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Abstract. This paper presents an algebraic attack against Trivium that breaks 625 rounds using only
4096 bits of output in an overall time complexity of 242.2 Trivium computations. While other attacks
can do better in terms of rounds (799), this is a practical attack with a very low data usage (down from
240 output bits) and low computation time (down from 262).

From another angle, our attack can be seen as a proof of concept: how far can algebraic attacks can be
pushed when several known techniques are combined into one implementation? All attacks have been
fully implemented and tested; our figures are therefore not the result of any potentially error-prone
extrapolation, but results of practical experiments.
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1 Introduction

Algebraic attacks against symmetric ciphers are more than a decade old. In fact, they can be traced back
to Claude Shannon [33]. While being promising, they did not deliver exactly what was hoped for and were
mostly dismissed in cryptanalytic literature.

Recently, the Elimination of linear variables or ElimLin algorithm was used to attack several ciphers,
in particular CTC2, LBlock and MIBS. According to [16] from FSE 2012, only 6 rounds can be broken for
CTC2. This attack requires up to 180h on a standard PC and requires 210 guessed bits and 64 chosen cipher
texts (CC). Guessing 220 bits and 16 CP brings the attack down to 3h. For LBlock, the paper reports 8
rounds (out of 32) for 32 guessed bits (out of 80) for 6 known plain texts (KP). For MIBS (32 rounds), the
paper reports a break for 3 to 5 rounds with 0/16/20 guessed bits, respectively. An initial implementation of
the ElimLin algorithm was employed on DES in [12]. Here, plain ElimLin could break 5 rounds of DES with
3 KP and 23 guessed bits; using a SAT solver, this number can be increased to 6 rounds for an unspecified
number of KP (most likely 1) and 20 key bits fixed. In section 1.2 we discuss this with more details and
references.

In this article, we show that ElimLin can be greatly improved when employed together with other
techniques from solving systems of equations like a proper monomial ordering or a new variant of eXtended
Linearization. In particular, we use the Trivium stream cipher as a testbed for algebraic attacks, mainly due
to its simple algebraic structure and its good scalability: full Trivium has 1152 rounds, so we can see the
effect of adding some component to our equation solver well, cf. Sec. 3 for all building blocks. In addition,
we restricted ourselves to attacks that can be fully implemented on a current computer. Our implementation
was able to break round-reduced Trivium with 625 rounds. In particular, our data complexity is far better
than for non-algebraic attacks. Non-algebraic attacks need at least 240 to 245 output bits of Trivium with
767 − 799 rounds as we present in section 1.2. We are able to bring this down to 211 or 212. Further non-
algebraic attacks can use up to 260 to 272 Trivium computations, which is not feasible on modern computers.
This is because they are guessing a huge number of variables.

In particular, we show that algebraic attacks become specifically efficient against Trivium if we do not
use a lot of output for one instance, but few output bits for many instances. However, this new type of attack
only works if we have access to a sparse equation solver over F2 that can deal with many variables and also
many equations (≈ 106 in both cases). This sparse polynomial system solver is the second major contribution
of this paper. To the best of our knowledge, such a solver does not yet exist in the open literature.
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1.1 Organization

We start with a review of existing work in the area of algebraic cryptanalysis and specifically cryptanalysis
of Trivium in Sec. 1.2. In addition, we discuss several ways to solve systems over F2. This is followed by a
discussion of Trivium and the idea of “similar variables” in Sec. 2. The overall solver and the tweaks we need
to deal with a full representation of Trivium are given in Sec. 3. This is followed by practical experiments
on round reduced Trivium in Sec. 4. The paper concludes with some remarks, open questions and directions
for further research in Sec. 5.

1.2 Related Work

Before going into details about our attack, we review related work in algebraic cryptanalysis, cryptanalysis
of Trivium and solving systems of equations over F2.

Algebraic cryptanalysis. Algebraic cryptanalysis works on a simple assumption: We are able to express any
cryptographic primitive in simple non-linear equations over a finite field (e.g. F2 or F256), cf. [8] for an
overview on some ciphers. This part of the attack is called “modelling”. If we now use this description and
solve the overall system for a given output (stream ciphers) or a given plaintext / ciphertext pair (block
cipher) we obtain the secret key.

Most prominently, the AES has been investigated under algebraic attacks [29,15]. While initial research
concluded that the AES may be vulnerable against algebraic attacks, this was shown to be unlikely in later
research [28]. In any case, there are two different models of the AES: the first uses a modelling over F2, the
second over F256, see e.g. [11]. Apart from this, both are equivalent.

However, for stream ciphers, algebraic attacks [4,14] seem to work fine, as for some public key systems
[22,23] and other primitives [37]. We want to note that even round reduced variants of Trivium has escaped
all efforts to be broken by purely algebraic methods.

