 1→ 0 2→ 4 4→ 6 3→ 2 6→ 1 5→ 3 7→ 5
0002→ 1112 0012→ 0002 0102→ 1002 1002→ 1102 0112→ 0102 1102→ 0012 1012→ 0112 1112→ 1012

1 1 1 1 1 1 1 1 1
y2 1 0 1 1 0 0 0 1
y1 1 0 0 1 1 0 1 0
y0 1 0 0 0 0 1 1 1
x2 0 0 0 1 0 1 1 1
x1 0 0 1 0 1 1 0 1
x0 0 1 0 0 1 0 1 1

x0x1 0 0 0 0 1 0 0 1
x1x2 0 0 0 0 0 1 0 1
x0x2 0 0 0 0 0 0 1 1

x0x1x2 0 0 0 0 0 0 0 1

M

Table 5.1: Recovering Algebraic Description of an S-Box (07532461).

Form (ANF). 
0 = 1+ y2 + x0 + x1 ∗ x2

0 = 1+ y1 + x1 + x0 + x0 ∗ x2

0 = 1+ y0 + x2 + x1 + x0 + x0 ∗ x1

Hence, the ANF of an S-Box can be recovered by computing the nullspace of matrix
like in Table 5.1. The Universal Proning Technique in Section 5.2 aims to recover the
ANF of the encryption and the decryption functions using the same approach.

5.2 Universal Proning

In this section, we build on the concept of open-ended systems introduced in Nota-
tion 12. We introduce a universal polynomial as a polynomial which belongs to an ideal
spanned by open-ended system. Alternatively, we show that a universal polynomial is
a polynomial which belongs to an ideal spanned by the polynomial system indepen-
dently of the value of the secret key. Hence, the name universal. Intuitively, we can see
that a universal polynomial by itself cannot help to recover the secret key.

We build the two open-ended ideals over different sets of variables. The Universal
Proning is a method to generate these ideals as a kernel of a well-chosen function.
Then in nonuniversal proning, we study these systems when we set a common name for
a pair of corresponding variables from these open-ended ideals. From the perspective
of open-ended ideals, this substitution leads to a recovery of the secret key and mutant
polynomials.
In Definition 46, we define the ideal Pχ of open-ended system where we set plaintexts
to χ. Similarly, we define the ideal Cγ of open-ended system where we set ciphertexts
to γ. In Definition 47, we define the ideal Bχ,γ obtained from both of these open-ended
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ideals. Later in Definition 48, we restrict the keyspace to K and hence, we enlarge the
ideal Bχ,γ to BK

χ,γ.

5.2.1 Universal Proning: Overview

In this section, we introduce universal polynomials. Informally, a universal polynomial
evaluates to zero for all choices of encryption key κ. We give a formal definition in
Definition 47. The Universal Proning is a method to find all universal polynomial in
a set of polynomials. The technique is related to hybrid approach in Gröbner basis
computation [BFP09, BFP12]. In [BFSS13], the authors specialize some variables of
the system to all possible values which is similar to our approach for Universal Proning
where we specialize the variables in VK .

Definition 46. We define

Pχ =
∩

κ∈Fkln
2

⟨
Sχ,⋆,κ

⟩
F2[V ]

Cγ =
∩

κ∈Fkln
2

⟨
S⋆,γ,κ

⟩
F2[V ]

Intuitively, we can see that a universal polynomial cannot help to recover the secret
key, but it helps to simplify the polynomial system. We combine these two notions in
Definition 47.

In Lemma 55, we show that
⟨
Sχ,⋆,⋆

⟩
F2[V ]

= Pχ and
⟨
S⋆,γ,⋆

⟩
F2[V ]

= Cγ. We define an ideal
which is spanned by two open-ended systems where the relation between plaintext and
ciphertext is discarded.

Definition 47. Let consider the bijective function Dup from V to V ′ as in Definition 18.
Then, for every κ ∈ Fkln

2 , we consider systems Sχ,⋆,κ ⊂ F2[V ] and Dup
(
S⋆,γ,κ

)
⊂ F2[V ′],

where we rename the variables. We consider the ring F2[V,V ′] and define Bχ,γ ⊂
F2[V,V ′]

Bχ,γ =
∩

κ∈Fkln
2

(⟨
Sχ,⋆,κ

⟩
F2[V,Dup(V )]

+
⟨
Dup

(
S⋆,γ,κ

)⟩
F2[V,Dup(V )]

)
We say q is universal iff q ∈ Bχ,γ. Otherwise, we say q is nonuniversal.

The idea for duplication of variables and building a system such as Bχ,γ was indepen-
dently developed in [RM12]. The concept of universal polynomials is also related to an

72



Proning Techniques

idea presented by Courtois in [Cou08, slide 118-120]. In Theorem 51, we show how we
can construct Bχ,γ algorithmically. However, this will be computationally rather expen-
sive and hence in Definition 48, we define for K ⊆ Fkln

2 an ideal BK
χ,γ which can be seen

as an approximation of Bχ,γ.

Definition 48. For K ⊆ Fkln
2 , we define

BK
χ,γ =

∩
κ∈K

(⟨
Sχ,⋆,κ

⟩
F2[V,Dup(V )]

+
⟨
Dup

(
S⋆,γ,κ

)⟩
F2[V,Dup(V )]

)
and we say K is consistent iff for the value κ∈ Fkln

2 such that Eκ(χ) = γ, we have κ∈K .

Trivially, we have B
Fkln

2
χ,γ = Bχ,γ.

Definition 49. Let us define the function eχ : F2[V ]→ Func
(
Fkln

2 ,F2
)
, such that eχ(m) is

the function mapping κ in Fkln
2 to the reduction of the polynomial m modulo1 ⟨Sχ,⋆,κ

⟩
. We

further denote for K ⊆ Fkln
2 the function eχ|K : F2[V ]→ Func(K ,F2) so that eχ|K (q) =

eχ (q) |K . Similarly, let us define the function dγ : F2[Dup(V )]→ Func
(
Fkln

2 ,F2
)
, such

that dγ(m) is the function mapping κ in Fkln
2 to the reduction of the polynomial m modulo

Dup
(⟨

S⋆,γ,κ
⟩)

and we denote dγ|K : F2[Dup(V )]→ Func(K ,F2) so that dγ|K (q) =
dγ (q) |K . Moreover, let us define fχ,γ : F2[V,Dup(V )] → Func

(
Fkln

2 ,F2
)
, such that

fχ,γ(m) is the function mapping κ in Fkln
2 to the reduction of the polynomial m modulo⟨

Sχ,⋆,κ,Dup
(
S⋆,γ,κ

)⟩
F2[V,Dup(V )]

. We denote fχ,γ|K : F2[V,Dup(V )]→ Func(K ,F2) so
that fχ,γ|K (q) = fχ,γ (q) |K . By abuse of notation, we denote fχ,γ|{κ} as fχ,γ|κ.

We note that reductions of q modulo
⟨
Sχ,⋆,κ

⟩
,
⟨
S⋆,γ,κ

⟩
or
⟨
Sχ,⋆,κ,Dup

(
S⋆,γ,κ

)⟩
are easy

as we just have to follow the specifications of the encryption or decryption algorithms
to evaluate all variables. Then, we can evaluate q on these variables.

Notation 50. For Q⊆ F2[V,Dup(V )], we denote

Kχ,γ (Q) =
{

κ ∈ Fkln
2 | ∀q ∈ Q fχ,γ (q) |κ = 0

}
.

Hence, Kχ,γ (Q) is a restriction of variety of space F|V |2 to variety of space Fkln
2 which

represents variables VK .

For instance Kχ,γ ( /0) = Fkln
2 , Kχ,γ

(
Sχ,⋆,⋆

)
= Fkln

2 , Kχ,γ
(
Sχ,⋆,⋆∪Dup

(
S⋆,γ,⋆

))
= Fkln

2 and
using Assumption 15, we also have Kχ,γ

(
Sχ,γ,⋆

)
= {κ}. Moreover using Theorem 51,

for any K ⊆ Fkln
2 , we have Kχ,γ

(
BK

χ,γ

)
= K .

