
Computational and Algebraic Aspects of the
Advanced Encryption Standard

Carlos Cid, Sean Murphy and Matthew Robshaw

Information Security Group,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX, U.K.
carlos.cid@rhul.ac.uk

s.murphy@rhul.ac.uk

m.robshaw@rhul.ac.uk

Abstract. The new Advanced Encryption Standard (AES) has been recently selected by the
US government to replace the old Data Encryption Standard (DES) for protecting sensitive
official information. Due to its simplicity and elegant algebraic structure, the choice of the
AES algorithm has motivated the study of a new approach to the analysis of block ciphers.
While conventional methods of cryptanalysis (e.g. differential and linear cryptanalysis) are
usually based on a “statistical” approach, where an attacker attempts to construct statistical
patterns through many interactions of the cipher, the so-called algebraic attacks exploit
the intrinsic algebraic structure of a cipher. More specifically, the attacker expresses the
encryption transformation as a set of multivariate polynomial equations and attempts to
recover the encryption key by solving the system.
In this paper we consider a number of algebraic aspects of the AES, and examine a few
computational and algebraic techniques that could be used in the cryptanalysis of cipher.
We show how one can express the cipher as a very large, though surprisingly simple, system
of multivariate quadratic equations over the finite field F28 , and consider some approaches
that can be used to solve this system.

1 Introduction

In 1997 the US National Institute of Standards and Technology (NIST) announced an open compe-
tition to select a substitute for the old 64-bit block, 56-bit key Data Encryption Standard (DES).
The new encryption standard, called Advanced Encryption Standard (AES), should support block
lengths of 128 bits and key lengths of 128, 192 and 256 bits. The AES is to replace DES for securing
“sensitive but unclassified” information and systems. Additionally, the AES is likely to be adopted
as a standard by the private sector, in particular in commerce and the banking sector. In 2000
NIST announced the Belgian candidate Rijndael as the winner.

Rijndael has a simple and elegant structure. It has been designed to offer strong resistance
against known attacks, in particular differential and linear cryptanalysis, while enabling efficient
implementation on different platforms. We refer to [14] for a very good overview of the development
of the AES.

Rijndael has also a highly algebraic structure. The cipher round transformations are based on
operations on the finite field F28 . This has led to a growing interest in applying algebraic techniques
in the cryptanalysis of block ciphers in recent times. One reason is that conventional methods
of cryptanalysis (e.g. differential and linear cryptanalysis) are generally based on a “statistical”
approach: the attacker attempts to construct probabilistic characteristics through as many rounds
of the cipher as possible, in order to distinguish the cipher from a random permutation. Most
modern ciphers have been designed with these attacks in mind, and therefore do not generally
have their security affected by them. Additionally, due to the very nature of the attacks, the
complexity usually grows exponentially with the number of rounds, ensuring that such attacks
become rapidly impractical.

In contrast, algebraic attacks exploit the intrinsic algebraic structure of a cipher. More specifi-
cally, the attacker expresses the encryption transformation as a (large) set of multivariate polyno-
mial equations, and subsequently attempts to solve such a system to recover the encryption key.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/43776704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Algebraic attacks open new perspectives in the cryptanalysis of block ciphers, as they can be seen
as a “structural” attack on the cipher, and one if successful, might not be easily avoided by simply
increasing the number of rounds. In particular, there are indications that the complexity of such
attacks might not grow exponentially with the number of rounds [6].

While in theory most modern block ciphers can be fully described by a system of multivariate
polynomials over a finite field, for the majority of the cases such systems prove to be just too
complex for any practical purpose. Yet there are a number of recent designed ciphers that present
a highly algebraic structure, and could therefore be more vulnerable to algebraic attacks [1]. In
the particular case of the AES, Courtois and Pieprzyk have shown in [6] how one can express the
encryption operation as a large, sparse, overdefined system of multivariate quadratic equations
over F2. In the same paper they propose a method called XSL, which could provide an efficient
way to recover the encryption key for certain ciphers.

Around the same time, Murphy and Robshaw [17] showed how to express the AES encryption
as a far simpler system of equations over F28 . If XSL is in fact a valid method, this system should
be faster to solve than the original one over F2, and in theory, could provide an attack more efficient
than exhaustive search of the key, which would be devastating for the AES.