Attacks on Trivium. We briefly sketch some of the most important attacks against Trivium. We want to
stress that Trivium is still secure—despite its simple and elegant design; and the combined effort of the
cryptanalytic community.

The attacks from [18,24] are both cube attacks. Cube attacks use the chosen IV scenario. In this scenario
we can generate multiple output bits of a stream cipher using the same key but different initialization vectors
(IVs). In a nutshell, cube attacks simplify the encryption function by generating the sum over this function
for all 0/1-combinations of some IV variables as described in [18,30]. They recover the full key of a 799
round-reduced variant of Trivium in 262 computations guessing 62 variables.

Other key recovery attacks in the chosen IV scenario are not that successful. For instance, [26] describes
a linear attack on Trivium breaking a 288 round-reduced variant with a likelihood of 2−72.

Previous algebraic attacks ([34,38,32,31]) use output bits generated by one unknown IV and one key. They
are all based on the model described in [31] and fail even for round-reduced variants of Trivium because they
attack the internal state of the cipher rather than the key. In these attacks the adversary is not able to use
output bits generated by different IVs.

For the sake of completeness we mention some distinguisher attacks based on cube testers in
[27,6,35]. The best covers up to 961 rounds working in a reduced key space of 226 keys (out of 280). It
requires 225 Trivium computations. Because they are no key recovery attacks, we may not compare them to
the presented attack. Table 1 gives a summary of previous work.

Solving systems over F2. As pointed out above, any algebraic cryptanalysis has two steps: The first is the
algebraic modelling, the second is solving the corresponding system of equations. For simplicity, we assume
that all equations are at most quadratic over F2. When we have an equation of total degree greater or equal 3
we can introduce intermediate variables to reduce the degree of the equation. Furthermore all our algorithms
work on systems of equations with higher degree.
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Origin Method Scenario R time [TC] data [bits] Practical

[24] Cube Chosen IV 799 262 240 No

[26] Linearization Chosen IV 288 272 262 No

[31] Algebraic Known cipher text – – – No

here Algebraic Chosen IV 625 242.2 2 · 211 Yes

Table 1: Relevant attacks on Trivium with R rounds, time- and data complexity. Time is measured in Trivium
computations.

Basically, the most promising algorithms come from the F-family of Gröbner basis algorithms
[20,19], see [3] for an overview. They have been successfully applied in the case of public key schemes
[22,23], but also stream ciphers [21]. The main disadvantage is the high memory consumption. Although
there are some counter examples for special cases, the running time of Gröbner basis algorithms is inherently
exponential in the number of variables. Even worse, the memory consumption increases with O(nr) for n the
number of variables and r the degree of regularity. In particular the latter makes Gröbner bases unusable for
our purpose as we have r ≥ 2 and n ≈ 220. Still, we want to note a special and useful property of Gröbner
basis algorithms that can also be found in our solver: If the system is unsolvable, the running time becomes
significantly lower. This has been used in the so-called “hybrid strategy” from [7] to speed up the overall
computation over F2. We will also exploit this, cf. Sec. 3.4.

Another line of algorithms comes from the so called “XL—eXtended Linearization” [13]. Here, the main
operation is multiplying all known equations with all monomials up to a certain degree. While these new
equations are trivially true, some of them are linearly independent and can hence be used in a so-called
Macaulay matrix to reduce the overall problem to linear algebra over F2. In a Macaulay matrix, the rows
represent polynomials while the columns represent monomials, cf. [3] for an overview of the idea. Although
it has been shown that techniques from the XL-family are strictly less efficient than from the F-family
[40,39,5,17], XL does have its merits as it is easier to adapt to different settings. Hence we have used a
specialized version of XL in our solver to improve its efficiency, cf. Sec. 3.

Last but not least, there is the ElimLin algorithm [12,16] where linear equations are used to eliminate
variables. After that, the system is simplified with linear algebra techniques, cf. Sec. 3.1. It can handle large
sparse polynomial systems with 3056 variables and 4331 monomials in 2900 equations and it is so simple that
it can easily be tweaked for specific purposes. While this is possible—to some extent—for the XL-family, it
is much more difficult to envision for the F-family described above. We have hence used ElimLin as the core
for our solver, cf. Sec. 3.1. However, we want to stress that plain ElimLin without further modifications is
not efficient enough to deal with systems that arise from the modelling of Trivium.

1.3 Our contributions

Our first contribution are techniques to model many instances of Trivium as a quadratic equation system. We
also introduce strategies to handle the large number of variables within this model. The modelling techniques
and strategies can be applied to any symmetric cipher since the upcoming system of equation is structured
according to the update function of the cipher.

The second contribution of this paper is a solver which is able to solve structured, sparse, quadratic
equation systems. Based on ElimLin and eXtended Linearization we introduce a monomial order to have
more control in the ElimLin-Step and change XL so that it preserves the monomial structure of the system.
Furthermore we introduce a method that is able to make computations with higher algebraic degree while
the result of this computations is still quadratic.