1As Sχ,⋆,κ is a maximal ideal the reduction modulo it is in F2. Equivalently, the ideal reduction is
equivalent to the evaluation of the polynomial.
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⟨
Sχ,γ,⋆

⟩ ⟨
Sχ,⋆,⋆∪S⋆,γ,⋆

⟩

⟨
Sχ,⋆,⋆

⟩

⟨
S⋆,γ,⋆

⟩split

split

⟨
Dup

(
S⋆,γ,⋆

)⟩Dup
Dup

 ∩
κ∈Fkln

2

⟨
S⋆,γ,κ

⟩

∩
κ∈Fkln

2

⟨
Sχ,⋆,κ

⟩
Th. 58
=

Th. 58
=

Bχ,γ

ker fχ,γ

Th. 51
=

⟨
Sχ,γ,⋆

⟩
JKV

Bχ,γ∩
F2[V,Dup(V )]

D

Universal Proning

JKV

Figure 5.1: Solving system by Universal Proning

We first split the system Sχ,γ,⋆ into two open-systems Sχ,⋆,⋆ and S⋆,γ,⋆. Then, we consider
two ideals of universal polynomials

⟨
Sχ,⋆,⋆

⟩
F2[V ]

and
⟨
S⋆,γ,⋆

⟩
F2[V ]

and we use Theo-
rem 55 to show their relation to ideals Pχ and Cγ. Furthermore, ideals Pχ and Cγ can be
generated as a kernel of appropriate functions (Theorem 51). The change of variables
(Dup) is necessary for that. In Definition 47, we unified these two ideals into the ideal
Bχ,γ. Then in Lemma 57, we show that

⟨
Sχ,γ,⋆

⟩
=

q
Bχ,γ

y
V , which allows us to explore⟨

Sχ,γ,⋆
⟩

using Universal Proning and the homomorphism JKV .

Let us now consider the kernel of functions eχ(m), resp. dγ(m) resp. fχ,γ(m). It is a set
of polynomials which are zero for all keys and plaintext χ, resp. γ resp. a pair of both
(χ,γ).

Theorem 51. For K ⊆ Fkln
2 , we have

Pχ = ker
(
eχ
)
, Dup

(
Cγ
)
= ker

(
dγ
)
, Bχ,γ = ker

(
fχ,γ
)
, BK

χ,γ = ker

(
fχ,γ

∣∣∣
K

)
Proof. The functions eχ(m), dγ(m) and fχ,γ(m) are linear. Hence,

m ∈ Pχ⇐⇒
(
∀κ : m ∈

⟨
Sχ,⋆,κ

⟩)
⇐⇒ eχ (m) = 0⇐⇒ m ∈ ker

(
eχ
)

m ∈ Cγ⇐⇒
(
∀κ : m ∈

⟨
S⋆,γ,κ

⟩)
⇐⇒ dγ (m) = 0⇐⇒ m ∈ ker

(
dγ
)
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m ∈ Bχ,γ⇐⇒
(
∀κ : m ∈

(⟨
Sχ,⋆,κ

⟩
+
⟨
Dup

(
S⋆,γ,κ

)⟩))
⇐⇒ fχ,γ (m) = 0

⇐⇒ m ∈ ker
(

fχ,γ
)

m ∈ BK
χ,γ⇐⇒

(
∀κ ∈K : m ∈

(⟨
Sχ,⋆,κ

⟩
+
⟨
Dup

(
S⋆,γ,κ

)⟩))
⇐⇒ fχ,γ

∣∣∣
K
(m) = 0

⇐⇒ m ∈ ker

(
fχ,γ

∣∣∣
K

)

Usage of Universal Proning. So far, we gave definitions which allow us to formalize
the algorithm to find universal polynomials. We give this algorithm in Algorithm 6.
Universal Proning is a technique to find an ideal spanned by the polynomial system
Sχ,γ,⋆ which is shown in Section 5.2.2. The advantage of Universal Proning will become
apparent when we consider a restriction to a subvectorspace R of F2[V,Dup(V )], for
instance vectorspace of polynomials of degree up to some D ∈N. This vector space can
be selected based on various cryptanalytic techniques. In our experiments, we use cube
attacks to find a small set of variables W such that B[W ] contains a universal polyno-
mial. Alternatively, we expect that linear or differential cryptanalysis would be good
candidates for such selection. The intuition behind Universal Proning is the following
(cf. Figure 5.1):

• We split the system Sχ,γ,⋆ into two open-ended systems: Sχ,⋆,⋆ and S⋆,γ,⋆ .

• We rename variables in S⋆,γ,⋆. This does not change the system itself, but it allows
us to drop all relations between plaintexts and ciphertexts.

• We consider sum of ideals spanned by these systems and we obtain⟨
Sχ,⋆,⋆

⟩
F2[V,Dup(V )]

+
⟨
Dup

(
S⋆,γ,⋆

)⟩
F2[V,Dup(V )]

= Bχ,γ.

• As there are no relations among plaintexts and ciphertexts in such ideal, this is an
ideal of universal polynomials.

• Furthermore, the ideal Bχ,γ can be computed as a kernel of the function fχ,γ de-
fined in Definition 49. This is shown in Theorem 51.

• We have
⟨
Sχ,γ,⋆

⟩
F2[V ]

=
q

Bχ,γ
y

V as shown in Theorem 58 and hence, Universal

Proning allows us to generate ideal
⟨
Sχ,γ,⋆

⟩
.

• We consider various selections of R to obtain “interesting” polynomials of ideal⟨
Sχ,γ,⋆

⟩
. I.e, we study the action of operation JKV and characterize polynomials
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which lead to a nonuniversal polynomial. This method will be called Mutant
Proning and it is introduced in Section 5.3.

Algorithm 6 Universal Proning

Input: χ,γ, K ⊆ Fkln
2 , vector space R⊆ F2[V,Dup(V )]

Output: ker

(
fχ,γ

∣∣∣
K

)
∩R

1: select a linear basis B of R
2: M← matrix of dimension |B|× |K |
3: for all b ∈ B do
4: for all κ ∈K do
5: Mb,κ← fχ,γ|κ (b)
6: end for
7: end for
8: find N of maximal size with full rank such that NM = 0 using Gauss elimination
9: return the set of all ∑

b∈B
Ni,bb for all i

5.2.2 Universal Proning: Details

We now extend the technique from Section 5.1 to build a polynomial system for a cipher.
However, in this case, we intend to recover the ANF of the encryption function only for
specified plaintexts (χ) and the ANF of the decryption function for specified ciphertexts
(γ). We remind that each variable of the system corresponds to some sample (index
p), see Notation 11. Hence, each variable can be seen as a function of a secret key
and hence, each polynomial of a system of equations Sχ,⋆,⋆ or S⋆,γ,⋆ can be seen as
a function of a secret key (cf. Definition 49).

Lemma 52. ⟨
Sχ,γ,⋆

⟩
F2[V ]

=
∩

κ∈Fkln
2

⟨
Sχ,γ,κ

⟩
F2[V ]

Proof. We have

⟨
Sχ,γ,κ

⟩
F2[V ]

=

{
F2[V ] if κ is an incorrect key.⟨
Sχ,γ,⋆

⟩
F2[V ]

if κ is the correct key due to Assumption 15.

Hence, ∩
κ∈Fkln

2

⟨
Sχ,γ,κ

⟩
F2[V ]

= F2[V ]∩
⟨
Sχ,γ,⋆

⟩
F2[V ]

=
⟨
Sχ,γ,⋆

⟩
F2[V ]

.
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Lemma 53. Let K be a ring and W ⊆V . Then for G⊆ K[W ], we have

⟨G⟩K[V ]∩K[W ] = ⟨G⟩K[W ] .

Proof. We write R = K[W ] and for W ′ =V \W we obtain K[V ] = R[W ′]. For G⊆ R, we
have

⟨G⟩K[V ]∩K[W ] = ⟨G⟩R[W ′]∩R.

So we have to prove ⟨G⟩R[W ′]∩R = ⟨G⟩R. I.e, we reduce to the W = /0 case.

⟨G⟩R ⊆ ⟨G⟩R[W ′]∩R

is trivial. If h ∈ ⟨G⟩R[W ′] ∩R, we can write h = ∑g∈G hgg with hg ∈ R[W ′]. For each
monomial m ∈ R[W ′], m ̸= 1, the coefficient of m in this equation gives 0 = ∑g hg,mg
where hg,m is the coefficient of hg in m. If we write h′g = hg,1, we have ∑g∈G h′gg = h. So,
h ∈ ⟨G⟩R.

Theorem 54. Let J ⊆ F2[V ] be an ideal such that FieldEq[V ] ⊆ J and such that for
every κ ∈ Fkln

2 the ideal Jκ = J + ⟨ki−κi : i ∈ [1,kln]⟩ is maximal. Then, J =
∩

κ∈Fkln
2

Jκ.

Proof. In what follows, we denote E = F2[V ]/FieldEq[V ] and consider ideals over E[V ]

in addition to ideals over F2[V ]. We denote by ⟨S⟩E the ideal over E[V ] spanned by
S ⊆ F2[V ]. Let I be an ideal of the affine algebra E[V ]. Let us consider the set

HI = {T : I ⊆ T and T is a maximal ideal over E[V ]} .