In this paper we will recall some of the work that has been developed so far in the alge-
braic cryptanalysis of the AES and consider some approaches that could be applied to solve the
corresponding system of multivariate equations by using computational algebraic geometry and
commutative algebra techniques.

2 The Basic Structure of the AES

Rijndael is a key-iterated block cipher, alternating key-independent round transformations and key
addition. We refer to [9] for a full description of the cipher. Here we consider the basic version
of the AES, which encrypts a 16-byte block using a 16-byte key with 10 encryption rounds. The
treatment of the representation of the AES given in this section and in Sections 3 and 4 is largely
based in [17].

The input to the AES round function can be viewed as a rectangular array of bytes or, equiv-
alently, as a column vector of bytes, known as the state (Figure 1). Throughout the encryption
process this byte-structure is fully respected.

a =

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

= (a00, . . . , a30, a01, . . . , a31, a02, . . . , a33)
T

Fig. 1. The AES-128 state.

In the AES, each byte is regarded as an element of the field

K =
F2[x]

< f(x) >
∼= F28 ,

where f(x) ∈ F2[x] is the irreducible polynomial x8 + x4 + x3 + x + 1.
The AES specification defines a round in terms of the following three transformations1:

1. The AES S-Box. This is the only non-linear operation of the cipher. The value of each byte
in the array is substituted according to a table look-up. This table look-up is the combination
of three transformations:

1 The first and last rounds have a slightly different (but related) form.



(a) The input w is mapped to x = w(−1), where w(−1) is defined by

w(−1) = w254 =
{

w−1 w 6= 0
0 w = 0

Thus the “AES inversion” is identical to the standard field inversion in K for non-zero field
elements, with 0(−1) = 0.

(b) The intermediate value x is regarded as a F2-vector of dimension 8 and transformed using
an (8 × 8) F2-matrix LA. The transformed vector LA · x is then regarded in the natural
way as an element of K.

(c) The output of the AES S-Box is (LA · x) + d, where d is a constant element of K.
2. The AES linear diffusion (mixing) layer.

(a) Each row of the array is rotated by a certain number of byte positions. This operation is
called ShiftRow.

(b) Each column y of the array is considered as a vector of K4, and is transformed into the
column C · y, where C is a (4× 4) K-matrix. This operation is called MixColumn.

3. The AES subkey addition. Before encryption, the original key is expanded into 11 round
subkeys, each having 16 bytes. Then following the diffusion layer, each byte of the array is
added (in K) to a byte from the corresponding array of round subkeys.

2.1 Remarks on the Structure of the AES

In [16] Murphy and Robshaw make the following remarks about the round structure of the AES:

– The additive constant d ∈ K in the AES S-box can be removed by incorporating it within a
(slightly) modified key schedule.

– The linear transformation LA in the S-Box can be now viewed as part of an augmented linear
diffusion layer. This seems to give a more natural presentation of the round function as:
• a S-Box Layer : inversion in F28 ;
• a Linear Diffusion Layer : F2-linear transformation M ;
• a Subkey Layer : addition of the modified round subkey.

– The augmented linear layer M is very structured (M16 = Id), with some quite interesting
properties [16].

They also note that, although these particular properties may offer little advantage to conventional
cryptanalysis, it is not clear whether one can find other ways to combine the rich structure of the
diffusion layer and the highly structured inverse map. In particular, by simply re-writing the round
transformation as above, it seems already that some of the original design criteria for the cipher
have not been met (e.g. an S-Box without fixed and “opposite-fixed” points [9]).

3 The Big Encryption System (BES)

One of the main difficulties in exploring the properties described above in the algebraic crypt-
analysis of the AES is the existence of operations in two distinct fields (F2 and F28). To address
the conflict between these two operations in the AES, a new iterated block cipher was introduced
in [17]. The Big Encryption System (BES) operates on 128-byte blocks with 128-byte keys. BES
has a very simple algebraic structure: one round of the cipher consists of inversion, matrix multi-
plication and key addition, all operations over F28 .

Both the AES and the BES use a state vector of bytes, which is transformed by the basic
operations within a round. The state spaces of the AES and the BES are the vector spaces A = K16

and B = K128, respectively.
The relation between the AES and the BES is established by using the vector conjugate mapping

φ from K to K8, which is defined by

ã = φ(a) =
(
a20

, a21
, a22

, a23
, a24

, a25
, a26

, a27
)

.



This definition extends in the obvious way to a vector conjugate mapping φ from Kn to a subset
of K8n.

We can therefore use the map φ to embed an element of the AES state space A into the BES
state space B. We define

BA = φ(A) ⊂ B

to be the embedded image of the AES state space in the BES state space. The subspace BA is
an additively closed set that also preserves inverses. In fact, BES is defined in such way that the
diagram in Figure 2 is commutative.

A
φ−→ BA

↓ ↓
k → AES BES ← φ(k)

↓ ↓
A

φ−1

←− BA

Fig. 2. The relationship between the AES and the BES.

3.1 The Structure of the BES

We refer to [17] for the full description of the BES cipher. The basic operations over F28 are the
same as for the AES: subkey addition, row and column operations, S-Box inversion.

The main problem appears to come from the AES S-Box F2-linear operation, as there is no
easy way to represent it as a matrix multiplication for the AES. However, there is a simple matrix
representation of this operation for the BES.

In the AES specification, the S-Box F2-linear operation is defined by considering K = F28

as the vector space (F2)8. To accomplish this change, the natural mapping ψ : F28 → (F2)8 is
used in the AES. The componentwise AES F2-linear operation f : K → K is then defined as
f(a) = ψ−1(LA(ψ(a))) for a ∈ K. It is the need for the maps ψ and ψ−1 that complicates the
algebraic analysis of the AES.

However, since f is F2-linear over F28 , it can be represented as a linearized polynomial on F28 ,
i.e. it can described by a linear combination of conjugates. In fact we have

f(a) =
7∑

k=0

λka2k

for a ∈ K,

where
(λ0, λ1, λ2, λ3, λ4, λ5, λ6, λ7) = (05, 09, f9, 25, f4, 01, b5, 8f).

Thus we have that the F2-linear operation from the AES S-box can now be defined in the BES
using an (8×8) F28-matrix. This matrix replicates the AES action of the F2-linear map on the first
byte of a vector conjugate set while ensuring that the property of vector conjugacy is preserved on
the remaining bytes.

The Round Function of the BES. Given as input to the BES round function the array b ∈ B
and subkey (kB)i ∈ B, then, following a rearrangement of the operations as described in Section 2.1,
the BES round function is given by

RoundB(b, (kB)i) = MB · (b(−1)) + (kB)i,

where MB is a (128 × 128) F28-matrix performing linear diffusion within the BES. Similarly to
the AES, the matrix MB has a surprisingly simple structure (a sparse matrix, with minimum
polynomial (x + 1)15).



Furthermore, if the input to the AES round function are a ∈ A and subkey (kA)i ∈ A, then
we have

RoundA(a, (kA)i) = φ−1 (RoundB (φ(a), φ((kA)i) ) ) .

In summary, the BES is a 128-byte block cipher consisting entirely of simple algebraic opera-
tions over K = F28 , which when restricted to the subspace BA = φ(A), provides an alternative
description of the AES. This relationship between both ciphers may well provide new ways for the
cryptanalysis of the AES.

4 Algebraic Cryptanalysis of the AES

Given the rich algebraic structure of the AES, it seems natural that one would attempt to explore
it in the cryptanalysis of the cipher. In [12] the authors describe how one can express the AES
encryption transformation in a compact algebraic formula, which contains around 250 terms. How-
ever, they acknowledge that it seems very unlikely that an attacker could take advantage of such
algebraic description to mount a practical attack.

Later Courtois and Pieprzyk [6] exhibit a large system of multivariate equations whose solution
would recover the AES encryption key. They explore the fact that the only non-linear component
of the algorithm (the S-Box) is based on the inverse map on a finite field, and were able to obtain
a small set of quadratic multivariate equations (in the input and output bits) that completely
described the S-Box transformation. By combining all equations throughout the cipher, they were
able to express the full encryption transformation as a large, sparse and overdefined system of
multivariate quadratic equations over F2 (8000 quadratic equations with 1600 variables for the
AES with 128-bit key).