The Hilbert Nullstellensatz [Bos12, Chapter 3, Corollary 6] (N) states that for an ideal
I ⊆ E[V ]. Then,

√
I =

∩
T ∈HI

T . We define sets H K
J =

{
⟨Jκ⟩E : κ ∈ Ekln,1 /∈ ⟨Jκ⟩E

}
and

H K
J =

{
⟨Jκ⟩E : κ ∈ Fkln

2
}

.

i) We express E as a ring over F2 (see [DF04, Theorem 6, page 517] and [DF04,
chapter 13.4, page 536]) and using Lemma 53 we obtain

⟨Jκ⟩E ∩F2[V ] = Jκ

ii) Moreover, ∀v ∈V,v2− v ∈ ⟨J ⟩E we have

κ ∈ Ekln \Fkln
2 ⇒ 1 ∈ ⟨Jκ⟩E .
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Therefore, {
⟨Jκ⟩E : κ ∈ Fkln

2
}
=
{
⟨Jκ⟩E : κ ∈ Ekln,1 /∈ Jκ

}
.

Hence, we have
H K

J = H K
J .

iii) Using Lemma 16, we obtain that every maximal ideal T ∈ HI corresponds to an
affine point in F|V |2 and hence, it corresponds to some key κ ∈ E[V ]. We know 1
cannot be in a maximal ideal and therefore T ∈H⟨J ⟩E implies T = ⟨Jκ⟩E for some

κ ∈ Ekln such that 1 /∈ ⟨Jκ⟩E . Thus, T ∈H K
J :

H⟨J ⟩E ⊆H K
J .

Then, for each κ ∈ Ekln such that 1 /∈ ⟨J ⟩E , we have κ ∈ Fkln
2 due to ii. So, Jκ is

maximal in F2[V ]. So ⟨Jκ⟩E is maximal in E[V ]. So

H⟨J ⟩E ⊇H K
J .

iv) By definition of a radical ideal,
√

J =
{

q ∈ F2[V ],∃i qi ∈ J
}

. As ∀v ∈V,v2−v ∈ J

we have qi− q ∈ J for all q. So,
√

J = J . With the same reasoning on ⟨J ⟩E , we
obtain √

⟨J ⟩E = ⟨J ⟩E .

We have

⟨J ⟩E
iv
=
√
⟨J ⟩E

(N)
=

∩
T ∈H⟨J ⟩E

T
iii
=

∩
T ∈H K

J

T
ii
=

∩
T ∈H K

J

T
def H K

J
=

∩
κ∈Fkln

2

⟨Jκ⟩E . (5.1)

Finally, we have

∩
κ∈Fkln

2

Jκ
i
=

 ∩
κ∈Fkln

2

⟨Jκ⟩E

∩F2[V ]
(5.1)
= ⟨J ⟩E ∩F2[V ]

i
= J .

Lemma 55. We have
⟨
Sχ,⋆,⋆

⟩
F2[V ]

= Pχ and
⟨
S⋆,γ,⋆

⟩
F2[V ]

= Cγ

Proof.
We get the result directly using Theorem 54 for J =

⟨
Sχ,⋆,⋆

⟩
F2[V ]

and J =
⟨
S⋆,γ,⋆

⟩
F2[V ]

.
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Lemma 56.
Bχ,γ =

⟨
Sχ,⋆,⋆

⟩
F2[V,Dup(V )]

+
⟨
Dup

(
S⋆,γ,⋆

)⟩
F2[V,Dup(V )]

Proof. We get the result directly using Theorem 54 for

J =
⟨
Sχ,⋆,⋆

⟩
F2[V,Dup(V )]

+
⟨
Dup

(
S⋆,γ,⋆

)⟩
F2[V,Dup(V )]

Jκ is maximal for every κ∈ Fkln
2 since Sχ,⋆,κ corresponds to the deterministic encryption

and Dup
(
S⋆,γ,κ

)
corresponds to the deterministic decryption.

Lemma 57. We have
⟨
Sχ,γ,⋆

⟩
F2[V ]

=
q

Bχ,γ
y

V and for a consistent K ⊆ Fkln
2 we also

have ⟨
Sχ,γ,⋆

⟩
F2[V ]

=
r

BK
χ,γ

z
V

Proof. We have q+ ⟨v+Dup(v) : v ∈V ⟩︸ ︷︷ ︸
J

is the set of all polynomials equal to q modulo

J. The only one in F2[V ] is JqKV . So, JqKV = (q+ J)∩F2[V ]. So,
q

Bχ,γ
y

V =
(
Bχ,γ + J

)
∩

F2[V ]. Using Lemma 56, we haveq
Bχ,γ

y
V =

(
Bχ,γ + J

)
∩F2[V ]

L. 56
=
(⟨

Sχ,⋆,⋆
⟩

F2[V,Dup(V )]
+
⟨
Dup

(
S⋆,γ,⋆

)⟩
F2[V,Dup(V )]

+ J
)
∩F2[V ]

=
⟨
Sχ,⋆,⋆,Dup

(
S⋆,γ,⋆

)
,J
⟩

F2[V,Dup(V )]
∩F2[V ]

=
⟨
Sχ,⋆,⋆,S⋆,γ,⋆,J

⟩
F2[V,Dup(V )]

∩F2[V ]

=
⟨
Sχ,γ,⋆

⟩
Similarly, whenever κ ∈K we obtain

r
BK

χ,γ

z
V
=
⟨
Sχ,γ,⋆

⟩
F2[V ]

.

Theorem 58. We have

• Pχ =
⟨
Sχ,⋆,⋆

⟩
F2[V ]

• Cγ =
⟨
S⋆,γ,⋆

⟩
F2[V ]

• Bχ,γ =
⟨⟨

Sχ,⋆,⋆
⟩

F2[V ]
,Dup

(⟨
S⋆,γ,⋆

⟩
F2[V ]

)⟩
F2[V,Dup(V )]

• Bχ,γ =
⟨
Sχ,⋆,⋆

⟩
F2[V,Dup(V )]

+
⟨
Dup

(
S⋆,γ,⋆

)⟩
F2[V,Dup(V )]

Furthermore,
⟨
Sχ,γ,⋆

⟩
F2[V ]

=
q

Bχ,γ
y

V .

Proof. Follows directly from Lemma 55, Lemma 56 and Lemma 57.

Following the definition, the ideals Pχ, Cγ and Bχ,γ are ideals of all universal polynomi-
als for given set of plaintexts χ, given set of ciphertexts γ and given set of both plaintexts
χ and ciphertexts γ.
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5.2.3 Fast Universal Proning

In Section 5.2.1, we proposed Algorithm 6 for building a polynomial system. We now
consider a linearly independent set B⊆ R (step 1 in Algorithm 7). Algorithmically, we
compute ker

(
fχ,γ
∣∣
K

)
∩ linspan(B) as a left kernel of a boolean matrix M of dimension

dimB× |K |. We fill the matrix M as follows: for b ∈ B and κ ∈ K we set Mb,κ ←
fχ,γ|κ (b). We define ker(M) := {v;vM = 0} and we have ker

(
fχ,γ
∣∣
K

)
≃ ker(M). For

the purpose of this section, we assume1 dim(R)≪ |K | and we show that the compu-
tation of ker(M) can be done more efficiently than the straightforward approach given
in Algorithm 6 and it can be distributed among multiple threads running on different
machines.
Similarly as in Algorithm 6, we consider a matrix M of dimension |B| × |K |. In our
improvement (Algorithm 7), we consider t = |K |

|B| and we consider t submatrices Mi

where Mi for i∈ [1, t] has dimension |B|×|B|. Then, we compute ker(M) =
∩

i

ker
(
Mi).

Algorithm 7 Memory Efficient Implementation of BK
χ,γ

Input: χ,γ, a set of keys K , vector space R⊆ F2[V,Dup(V )]

Output: BK
χ,γ∩R

1: select linear basis B of R
2: N← identity matrix of dimension |B|× |B|
3: t← |K |

|B|
4: for i ∈ [1, t] do
5: Mi← matrix of dimension |B|× |B|
6: Ki← subset of K with keys of indices [i |B| ,(i+1) |B|−1]
7: for all b ∈ B do
8: for all κ ∈Ki do
9: Mi

b,κ← fχ,γ|κ (b)
10: end for
11: Ni← ker

(
Mi) using Gauss elimination

12: N← N∩Ni using Gauss elimination
13: end for
14: end for
15: return N

We use Lemma 59 to show the correctness of Step 11 in Algorithm 7.

Lemma 59. Let M be a matrix of dimension |B|×|K | where |K |= t |B| for some t ∈N.
Let us consider t submatrices Mi of dimension |B|× |B| such that M = M1∥M2∥ . . .∥Mt .