In the same paper they propose a method called XSL (eXtended Sparse Linearization), as an
attempt to efficiently solve the system. XSL is one of a number of methods based on the well-known
method of linearization. The XSL method attempts to take advantage of the particular properties
of the system which arises from AES (overdefined and sparse). If valid, the XSL could provide an
effective way to recover the encryption key.

Note that the system given in [6] is over F2, as the variables represent bits which arise during
the running of the cipher. As we have shown, the representation of the AES as the BES with a
restricted message and key space should give rise to a far simpler system of equations over F28 . If
XSL is indeed a valid method, this system should be faster to solve than the original one over F2.

4.1 A Simple Multivariate Quadratic System for the BES

Recall that the round function of the BES (and therefore essentially the AES) is given by

b 7→ MB .b−1 + (kB)i.

Let us denote the plaintext and ciphertext by p ∈ B and c ∈ B respectively, and the state vectors
before and after the ith invocation of the inversion layer by wi ∈ B and xi ∈ B (0 ≤ i ≤ 9)
respectively. Also let ki denote the ith round subkey. Then the BES encryption can be described
by the following system of equations:

w0 = p + k0,

xi = w(−1)
i for i = 0, . . . , 9,

wi = MBxi−1 + ki for i = 1, . . . , 9,
c = M∗

Bx9 + k10,

where M∗
B is a modified diffusion matrix (the final round in both BES and AES does not use the

MixColumn operation).
If we denote the matrix MB by (α) and the matrix M∗

B by (β), and represent the (8j + m)th

component of xi, wi and ki by xi,(j,m), wi,(j,m) and ki,(j,m) respectively, we can consider the above
equations componentwise, and thus obtain a collection of simultaneous multivariate quadratic



equations which fully describe a BES encryption. These are given for j = 0, . . . , 15 and m = 0, . . . , 7
by:

0 = w0,(j,m) + p(j,m) + k0,(j,m),
0 = xi,(j,m)wi,(j,m) + 1 for i = 0, . . . , 9,
0 = wi,(j,m) + ki,(j,m) +

∑
(j′,m′) α(j,m),(j′,m′)xi−1,(j′,m′) for i = 1, . . . , 9,

0 = c(j,m) + k10,(j,m) +
∑

(j′,m′) β(j,m),(j′,m′)x9,(j′,m′).

Note that we assume that 0-inversions do not occur as part of the encryption or the key schedule.
This assumption is true for approximately 53% of encryptions and 85% of 128-bit keys.

When we consider an AES encryption embedded in the BES framework, we obtain more multi-
variate quadratic equations because the embedded state variables of an AES encryption are in BA

and possess the conjugacy property. Thus we need to add the following equations to the system
above:

0 = x2
i,(j,m) + xi,(j,m+1) for i = 0, . . . , 9,

0 = w2
i,(j,m) + wi,(j,m+1) for i = 0, . . . , 9.

An AES encryption can therefore be described as an overdefined multivariate quadratic system
with 5248 equations over K = F28 , of which 3840 are (extremely sparse) quadratic equations and
1408 are linear equations. These encryption equations comprise 7808 terms, made from 2560 state
variables and 1408 key variables. Furthermore, the AES key schedule can be expressed as a similar
system. In its most sparse form, the key schedule system has 2560 equations over K, of which 960
are quadratic and 1600 are linear equations. These key schedule equations comprise 3308 terms
made from the 2048 variables, of which 1408 are basic key variables and 640 are auxiliary variables.
Note that one can reduce the sizes of the systems by using the linear equations to substitute for
state and key variables, though the resulting system is slightly less sparse [17].

5 Potential Attack Techniques

Given the BES algebraic formulation, it is clear that an efficient method for the solution of this
type of multivariate quadratic system would give a cryptanalysis of the AES with potentially very
few plaintext-ciphertext pairs. While the problem of solving generic large systems of multivariate
equations of degree greater than one over a finite field is known to be NP-complete, it is not entirely
unlikely that a technique can be developed which exploits the particular algebraic structure of the
AES and BES systems. Below we investigate a few approaches for solving such systems.