1The rationales for this assumption were given in Section 5.2.4.
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Then,
ker(M) =

∩
i∈[1,t]

ker(Mi)

Proof. We prove this directly from definition. We have

ker(M) := {v;vM = 0}

and
M = M1∥M2∥ . . .∥Mt

For
v ∈

∩
i∈[1,t]

ker(Mi)

we have

vM = vM1∥vM2∥ . . .∥vMt

= 0 ∥0 ∥ . . .∥0

Hence, we obtain
ker(M)⊇

∩
i∈[1,t]

ker(Mi)

On the other hand, for
v ∈ ker(M)

we have

vM = 0 ∥0 ∥ . . .∥0
= vM1∥vM2∥ . . .∥vMt

Hence, we obtain
ker(M)⊆

∩
i∈[1,t]

ker(Mi)

We now discuss time and memory complexity of Algorithm 7 and compare this to Algo-
rithm 6. The memory complexity of Algorithm 6 is given by O (|B| |K |). However, Al-
gorithm 7 has memory complexity O

(
|B|2
)

. The best implementation of Algorithm 6

and Algorithm 7 achieve the same asymptotic complexity O
(
|B|ω |K ||B|

)
, however, the
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straightforward implementation of Gauss elimination leads to complexity O
(
|B|2 |K |

)
.

5.2.4 Heuristic Universal Proning

In what follows, we explain the heuristic approach for recovering universal polynomi-
als. Note that Universal Proning requires to go over all the key space. Hence, for an
algorithm to remain competitive with respect to exhaustive search, it is necessary to
consider a relatively small K of Fkln

2 of size K and compute BK
χ,γ instead of Bχ,γ. How-

ever, there will always exist a polynomial q ∈ BK
χ,γ \Bχ,γ, i.e, a nonuniversal polynomial

q which will be recognised as universal by Algorithm 6 for parameter K . In what fol-
lows, we explain a strategy to (heuristically) avoid them. To avoid this, we will restrict
the space where we look for universal polynomials to a vector space R⊆ F2[V,Dup(V )]

so that the existance of q∈ R∩BK
χ,γ\Bχ,γ is less likely for a sufficiently large K . Hence,

instead of looking for universal polynomials in R∩Bχ,γ, we consider only R∩BK
χ,γ. We

need K and R to verify

/0 = R∩
(

BK
χ,γ \Bχ,γ

)
. (5.2)

Actually, it would be sufficient to avoid having a q such that JqKV ̸∈
⟨
Sχ,γ,⋆

⟩
(which

follows from Theorem 58) but this is hard to test without the secret key.

On the choice of R. The choice of R is discussed in Section 5.3. Ideally, we want to
select R as small as possible and such that

{0} ≠
q

R∩Bχ,γ
y

V . (5.3)

Otherwise, we would not find any additional polynomial to add to polynomial system
Sχ,γ,⋆. However, for a small R, we are likely to have {0}= R∩Bχ,γ. For the purpose of
this section, we assume that R contains polynomials of a low degree.

On size of K . Our goal is to satisfy Eq. (5.2) with a small set K ⊆ Fkln
2 selected

uniformly at random. Let R ⊆ F2[V,Dup(V )] and κ ∈ Fkln
2 be selected uniformly at

random. Let γ = Eκ (χ) and let (χ,γ) be our list of samples. Let KR,χ be such that for
a randomly selected K ⊆ Fkln

2 where |K | = KR,χ the condition in Eq. (5.2) is satisfied
with a high probability. However, this condition is expensive to verify and hence, we
consider the condition r

R∩BK
χ,γ

z
V
⊆
⟨
Sχ,γ,⋆

⟩
(5.4)
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which is implied by Eq. (5.2). We now give Algorithm 8 which finds the value KR,χ. We
note that the condition Eq. (5.4) is easy to verify when we know the secret key - this is
done in Step 19 of Algorithm 8.

Algorithm 8 Find KR,χ

Input: χ, vector space R⊆ F2[V,Dup(V )]
Output: KR

1: κ⋆← Fkln
2 selected uniformly at random

2: γ = Eκ⋆ (χ)
3: select linear basis B of R
4: t← 0
5: N0← R
6: repeat
7: t← t +1
8: M← matrix of dimension |B|× |B|
9: Kt ← subset of Fkln

2 of size |B| selected uniformly at random
10: for all b ∈ B do
11: for all κ ∈Kt do
12: Mb,κ← fχ,γ|κ (b)
13: end for
14: T ← ker(M) using Gauss elimination
15: Nt ← Nt−1∩T using Gauss elimination
16: end for
17: set mark
18: for all q ∈ Nt do
19: if fχ,γ (q)

∣∣
κ⋆ ̸= 0 then

20: unset mark
21: end if
22: end for
23: until mark set
24: return t · |B| {we used t · |B| keys until condition given in Eq. (5.4) was satisfied

(Step 19).}

Empirical results. We run Algorithm 8 multiple times and for a fixed R and a fixed
χ, the algorithm returned the same KR,χ independently of the choice of the secret key in
Step 1. As conditions in Eq. (5.2) and Eq. (5.4) are not equivalent, we verified whether it
is sufficient to test the condition in Eq. (5.2). We replaced the test in Step 19 by a check
whether 0 = dim(Nt +1)−dim(Nt) for the last 0.5t iterations. In our experiments, we
observed that once the condition in Eq. (5.4) was satisfied, the dim(Nt) was invariant
in subsequent iterations. We now give a more detailed analysis of Algorithm 8. We
consider the evolution of the sets Nt and we look at the logarithm of the ratio |Nt |

|Nt+1| , i.e,
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we look at the difference dim(Nt)−dim(Nt+1). This tells us how much the dimension
of BK

χ,γ drops when new keys are added into K . Once it does not drop for sufficiently
large number of new keys, we can assume R∩BK

χ,γ = R∩Bχ,γ. However, in our tests we
found that it was sufficient to test condition given in Eq. (5.4). We show that this dif-
ference behaves similarly for different reduced round versions of KATAN32 and various
choices of R. We plot these differences in Figures 5.2-5.9. In our tests, we considered
R of dimension up to 50 000 and in each case, we needed K ≥ 50 ·dim(R). We used the
following values for R:

R = linspan


∪

r∈[35,45]
p∈[1,smpn]
j, j′∈[1,mln]

{
s j

p,r · s j′
p,r

}
∪

∪
j, j′∈[1,kln]

{
k j · k j′

}
 (5.5)

R = linspan

 ∪
p∈[1,smpn]
j, j′∈[1,mln]

{
s j

p,45 · s
j′
p,45

}
∪

∪
j, j′∈[1,kln]

{
k j · k j′

} (5.6)

R = linspan

 ∪
p∈[1,smpn]
j, j′∈[1,mln]

{
s j

p,50 · s
j′
p,50

}
∪

∪
j, j′∈[1,kln]

{
k j · k j′

} (5.7)

Finishing the attack. Once we found R and KR,χ, we can perform the attack for an
unknown key. We select a random set of keys K ⊆ Fkln

2 of size |K | = KR,χ. Then, we
perform Algorithm 6 and recover

Q = R∩BK
χ,γ

Finally, we compute JQKV which we use as additional input to other algebraic solvers
such as mXL/F4.

5.3 Mutant Proning

In Section 5.2, we developed an algorithm called Universal Proning. The output of
this algorithm is not very helpful because it consists of polynomials which are satisfied
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Figure 5.2: 62-round KATAN32, R set in Eq. (5.5)
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Figure 5.3: 64-round KATAN32, R set in Eq. (5.5)
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Figure 5.4: 75-round KATAN32, R set in Eq. (5.5)
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Figure 5.5: 76-round KATAN32, R set in Eq. (5.5)
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Figure 5.6: 77-round KATAN32, R set in Eq. (5.5)
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Figure 5.7: 62-round KATAN32, R set in Eq. (5.7)
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Figure 5.8: 62-round KATAN32, R set in Eq. (5.6)
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Figure 5.9: 64-round KATAN32, R set in Eq. (5.6)
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for all secret keys. However, we can transform the output of Algorithm 6 using back-
substitution into polynomials which are nonuniversal. We introduce an algorithm called
Mutant Proning. The Mutant Proning recovers mutant polynomials which can be used
to speed-up mXL/F4 computation.

Intuition: recover polynomial in key variables. We give an intuition for a special
case: we recover polynomials which belong to the ideal spanned by our polynomial
system and which contain only key variables (we call these polynomials as keynomi-
als). Formally, we recover a subset of F2[VK]∩

⟨
Sχ,γ,⋆

⟩
. Let us consider the set of

polynomials
Bχ,γ∩ (⟨v+Dup(v) : v ∈V ⟩+F2[VK]) ,

which can be obtained from Universal Proning, i.e, Algorithm 6 with

R = ⟨v+Dup(v) : v ∈V ⟩+F2[VK].