5.1 Linearization Methods

The method of linearization is a well-known technique for solving large systems of multivariate
polynomial equations. In this method one considers all monomials in the system as independent
variables and tries to solve the system using linear algebra techniques. In order to be able to apply
the method, the number of linearly independent equations in the system needs to be approximately
the same as the number of terms in the system. When this is not the case, a number of techniques
have been proposed that attempt to generate enough LI equations so that one can apply the
linearization method.

In [5] the authors propose an algorithm for solving systems of multivariate quadratic equations
called XL (standing for eXtended Linearization). XL is a simple algorithm: if A is a system of m
quadratic equations fi in n variables over a field K, and D ∈ N, one executes the following steps:

1. Multiply: Generate all the products
∏k

j=1 xij ∗ fi with k ≤ D − 2;
2. Linearize: Consider each monomial of degree ≤ D as a new variable and perform Gaussian

elimination on the system obtained in step 1;
3. Solve: Assume that step 2 yields at least one univariate equation. Solve this equation;
4. Repeat: Simplify the equations and repeat the process to find the values of the other variables.

The hope is that after few iterations the algorithm will yield a solution for the system.
In [5] the authors present some estimates for the complexity of the XL algorithm for random

systems with m ≈ n. In particular, they provide evidence that XL can solve randomly generated



overdefined systems of polynomial equations in subexponential time. However, one can show that
there are cases where the algorithm might not work at all (for example, when the associated
projective variety has positive dimension). Additionally, there has been strong evidence that some
of the heuristics used were too optimistic [2]. The main discrepancy arises from the fact that one
might overestimate the number of linearly independent equations generated by the algorithm. In
any case, it is widely agreed that application of the XL algorithm against the polynomial system
which arises from the AES (either over F28 or F2) does not give an efficient attack against the
cipher.

Since the introduction of the XL method in 2000, a number of variants have been proposed in
the attempt to exploit specific properties of the polynomial system, such as how overdefined the
system is, or the order of the field2. Of particular relevance for the AES is the method proposed
in [6] by Courtois and Pieprzyk.

XSL is based on the XL method, but uses the sparsity and specific structure of the equations
to mount the attack; instead of multiplying the equations by all monomials of degree ≤ D − 2, in
the XSL algorithm the equations are multiplied only by “carefully selected monomials” (we refer
to [6] and its earlier version [7] for a full description of the method). While this has the intention to
create less new terms when generating the new equations, it is not entirely clear the exact criteria
used for selecting the monomials.

The system used in [6] to mount the attack has 8000 quadratic equations and 1600 variables,
over F2 (the variables represent the input/output bits). Two attacks are described in [7]: the first
one ignores the key schedule and therefore needs 11 known plaintext/ciphertext pairs (for the AES-
128); the second attack uses the key schedule, and in theory could be mounted with a single known
plaintext/ciphertext pair. In [6] it is claimed that the second XSL attack would have complexity
of ≈ 2230 and ≈ 2255 when applied against the 128-bit and 256-bit AES, respectively. So the XSL
attack would represent a (at least theoretical) successful attack against the 256-bit AES.

XSL Attack on the BES. As shown earlier, the AES F28-system derived from the BES is much
simpler than the F2-system presented in [6]. In particular, it is far sparser. This would strongly
suggest that the XSL attack is more suited to the BES system than to the original AES system.

Murphy and Robshaw consider in [18] the consequences of the XSL attack against the AES
system derived from the BES. Using the estimates given in [6], they conclude that if XSL is in fact
a valid technique, an AES key recovery might be possible with a work effort of about 2100 AES
encryptions. This would clearly represent a successful attack against the AES-128.

Accuracy of the XSL Estimates. The main issue when considering XSL attacks (in fact, all the
XL-based attacks) on the AES is how accurate the estimates for the number of linearly independent
equations are. As explained above, there is evidence that some of the heuristics in the original XL
paper were too optimistic. In fact, there is even more concern when considering the XSL method [3].
The method is based on a number of heuristics arguments, and although this might not invalidate
the XSL technique entirely, it makes harder to consider whether the XSL attacks described in [6]
work as claimed.