Using Theorem 58, we obtainq
Bχ,γ∩ (⟨v+Dup(v) : v ∈V ⟩+F2[VK ])

y
V ⊆

⟨
Sχ,γ,⋆

⟩
.

I.e, we obtain polynomials in key variables which after back-substitution belong to the
ideal

⟨
Sχ,γ,⋆

⟩
. Above, we considered R = ⟨v+Dup(v) : v ∈V ⟩+F2[VK] as an input to

Algorithm 6. In Lemma 66 to show that it is sufficient to consider a smaller vector space
O (introduced in Notation 61) instead of the ideal ⟨v+Dup(v) : v ∈V ⟩ which reduces
the memory requirements of Universal Proning.

General case. Experimentally, we verified that (as expected) low degree polynomials
in vector space Bχ,γ ∩ (⟨v+Dup(v) : v ∈V ⟩+F2[VK]) are very rare which means that
usually, we have

{0}=
sBχ,γ∩ (⟨v+Dup(v) : v ∈V ⟩+F2[VK])

D
{

V

for a small D ∈ N. Hence, we concentrate on recovering nonuniversal polynomials ass
Bχ,γ∩

(⟨v+Dup(v) : v ∈V ⟩
a

+
F2[V ]

b
){

V

for a,b ∈ N. We call this Mutant Proning.

Definition 60 (zeromial). Let q ∈ F2[V,Dup(V )]. We call q a zeromial iff JqKV = 0.
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D |VS| 210 211 212 213 214 215 216 217 218

5 243.07 248.08 253.08 258.09 263.09 268.09 273.09 278.09 283.09

6 250.48 256.49 262.50 268.50 274.50 280.50 286.50 292.50 298.50

7 257.67 264.68 271.69 278.69 285.69 292.69 299.70 2106.70 2113.70

8 264.66 272.68 280.69 288.69 296.69 2104.69 2112.70 2120.70 2128.70

9 271.48 280.05 289.51 298.52 2107.52 2116.52 2125.53 2134.53 2143.53

10 278.14 288.17 298.19 2108.20 2118.20 2128.20 2138.20 2148.20 2158.20

11 284.67 295.71 2106.73 2117.73 2128.74 2139.74 2150.74 2161.74 2172.74

12 291.07 2103.11 2115.14 2127.15 2139.15 2151.16 2163.16 2175.16 2187.16

13 297.35 2110.40 2123.43 2136.45 2149.45 2162.46 2175.46 2188.46 2201.46

14 2103.52 2117.59 2131.62 2149.45 2159.64 2173.65 2187.65 2201.65 2215.65

15 2109.60 2124.67 2139.71 2154.73 2169.74 2184.74 2199.74 2214.74 2229.74

16 2115.57 2131.66 2147.70 2163.72 2179.73 2195.74 2211.74 2227.74 2243.74

17 2121.46 2138.56 2155.61 2172.63 2189.65 2206.65 2223.65 2240.66 2257.66

18 2127.27 2145.38 2163.43 2181.46 2199.47 2217.48 2235.48 2253.49 2271.49

Table 5.2:
(|VS|

D

)
Notation 61. We denote

O = ⟨v+Dup(v), v ∈V ⟩∩ (F2[V ]+F2[Dup(V )])

In Table 5.2, we consider only the state variables (see Notation 11). We give a table of
the dominating term

(|VS|
D

)
in ∑d≤D

(|VS|
d

)
for selected values of D and |VS|.

Lemma 62 (existence of nonuniversal zeromial). We have kln ̸= 0 =⇒ O ̸⊆ Bχ,γ.

Proof. Let κ be an incorrect key for Sχ,γ,⋆ and v be a plaintext variable such that
S⋆,γ,κ assigns v to a value which does not match χ. Let us consider the zeromial
q = v+Dup(v). Due to mismatch, we have fχ,γ (q) |κ = 1 so fχ,γ (q) ̸= 0 so q /∈ Bχ,γ.
Hence, O ̸⊆ Bχ,γ.

In what follows, we first show how we can construct a universal polynomial from
a nonuniversal polynomial. We show this in Lemma 63. We restrict fχ,γ on equa-
tions which are not satisfied for all keys and define canonical mapping µ from B[VK] to
Func

(
Fkln

2 ,F2
)
. We consider the following chain:

F2[V,Dup(V )]\ ker
(

fχ,γ
) fχ,γ−→Func

(
Fkln

2 ,F2
)
\{0} µ←− B[VK ]\{0} (5.8)

Lemma 63. Let q ∈ F2[V,Dup(V )]. We have
(
q+µ−1 ( fχ,γ (q)

))
∈ Bχ,γ.
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Proof. Let F ∈ Func
(
Fkln

2 ,F2
)
. Then µ−1(F) is a polynomial defining the same function

as F. Therefore, we have fχ,γ
(
µ−1 (F)

)
= F. We consider F = fχ,γ (q) and we obtain

0 = F + fχ,γ
(
µ−1 (F)

)
= fχ,γ (q)+ fχ,γ

(
µ−1 ( fχ,γ (q)

))
= fχ,γ

(
q+µ−1 ( fχ,γ (q)

))
.

Hence,
q+µ−1 ( fχ,γ (q)

)
∈ ker

(
fχ,γ
)
= Bχ,γ.

Definition 64 (keynomial). We call a polynomial q ∈ B[VK] a keynomial.

Lemma 65 (keynomials are nonuniversal). B[VK]∩Bχ,γ = {0}.

Proof. We first show F2[VK]∩Bχ,γ = FieldEq[VK]. From the definition of S , we have
FieldEq[VK] ⊆ Bχ,γ. Using Theorem 51, we have Bχ,γ = ker

(
fχ,γ
)
. Let us consider

a polynomial q ∈ F2[VK] such that q /∈ FieldEq[VK]. Based on Corollary 25, q de-
fines a nonzero boolean function and hence, 1+ q has a root, i.e, κ ∈ Fkln

2 such that
q(κ) = 1. Therefore, q /∈ ker

(
fχ,γ
)

and hence, q /∈Bχ,γ. Hence, we have F2[VK]∩Bχ,γ =

FieldEq[VK ]. As B[VK]∩FieldEq[VK] = {0} we obtain the result.

We will use Lemma 62 together with Lemma 63 to construct a keynomial. Using
Lemma 65, we know that this keynomial is nonuniversal and hence, we can derive some
information about the secret key. In Lemma 66, we show that every polynomial from
Bχ,γ has a “representantive” in the vector space Pχ +Dup

(
Cγ
)
. We use this to avoid re-

covering “equivalent” universal polynomials and decrease computational requirements.

Lemma 66 (equivalent universal polynomials). For each q ∈ Bχ,γ ∩ B[VS,Dup(VS)]

there exists
q′ ∈

(
Pχ +Dup

(
Cγ
))

such that Jq−q′KV = 0.

Proof. Let q ∈ Bχ,γ. Following Theorem 58, we can write q = ap+ bDup(c) for p ∈
Pχ, c ∈ Cγ and a,b ∈ F2[V,Dup(V )]. We set q′ = JapKV +Dup(JbcKV ) and from the
construction of q′ we have Jq−q′KV = 0. As JapKV ∈ Pχ∩B[V ] and JbcKV ∈ Cγ∩B[V ]

we have
q′ ∈

(
Pχ +Dup

(
Cγ
))

.

Lemma 66 shows that it is sufficient to consider only the vector space O instead of
the ideal ⟨v+Dup(v) : v ∈V ⟩. In Lemma 67, we give the algorithmic relation between
mXL/F4 and Universal Proning. In Figure 5.11, we give a graphical representation for
better intuition.
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Lemma 67 (relation of Universal Proning with mXL/F4). Let m ∈
⟨
Sχ,γ,⋆

⟩
. Then, there

exists
m′ ∈

B[V ]+B[Dup(V )]
degm

and

q0 ∈
⟨v+Dup(v) : v ∈V ⟩∩ (B[V ]+B[Dup(V )])

levelPχ∪Cγ(m)

such that m = Jm′+q0KV and m′+q0 ∈ Bχ,γ.

Proof. We express
m = p+ c

where p ∈ Pχ and c ∈ Cγ and deg p,degc≤ level(m). Let us now consider

q = p+Dup(c)

and
r′ ∈

B[V ]+B[Dup(V )]
degm

and

r′′ ∈
B[V ]+B[Dup(V )]

degm

such that q = r′+ r′′. We set

m′ = r′+
q

r′′
y

V and q0 = r′′+
q

r′′
y

V .

We have m = p+ c = JqKV = Jr′+ r′′KV = Jm′KV + Jq0KV . As q = p+Dup(c) and due
to Theorem 58, we have p ∈ Pχ,c ∈ Cγ. Hence, q ∈ Pχ +Dup

(
Cγ
)
⊆ Bχ,γ. I.e, we have

m′ = r′+
q

r′
y

V ∈
B[V ]+B[Dup(V )]

degm
.

It remains to show that

q0 ∈
⟨v+Dup(v) : v ∈V ⟩∩ (B[V ]+B[Dup(V )])

levelPχ∪Cγ(m)
.

We have
degq0 = deg

(
r′′+

q
r′′

y
V

)
≤ levelPχ∪Cγ (m) .

As Jq0KV = 0 and ker(JKV ) = ⟨v+Dup(v) : v ∈V ⟩, we have q0 ∈ ⟨v+Dup(v) : v ∈V ⟩.
We now show q0 ∈ B[V ]+B[Dup(V )]. We have r′′ ∈ B[V ]+B[Dup(V )] and Jr′′KV ∈
B[V ] and therefore r′′+ Jr′′KV = q0 ∈ B[V ]+B[Dup(V )].

We now introduce Mutant Proning. Our goal is to obtain new polynomials from ideal⟨
Sχ,γ,⋆

⟩
because additional polynomials usually help in mXL/F4 to speed up the compu-
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tation. We already know Sχ,γ,⋆ ⊆
⟨
Sχ,γ,⋆

⟩
which are given a priori. But running mXL/F4

only using these polynomials is usually expensive. Similarly, we are not very interested
in sets of universal polynomials

⟨
Sχ,⋆,⋆

⟩
F2[V ]

resp.
⟨
S⋆,γ,⋆

⟩
F2[V ]

as these polynomials are
satisfied for every value of secret key. Hence, we concentrate on finding nonuniversal
polynomials of the ideal

⟨
Sχ,γ,⋆

⟩
.

Let us consider a polynomial m ∈
⟨
Sχ,γ,⋆

⟩
such that degm < levelPχ∪Cγ (m), i.e, m is

a mutant. In Lemma 68, we show that m is nonuniversal and in Lemma 67, we show
how we can construct such mutant using Universal Proning. In Figure 5.11, we give a
schematic view of such construction.

Mutants. In mXL, we can discover two types of mutants: universal and nonuniversal.
This is because mXL operates on the system Sχ,γ,⋆ and hence, it can find a polynomial
m ∈

⟨
Sχ,⋆,⋆

⟩
such that degm < levelSχ,⋆,⋆ (m). Such a polynomial is universal mutant.

Universal mutants allow to reduce degree which is reached by mXL before it finds the
secret key. However, universal mutants do not allow us to derive any information about
the secret key. Hence, it is more interesting to look for nonuniversal mutants.

Lemma 68 (nonuniversal mutants). Let m ∈
⟨
Sχ,γ,⋆

⟩
such that degm < levelPχ∪Cγ (m).

Then, both m and Dup(m) are nonuniversal.

Proof. As degm < levelPχ∪Cγ (m), we have m /∈ Pχ. Otherwise, we would have degm =

levelPχ∪Cγ (m). Similarly, we have m /∈ Cγ as otherwise, we have degm = levelPχ∪Cγ (m).
Hence, we also have Dup(m) /∈ Dup

(
Cγ
)
. Using Lemma 63, we have

m+µ−1 ( fχ,γ (m)
)
∈ Bχ,γ

and
Dup(m)+µ−1 ( fχ,γ (Dup(m))

)
∈ Bχ,γ.

By Theorem 51, m /∈ Pχ implies eχ|κ (m) ̸= 0. So, there is some κ which evaluates m
to 1. So, fχ,γ|κ (m) ̸= 1. Therefore, 0 ̸= µ−1 ( fχ,γ (m)

)
. Due to Lemma 65, we de-

duce µ−1 ( fχ,γ (m)
)
/∈ Bχ,γ so, m /∈ Bχ,γ. Similarly as Dup(m) /∈ Dup

(
Cγ
)
, we have

0 ̸= µ−1 ( fχ,γ (Dup(m))
)

and due to Lemma 65, we deduce µ−1 ( fχ,γ (Dup(m))
)
/∈ Bχ,γ

so, Dup(m) /∈ Bχ,γ. Hence, m and Dup(m) are nonuniversal.

In Lemma 67, we showed that any mutant m can be constructed from a universal poly-
nomial m′+q0. We depict the scenario in Figure 5.11. This leads us to a new algorithm
called Mutant Proning given in Algorithm 9.
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Algorithm 9 Mutant Proning

Input: a,b ∈ N such that a > b, W ⊆V , K ⊆ Fkln
2 .

Output: set of mutants of level at most a and degree at most b

1: R←
O

a
+
B[W ]+B[Dup(W )]

b

2: select a linear basis B of linspan(R)
3: M← matrix of dimension |B|× |K |
4: for all b ∈ B do
5: for all κ ∈K do
6: Mb,κ← fχ,γ|κ (b)
7: end for
8: end for
9: find N of maximal size with full rank such that NM = 0 using Gauss elimination

10: return the set of all ∑
b∈B

q
Ni,bb

y
V for all i and such that ∑

b∈B
Ni,bb /∈B[W ]∪B[Dup(W )]

b

⟨
Sχ,γ,⋆

⟩ ⟨
Sχ,⋆,⋆∪S⋆,γ,⋆

⟩

⟨
Sχ,⋆,⋆

⟩

⟨
S⋆,γ,⋆

⟩split

split

⟨
Dup

(
S⋆,γ,⋆

)⟩Dup
Dup

 ∩
κ∈Fkln

2

⟨
S⋆,γ,κ

⟩

∩
κ∈Fkln

2

⟨
Sχ,⋆,κ

⟩
Th. 58
=

Th. 58
=

Bχ,γ

ker fχ,γ

Th. 51
=

⟨
Sχ,γ,⋆

⟩
JKV

Bχ,γ∩
O +F2[V ]

D
\
(
Pχ∪Dup

(
Cγ
))

Mutant Proning

JKV

Figure 5.10: Recovering new mutants with Mutant Proning
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(O +F2[V ])∩Bχ,γ

mXL

Mutant Proning

q0+qm

qm

JKV

Sχ,⋆,⋆ Dup
(
S⋆,γ,⋆

)
∑

p∈Sχ,⋆,⋆

qpp ∑
c∈S⋆,γ,⋆

Dup(qcc)

qm

Sχ,⋆,⋆ S⋆,γ,⋆

∑
p∈Sχ,⋆,⋆

qpp ∑
c∈S⋆,γ,⋆

qcc

q0+qm

qm

JKV

Sχ,⋆,⋆ Dup
(
S⋆,γ,⋆

)
∑

p∈Sχ,⋆,⋆

qpp ∑
c∈S⋆,γ,⋆

Dup(qcc)

Dup

Universal Proning

Figure 5.11: Mutant Proning as a dual view on mXL.
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Mutant recovery. We verified the results on KATAN32 with reduced round KATAN32.
In our experiments, we attacked 75-round KATAN32 using Algorithm 9. We modified
the Step 1 of Algorithm 9, and we selected

R = linspan


∪

r∈[35,45]
p∈[1,smpn]
j, j′∈[1,mln]

{
s j

p,r · s j′
p,r

}
∪

∪
j, j′∈[1,kln]

{
k j · k j′

}


in order to reduce the memory requirements of Algorithm 9. These rounds correspond
to approximately half of the cipher as we would expect mXL to find the first mutants
among these variables. Hence, we obtained dim(R)≈ 50000 and we selected K ⊆ Fkln

2
uniformly at random such that |K | ≈ 50 ·dim(R). Using these parameters, we recovered
a set of mutants M which was consistent with our polynomial system, i.e, we had 1 /∈⟨
Sχ,γ,⋆+M

⟩
.