We have considered very small versions of BES, with reduced block length and number of
rounds, and smaller field. We ran a few simulations with these versions, and it appears that the
attacks do not work in the manner predicted in [6]. Again, while this might not invalidate the XSL
technique, it could raise doubts on whether the method is generally applicable to the BES system.

Variants of the XSL Method. A possible approach to overcome some of the difficulties when
applying the XSL method against the BES system is to use a similar idea to the one given in [4],
where a variant of the XL method called XLF is proposed. XLF attempts to address some of the
possible limitations of the XL method over F2k , with k > 1. It does this by introducing k new
variables for each variable xi present in the system (the conjugates of xi) and k new equations for
each original equation (image of the Fröbenius automorphism on the equations). Furthermore, the
quadratic equations relating variables with its conjugates are introduced.
2 Fields of characteristic 2 are the most important for cryptographic applications



This method seems to have been based on the BES system, which has already the form above.
But one interesting new step is the use of the relations between the variables and their conjugates to
reduce the degree of terms generated by the algorithm. For example, given the (conjugate) relations
x2

00 + x01 = 0 and y2
11 + y12 = 0, then when multiplying the equation f : x00y21 + y11z01 = 0 by

the monomial x00y11, we would obtain the new equation

y11x00 ∗ x00y21 + x00y11 ∗ y11z01 = x01y11y21 + x00z01y12 = 0

This step corresponds to a simple reduction of f by the conjugate relations. However one must be
careful when analysing the effect of introducing this new step to the XSL algorithm. In fact, the
technique of reducing monomials by using relations in the base field has appeared in number of
proposed variants of the XL algorithm, though it was not part of the original XL algorithm (no
reduction appeared in the description of the algorithm in [5]).

So although this new step appears to improve the efficiency of XL-type algorithms for solving
such multivariate quadratic systems over finite fields (and experiments in [4] seem to suggest so),
more research is needed to determine whether such technique can improve the chances of the XSL
attack against the BES system.

5.2 Gröbner Bases and Other Computational Algebra Techniques

Solving multivariate polynomial systems is a typical problem studied in Algebraic Geometry and
Commutative Algebra. The classical algorithm for solving this type of problem is the Buchberger
algorithm for calculating Gröbner Bases (see [8] for definitions and description of the algorithm).
The algorithm generates a basis for the ideal derived from the set of equations, which can then be
used to obtain the solutions.

The complexity of most algorithms used for calculating a Gröbner basis of an ideal is closely
related to the total degree of the intermediate polynomials that are generated during the running of
algorithm. In the worst case the Buchberger algorithm is known to run in double exponential time.
One of the most efficient algorithms known, due to Faugère [10], appears to be single exponential.
In any case, in practice it is widely believed that Gröbner Bases algorithms cannot be used for
efficiently solving generic systems with more than a handful of variables (e.g. 15).

However, the type of systems which arise from cryptosystems are usually very structured, and
therefore far from looking “random”. For example, in [11] the authors exploit the algebraic prop-
erties of the private key to solve the first Hidden Field Equations (HFE) cryptosystem challenge,
which consisted of a system with 80 equations and variables, by computing a Gröbner basis for the
system.

Gröbner Bases of the BES System. As mentioned above, we have considered small versions of
BES, with reduced block length and number of rounds, and smaller field. One of the resulting sys-
tems consisted of 112 equations and 64 variables. In our experiments, this system was successfully
solved using off-the-shelf Computer Algebra package (Magma) in a couple of seconds. While this
by no means guarantees the tractability of the problem of solving the BES system, it can indicate
that solving the original BES system might not be as hard as one would expect.

While the behavior of Gröbner bases algorithms for generic systems is quite complicated, the
BES system has a very regular structure. It can be considered as an “iterated” system of equations,
with similar “sub-systems” repeated for every round. One could also use the transformation x 7→
x254 as the S-Box inversion to eliminate a number of variables (the BES system considered in
Section 4 has the simplest form, with only quadratic and linear equations).

Furthermore, since the system includes the equations relating every variable with its conjugates,
we have the following easy proposition:

Proposition 1. The maximal degree of polynomials occurring in the computation of a Gröbner
basis of a BES-type system with n variables is at most n.