5.4 Iterative Proning

In this section, we propose an extension of Mutant Proning algorithm called Iterative
Proning. Similarly as in Mutant Proning, our aim is to recover low degree polynomials
of ideal spanned by our polynomial system, i.e,

⟨
Sχ,γ,⋆

⟩
. However, when we restrict Mu-

tant Proning to set R as in Algorithm 9, we do not recover all low degree polynomials of
the ideal

⟨
Sχ,γ,⋆

⟩
. In Iterative Proning, we intend to recover additional polynomials in the

set R which were not found by Mutant Proning. We motivate our approach by the second
iteration of mXL. In mXL, we recover mutants Q and use them as reductors. In Univer-
sal Proning, the computation mod Q is equivalent to computation mod

(
µ−1 ( fχ,γ (Q)

))
which can be seen as filtering of the keyspace. Hence, we proceed as follows. We
first recover mutants using mutant proning. Then, we use these mutants to restrict the
keyspace to Kχ,γ (Q). In the restricted keyspace, mutants from set Q behave like uni-

versal polynomials, i.e, Q ⊆ B
Kχ,γ(Q)
χ,γ ; and hence, some new mutants may appear. We

look for mutants using Mutant Proning introduced in Section 5.3. We select the set Q
to be small so that we can sample Kχ,γ (Q) efficiently. Then, we select the vector space
in which we look for new mutants R and a subset Ki ⊆ Kχ,γ (Q) as in Section 5.2.4 and
we compute a new set of mutants using Mutant Proning. We give the algorithm in Al-
gorithm 10 and graphical representation in Figure 5.12. We iterate until we find enough
mutants so that mXL/F4 is efficient and until we keep discovering new mutants for sets
Q where Kχ,γ (Q) can be sampled efficiently.
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K0 ⊆R Fkln
2

i← 0

BKi
χ,γ∩R T ← T ∪

r
BKi

χ,γ∩R
z

V

JKV

Mi ⊆R ⟨T +O⟩
small subset

Ki ⊆R Kχ,γ (Mi)
reasonably large subset

i← i+1

⟨
Sχ,γ,⋆

⟩heuristically
⊆

Figure 5.12: Iterative Proning

Empirical results. In our experiments, we focused on 65 round KATAN32 and we
aimed to evaluate the contribution of Step 19 of Algorithm 10, i.e, considering a subset
of the “filtered” keyspace Kχ,γ (Mi). Following Step 12 of Algorithm 10, we selected
uniformly at random a set Mi⊆{v+Dup(v) : v ∈V} of size |Mi|= 4. Then, we selected
a set of keys uniformly at random Ki ⊆ Kχ,γ (Mi) (cf. Step 19). This set of keys was
then used as an input for Algorithm 9. For a comparison, we run this algorithm with a
set of keys selected uniformly at random K ⊆ Fkln

2 . In our experiments, we considered
R given by

R = linspan


∪

r∈[35,45]
p∈[1,smpn]
j, j′∈[1,mln]

{
s j

p,r · s j′
p,r

}
∪

∪
j, j′∈[1,kln]

{
k j · k j′

}
 (5.9)

and we observed that
∣∣∣R∩(BKi

χ,γ \BK
χ,γ

)∣∣∣ > 0 in approximately 2% of cases (over the
choices of different samples). Similarly, we tested Step 12 of Algorithm 10 for mutant
polynomials. We first run Algorithm 9 with set of keys selected uniformly at random
K ⊆ Fkln

2 as in Step 1 of Algorithm 10 and we obtained a set of mutants M. Then, we
considered Mi⊆M such that |Mi|= 4 and we selected a set of keys uniformly at random
Ki ⊆Kχ,γ (Mi) (cf. Step 19). We observed that

∣∣∣R∩(BKi
χ,γ \BK

χ,γ

)∣∣∣> 0 in approximately
5% of cases (over the choices of different samples). However in our experiments, we
considered a fixed set R in Step 9 which restricted the number of new mutants we could
recover and we expect improved results for a better selection of R.

5.5 Speeding-up standard algebraic techniques.

We proposed Universal Proning, Mutant Proning and Iterative Proning. Each of these
techniques allow us to recover polynomials of ideal

⟨
Sχ,γ,⋆

⟩
. We now describe how
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Algorithm 10 Heuristic Iterative Proning

Input: B,D, t ∈ N, samples (χ,γ)
Output: polynomial system

1: K ⊆ Fkln
2 select uniformly at random

2: Sχ,γ,⋆← build a polynomial system Sχ,γ,⋆ corresponding to the cipher
3: T ← /0
4: U← /0
5: i← 0
6: select random K0 ⊆ Fkln

2
7: repeat
8: compute

O
a

using Notation 61
9: select at random a vector space R⊆ O +B[V ]+B[Dup(V )] of dimension at most

D.
10: M′← R∩BKi

χ,γ using Algorithm 7
11: T ← T ∪ JM′KV
12: select random Mi ⊆ linspan(T ∪O)\U maximal such that |Mi| ≤ B
13: U←Mi∪U
14: if |Mi|= 0 then
15: a← a +1
16: b← b+1
17: end if
18: i← i+1
19: select random Ki ⊆Kχ,γ (Mi) such that |Ki| ≥ t dim(R) using Algorithm 11.
20: until the system T +Sχ,γ,⋆ can be solved efficiently
21: return T
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Algorithm 11 Computation of random subset of Kχ,γ (Q)

Input: Q⊆ F2[V,Dup(V )], n ∈ N
Output: set of keys K such that Q⊆ BK

χ,γ and |K |= n.
1: K ← /0
2: while |K |< m do
3: κ ∈ Fkln

2 select randomly uniformly
4: unset flag
5: for q ∈ Q do
6: if fχ,γ (q) |κ ̸= 0 then
7: set flag
8: end if
9: end for

10: if flag is unset then
11: K ←K ∪{κ}
12: end if
13: end while
14: return K

each technique contributes to speeding up the standard algebraic techniques such as
ElimLin/mXL/F4/SAT solvers.

Universal Proning is designed to recover polynomials of the ideal
⟨
Sχ,γ,⋆

⟩
. I.e, it

allows us to recover the ideal
⟨
Sχ,⋆,⋆

⟩
and the ideal

⟨
S⋆,γ,⋆

⟩
. The running time of

mXL
(⟨

Sχ,⋆,⋆
⟩
,
⟨
S⋆,γ,⋆

⟩)
is better than the running time of mXL

(
Sχ,⋆,⋆,S⋆,γ,⋆

)
as in the

first case, we avoid unnecessary restarts when a universal mutant is found. These uni-
versal mutants can be found by Universal Proning. We show that these universal mutants
actually improve the performance of ElimLin. The samples were selected based on tech-
nique introduced in Chapter 4. In our experiments, we considered various versions of
reduced round KATAN32 and the vector space R given in Eq. (5.10).

R = linspan


∪

r∈[30,50]
p∈[1,smpn]
j,∈[1,mln]

{
s j

p,r
}
∪

∪
j∈[1,kln]

{
k j
}
 . (5.10)

We give results in Tables 5.3- 5.7. We denote:

• TE the time required to compute ElimLin
(
Sχ,γ,⋆

)
.

• TEP the time required to compute ElimLin
(r

BK
χ,γ∩R

z
V
+Sχ,γ,⋆

)
.
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Table 5.3: Comparison of attacks on 67-round KATAN32 using ElimLin and Universal
Proning

m t LE LEP TE TEP TP
0x00003106 0xee39ca21 41 44 48s 54s 45s
0x0000320c 0x501f8002 0 49 44s 44s 51s
0x0000700c 0x25b98002 0 51 39s 30s 47s
0x0000700c 0x9de08802 0 48 35s 112s 53s
0x00007104 0x39d88a02 45 50 35s 37s 48s
0x00007104 0x65f30240 44 44 47s 19s 45s
0x00017004 0x58d68920 0 55 43s 109s 47s
0x00043404 0x8a10c862 0 52 36s 33s 53s
0x00043404 0x9498080a 0 46 40s 21s 52s
0x02003104 0xa1308860 0 0 41s 91s 45s
0x02007004 0xb1270a48 0 50 56s 70s 53s
0x10007004 0x05ce0020 0 49 57s 49s 48s
0x10013004 0x05d4c022 0 0 44s 168s 52s
0x21003004 0x1414c10a 51 51 51s 26s 49s
0x4000300c 0x884c8a60 0 0 39s 165s 46s
0x40003104 0x12394002 44 45 40s 17s 51s
0x40003804 0x93998022 0 50 36s 61s 54s

• TP the time required to compute
r

BK
χ,γ∩R

z
V

, KR,χ = 10dim
(

BK
χ,γ

)
and K ⊆ Fkln

2

was selected uniformly at random such that |K |= KR,χ.