This is clearly an upper bound, and we expect that in practice the degrees are much lower. This
fact, together with the particular structure of the system, can be exploited to infer more precise
bounds for the complexity of the attack.



One can also seek alternatives for the use of the usual Gröbner bases algorithm. For example,
the concept of Involutive Bases for polynomial ideals was introduced in [13]. The idea was derived
from the theory of algebraic analysis of PDEs. By calculating the involutive basis of a system, one
can study the same kind of problems addressed by Gröbner bases. In fact, one can show that an
involutive basis is a special, though usually redundant, form of Gröbner basis. Involutive Bases
algorithms have shown to be particularly efficient, and could therefore be also a useful tool for
solving the BES system.

Additionally, there are a number of common techniques used in cryptanalysis that could be
used in conjunction with computer algebra methods mentioned above. For example, by adapting
a technique known as meet-in-the-middle (see [15], Chapter 7), the cryptanalyst could consider 2
systems with half of the size of the original one. This has the potential to reduce the complexity of
the attack. One should also note that in practice the attacker is not interested in the full solution
of the system, but only in the key variables. In fact, in a “partial key recovery” attack, only few
key variables might suffice.

Therefore, it is possible that one may be able to use a combination of cryptanalytic and algebraic
techniques (including Gröbner bases) to mount a successful attack without actually computing the
solution of the entire system.

The Ideal Generated by the BES System. In the attempt to solve the polynomial system
derived from the BES cipher, it may be interesting to obtain some information about the ideal
generated by the polynomials in the system.

Let S be the system described above. If one fixes the encryption key K, then for every plain-
text/ciphertext pair (P, C) we have a derived system S(P,C) and the ideal 3

I(P,C) = 〈S(P,C)〉 ⊆ K[xi,(j,m), . . . , wi,(j,m), . . . , ki,(j,m)].

In fact, when analysing the AES, we are mostly interested in the ideal

IK(P,C) = I(P,C) ∩K[k0, k1, . . . , k15]

where k0, k1, . . . , k15 are the first key addition variables (i.e. the cipher key, ignoring the conjugates).
Thus for every key K, we can associate an ideal of F[k0, k1, . . . , k15] defined as:

IK =
⊕

(P,C)

IK(P,C)

where (P,C) run through all plaintext/ciphertext pairs. Equivalently, we want to calculate the
variety

V(IK) =
⋂

(P,C)

V(IK(P,C)).

Given a random key K, a random plaintext block P , and C such that EK(P ) = C, the
probability that there exists another key K ′ with EK′(P ) = C is approximated by a conditional
Poisson distribution to give (1− 1/(e− 1)) ∼= 42%.

Therefore we expect that in many cases, for a given plaintext/ciphertext pair (P, C), the K-
dimension of the residue class ring K[k0, k1, . . . , k15]/I is greater than 1 (i.e., the corresponding
reduced Gröbner basis should contain polynomials with degree greater than 1).

On the other hand, the K-dimension of K[k0, k1, . . . , k15]/IK is almost certainly 1. In other
words, we expect IK to be of the form

IK =< k0 − κ0, k1 − κ1, . . . , k15 − κ15 >

with κi ∈ K. If this is not true, then there are at least two keys K1 and K2 such that

EK1(P ) = EK2(P )

for every plaintext block P , and K1 and K2 induce the same permutation on the set of possible
plaintext blocks, which is very unlikely for the AES.
3 To avoid inconsistent systems, we will make sure to describe the system in such way that it does not

include “0-inversions” (i.e. use the map x 7→ x254 when necessary).



5.3 Further Algebraic Properties

Even if the polynomial systems which have been described above cannot be efficiently solved to
recover the cipher key, other approaches could well be used in order to mount less ambitious attacks
against the BES (and therefore the AES), such as decryption of related ciphertexts.

At the very least, a cryptanalyst would like to be able to find a polynomial-time distinguisher
to distinguish between the cipher and a random permutation. This could be used either to mount
a practical attack or simply to show some structural weakness of the cipher.