• LE =

∣∣∣∣ElimLin
(
Sχ,γ,⋆

)
∩F2[VK]

1
∣∣∣∣

• LEP =

∣∣∣∣ElimLin
(r

BK
χ,γ∩R

z
V
+Sχ,γ,⋆

)
∩F2[VK]

1
∣∣∣∣

• VE =
∣∣VarElimLin

(
Sχ,γ,⋆

)∣∣
• VEP =

∣∣∣VarElimLin
(r

BK
χ,γ∩R

z
V
+Sχ,γ,⋆

)
∩F2[VK]

∣∣∣
The cost of Universal Proning in our experiment was higher than the cost of ElimLin.
This is due to the fact that our implementation of ElimLin was tuned to keep the polyno-
mial system sparse unlike Universal Proning which was based on reference implemen-
tation. In general, the asymptotic memory complexity of ElimLin is O

(
|V |2

)
and the

asymptotic memory complexity of Universal Proning is only O
(
KR,χ |V |

)
. However, we

did not observe corresponding improvement of running time in practice.
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Empirical results. In Table 5.3, we give results for 67-round KATAN32 for the cube
selection of samples. The figures demonstrate that using Universal Proning improves the
performance of ElimLin with respect to the number of linear equations in the key vari-
ables we recover. Similar results can be observed in Table 5.5 for 70-round KATAN32
and Table 5.6 for 71-round KATAN32. In the case of 72-round KATAN32, we could not
derive the linear equation in the key variables for any cube but we observed that Uni-
versal Proning allowed us to reduce the number of variables of system QT obtained by
ElimLin (cf. Algorithm 3 in Chapter 3). The results are given in Table 5.7. Hence,
Universal Proning is an efficient method to reduce the number of variables of a poly-
nomial system. This usually improves the running time of mXL/F4. The total running
time of ElimLin with Universal Proning is given by the sum TEP + TP. In the case of
our implementation of Universal Proning, the running time of ElimLin is always smaller
than TEP+TP. However for a chosen-plaintext attack (for instance our cube selection of
samples), we can recover most of these polynomials in the preprocessing phase. Hence,
we perform Universal Proning only once and ignore the time TP in the attack required by
Universal Proning. In some cases, we obtain TE ≥ TEP while in other cases, we obtain
TE < TEP. The inconsistency is a result of our heuristic optimization of ElimLin. In rare
cases, it may happen that a linear equation from Universal Proning leads to a substitu-
tion which slows down ElimLin. However in general, this method leads to a significant
speedup when we consider a large number of samples. When we considered samples
χi ∈Cm,t where for m = 0x6200c310 , t = 0x8cdc2002 and

R = linspan


∪

r∈[30,50]
p∈[1,smpn]
j, j′∈[1,mln]

{
s j

p,r · s j′
p,r

}
∪

∪
j, j′∈[1,kln]

{
k j · k j′

}
 ,

we obtained TP = 10 414s and TEP = 17 243s to recover the secret key. However,
ElimLin without Universal Proning did not recover any linear equation in key variables
in TE ≤ 100 000s.

Mutant Proning is designed to recover nonuniversal polynomials which would be dis-
covered in early stages of mXL and Iterative Proning is designed to recover nonuniversal
polynomials which would be discovered in later stages of mXL. In our experiments, we
focused on recovering nonuniversal mutants which are unlikely to be found by ElimLin
computation. We set

R =
F2[V,Dup(V )]

1
+
F2[W,Dup(W )]

2
+
F2[VK]

2
. (5.11)
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Table 5.4: Running time of ElimLin on 68-round KATAN32 with/without Universal Pron-
ing

m t LE LEP TE TEP TP
0x02003104 0xa1308860 0 0 93s 68s 134s
0x02007004 0xb1270a48 0 57 109s 75s 153s
0x21003004 0x1414c10a 48 51 207s 65s 157s
0x40003104 0x12394002 0 48 138s 77s 160s
0x40003804 0x93998022 0 0 127s 96s 175s
0x40007004 0x368f036a 0 43 134s 171s 155s

Table 5.5: Success of ElimLin on 70-round KATAN32 with/without Universal Proning

m t LE LEP TE TEP TP
0x000a0c41 0x2975a208 0 56 1413s 263s 342s
0x00420c41 0x182c2280 0 58 969s 202s 344s
0x20020c41 0x1d9d6288 56 61 1341s 351s 343s
0x00060c41 0x01e86280 0 61 904s 668s 343s
0x00041982 0x296ba001 62 63 636s 176s 342s

Table 5.6: Success of ElimLin on 71-round KATAN32 with/without Universal Proning

m t LE LEP TE TEP TP
0x000a0c41 0x2975a208 0 55 602s 11905s 337s
0x00420c41 0x182c2280 0 0 511s 1359s 346s
0x20020c41 0x1d9d6288 0 61 493s 3416s 341s
0x00060c41 0x01e86280 0 0 503s 445s 352s
0x00041982 0x296ba001 0 62 883s 2132s 351s
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Table 5.7: Speeding up ElimLin on 72-round KATAN32 with/without Universal Proning

m t VE VEP TE TEP TP
0x000a0c41 0x2975a208 1361 1166 416s 1627s 328s
0x00420c41 0x182c2280 1368 1197 620s 1383s 325s
0x20020c41 0x1d9d6288 1348 1163 558s 2397s 327s
0x00060c41 0x01e86280 1368 1197 453s 500s 342s
0x00041982 0x296ba001 1354 1167 527s 1872s 334s

Table 5.8: Speeding up ElimLin on 75-round KATAN32 with/without Universal Proning

m t LE LEP TE TEP TP
0x6200c310 0x8cdc2002 53 54 272 804s 19 641s 10 218s
0x05030c41 0x503ce288 0 0 573 308s 272 920s 10 644s
0x0220d310 0xf44f2020 0 59 274 277s 20 941s 10 880s
0x4410d210 0x834f21c2 0 73 210 058s 12 938s 11 239s
0x00068c49 0xc7407020 0 74 327 425s 20 450s 10 384s

where
W =

∪
r∈[40,43]

p∈[1,smpn]
j∈[1,mln]

{
s j

p,r
}
.

We applied Mutant Proning technique for samples χi ∈ Cm,t for m = 0x00003106 , t =
0xee39ca21 , We selected κ ∈ Fkln

2 uniformly at random and we set γi = Eκ (χi). We
managed to recover a nonuniversal mutant m for 85-round KATAN32 such that m was not
in linspan(QL +QT ). However, we did not recover sufficient number of these mutants
to improve the attack using ElimLin. The comparison with standard tools for Gröbner
basis computation was not possible because our polynomial system Sχ,γ,⋆ was too large
and both polybori-0.8.0 and XL [Cou10] crashed. Actually, for R given in Eq. (5.11), we
managed to recover a mutant m ∈

q
Bχ,γ∩R

y
V which had only two monomials. We also

applied a variant of Mutant Proning and recovered directly the polynomials in the key
variables2. Using this variant of Mutant Proning against toy version of KATAN32 where
the entropy of the secret key was reduced to 15 bits, we could obtain linear equations in
key variables using Mutant Proning. Afterwards, we derived the secret key by solving
the linear system using Gauss elimination. In our case, the complexity of this approach

2This method was introduced at the beginning of Section 5.3.
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was close to an exhaustive search. This was also due to our selection of R at the Step 1
of Algorithm 9. We expect that a more sophisticated selection of R would lead to better
results.

To conclude, the Proning techniques allow to speed-up algebraic attacks. It allows us to
recover some hidden polynomials of the polynomial system representing the cipher. We
observe a significant increase of performance for ElimLin especially for large number
of samples. As ElimLin is a preprocessing step for F4/mXL and some SAT solvers, we
expect similar results for these algorithms.
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6
Conclusion

In Chapter 3, we revisited the ElimLin algorithm. As a result, we developed an optimized
version of the algorithm which allowed us to perform algebraic cryptanalysis of reduced
round KATAN32, LBlock and SIMON. In Chapter 4, we considered several strategies
for selection of samples in algebraic attacks, and we showed that a selection strategy
based on cube attacks allows us to break higher number of rounds for all tested ciphers.
In [SSV14], we predicted possible advances of ElimLin for TRIVIUM which was later
shown in [QW14]. These results show that selection of samples in algebraic attacks is
very important and it can lead to significant improvements.

In Chapter 5, we developed a new method for solving a polynomial system arising from
deterministic symmetric cipher. We verified that our method recovers mutants more ef-
ficiently than other more general algebraic techniques (such as ElimLin, mXL/F4) when
we can sufficiently restrict the space where we look for these mutants. We used Univer-
sal Proning to find many linear equations which would also be found by ElimLin. We
recovered them using Universal Proning at a reduced cost. This speeded-up computa-
tion of ElimLin as we reduced the number of iterations performed by ElimLin and similar
results are expected for mXL/F4 and SAT solvers.

The cost of Universal Proning, Mutant Proning and Iterative Proning is reduced when
we consider only a small set of polynomials R where we perform the proning. In our
experiments, the selection of R was based on an ad-hoc strategy and the selection of
samples was based on cube attacks. However, we expect that linear, differential and
high order differential techniques may be beneficial in the selection of samples and in
the selection of the set R.
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