Given the rich algebraic structure of the cipher, it is not entirely impossible that an “algebraic”
distinguisher exists. This would most likely exploit the byte-oriented structure of the cipher and
the typical round version of the BES, which consists of inversion, matrix multiplication and key
addition, all operations over F28 :

b 7→ MB .b−1 + (kB)i

In particular, the linear layer seems to be highly structured. Recall that it has been shown in [17]
that the matrix MB has minimal polynomial (x + 1)15, and thus order 16. In fact, it is easy to
show that the entire affine layer

x 7→ MB .x + (kB)i

has order 16 (for any subkey (kB)i).
While many of these properties might not prove to be relevant in the cryptanalysis of the AES,

it is not inconceivable that one could find a novel way to explore this structure in the analysis of
the cipher.

6 Conclusion

We investigated some computational and algebraic techniques that can be applied in the analysis of
the Advanced Encryption Standard (AES). One promising approach is to exploit the large, though
surprisingly simple, system of multivariate quadratic equations over the finite field F28 derived
from the BES cipher. Given its algebraic formulation, an efficient method for solving this system
would provide us with an attack on the AES with potentially very few plaintext-ciphertext pairs.
While the problem of solving such systems is known to be hard, it is not entirely unlikely that a
technique can be developed which exploits the particular algebraic structure of the AES and BES
systems.

References

1. Alex Biryukov and Christophe De Canniere. Block Ciphers and Systems of Quadratic Equations. In
FSE’2003, 2003.

2. Jiun-Ming Chen and Bo-Yin Yang. Theoretical Analysis of XL over Small Fields. In Proceedings of
the 9th Australasian Conference on Information Security and Privacy, 2004. to appear.

3. D. Coppersmith. Personal communication, 30 April 2002.
4. Nicolas Courtois. Algebraic Attacks over GF (2k), Applications to HFE Challenge 2 and Sflash-v2. In

F. Bao et al., editor, PKC 2004, volume 2947 of LNCS, pages 201–217. Springer-Verlag, 2004.
5. Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient Algorithms for Solv-

ing Overdefined Systems of Multivariate Polynomial Equations. In Eurocrypt’2000, pages 392–407.
Springer, 2000.

6. Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined Systems of
Equations. In Yuliang Zheng, editor, Advances in Cryptology - ASIACRYPT 2002, volume 2501 of
Lecture Notes in Computer Science, pages 267–287. Springer, 2002.

7. Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined Systems of
Equations. Cryptology ePrint Archive, Report 2002/044, 2002.

8. David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms. Undergraduate Texts
in Mathematics. Springer, Second edition, 1997.

9. Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer-Verlag, 2002.
10. Jean-Charles Faugère. A new efficient algorithm for computing Gröbner Bases without reduction to

zero F5. In T. Mora, editor, International Symposium on Symbolic and Algebraic Computation - ISSAC
2002, pages 75–83, July 2002.



11. Jean-Charles Faugère and Antoine Joux. Algebraic Cryptanalysis of Hidden Field Equation (HFE)
Cryptosystems using Gröbner Bases. In D. Boneh, editor, Advances in Cryptology - CRYPTO 2003,
volume 2729 of LNCS, pages 44–60. Springer-Verlag, 2003.

12. N. Ferguson, R. Shroeppel, and D. Whiting. A simple algebraic representation of Rijndael. In Pro-
ceedings of Selected Areas in Cryptography, pages 103–111. Springer-Verlag, 2001.

13. Vladimir Gerdt and Yuri Blinkov. Involutive Bases of Polynomial Ideals. Mathematics and Computers
in Simulation, 45:519–542, 1998.

14. Susan Landau. Polynomials in the Nation’s Service: Using Algebra to Design the Advanced Encryption
Standard. American Mathematical Monthly, pages 89–117, February 2004.

15. Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996.

16. Sean Murphy and Matthew Robshaw. New observations on Rijdael, August 2000. NIST AES website.
17. Sean Murphy and Matthew Robshaw. Essential Algebraic Structure within the AES. In M. Yung,

editor, Advances in Cryptology - CRYPTO 2002, volume 2442 of LNCS, pages 1–16. Springer-Verlag,
2002.

18. Sean Murphy and Matthew Robshaw. Comments on the Security of the AES and the XSL Technique.
Electronic Letters, 39:26–38, 2003.