With the above mentioned techniques we settle an attack on a round reduced variant of Trivium with
R = 625 rounds in 242.2 time and 212 data complexity on an average computer.
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2 Trivium

The main point of our attack is to get a suited algebraic system of equations over F2 for a considered cipher.
As soon as the modelling part is done, we will solve the system of equations with a special purpose solver,
cf. Sec. 3. We present our modelling techniques with the stream cipher Trivium from [10] as a testbed.

Trivium generates up to 264 keystream bits from an 80 bit IV and an 80 bit key. The cipher consists of
an initialization or “clocking” phase of R rounds and a keystream generation phase. For R = 1152 we obtain
the full version as stated in [10], otherwise a round-reduced variant of Trivium, denoted by Trivium-R. There
are several ways to describe Trivium—below we use the most compact one with three quadratic, recursive
equations for the state bits and one linear equation to generate the output in the keystream generation
phase.

2.1 Definition and direct considerations

Consider three shift registers A := (ai, . . . , ai−92), B := (bi, . . . , bi−83) and C := (ci, . . . , ci−110) of length
93, 84 and 111 respectively. They are called the state of Trivium.

First the state of Trivium is initialized with

A = (k0, . . . , k79, 0, . . . , 0)
B = (v0, . . . , v79, 0, . . . , 0) and
C = (0, . . . , 0, 1, 1, 1).

Here (k0, . . . , k79) is the secret key and (v0, . . . , v79) is the public initialization vector (IV) of Trivium.
Before output is generated Trivium is updated R rounds according to the following three state update

functions:
bi := ai−65 + ai−92 + ai−90ai−91 + bi−77 ,
ci := bi−68 + bi−83 + bi−81bi−82 + ci−86 ,
ai := ci−65 + ci−110 + ci−108ci−109 + ai−68 .

For R = 1152 we obtain the original variant from [10]. Since this variant have not been broken, round-reduced
variants are used to evaluate the security margin of Trivium.

After this initialization phase Trivium generates one output bit zi per round by the function

zi := ci−65 + ci−110 + ai−65 + ai−92 + bi−68 + bi−83 .

We produce no bits of output zi for i = (R+ 1) . . . (R+ no).
Recovering the initial vector A is the prime aim of a key recovery attack. Note that the vectors B,C are

actually known to an attacker at the beginning of the initialization phase since the IV is public. Therefore we
make the additional assumption that an attacker has control over the IV used within the cipher and obtain
a stream of output bits for a fixed key and any choice of IV. This is called chosen IV scenario and is in line,
e.g. with cube attacks.

To launch our attack, we use several output streams (Trivium instances) that share the same key but
different values for the IV. We see in Sec. 4 that this will lead to successful attacks at Trivium-R.

Obviously, we need approx. 3RT + noT intermediate variables, respectively, if we want to represent T
instances of Trivium-R with no output bits each. Before discussing strategies for solving such rather large
systems, we start with an observation on Trivium.

2.2 Similar variables

Previous algebraic attacks such as [34,38,32] are based on the algebraic representation of Trivium given in
Section 2.1. Therefore, we would expect similar results. However, we do not consider only one instance of
Trivium but several (thousand). Consequently, the relation between these instances becomes important for
the overall success of our attack.
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Let I ⊂ V be a subset of all IV variables V . We call I the master cube of the attack. In addition,
we consider the first no output bits of Trivium initialized with the same key and all 0/1-combinations for
variables in the master cube I. All other IV variables are set to zero.

We set up all Trivium instances with symbolic key variables k0, . . . , k79. Denote the current Trivium
instance by t ∈ N. We initialize these instances for a given number of rounds R and introduce three new
variables for very round i for the entries at,i, bt,i and ct,i in the three registers At, Bt and Ct. This produces
a quadratic system with a large number of variables and monomials.

Now we take a more general point of view and introduce similar variables for generalized systems of
equations. In particular, we denote all intermediate variables by y0, y1, . . .

Definition 1. Let P = F2[k0, . . . , k79, y0, y1, . . .] =: F2[K,Y ] be the Boolean polynomial ring in the key
variables K and all intermediate variables Y .

We call the two intermediate variables yi and yj similar iff yi+yj = p(K,Y \{yi, yj}), where p(K,Y \{yi, yj})
is a polynomial of degree deg (p) ≤ 1.

Following the definition, we check for similar variables whenever we should introduce a new intermediate
variable. If the new variable is similar to one or a linear combination of many existing variables we continue
computations without a new variable. Instead of using a new intermediate variable for quadratic monomials
already introduced, we use a linear combination of existing variables.

In generic systems, similar variables could be not of much use. However, if all equations stem from one
algebraic model for one given cipher, we are likely to find many similarities. The following example illustrates
how we work with similar variables in the case of Trivium.

Example 1. Consider the polynomials

f0 = y0 + k78k79 + k53
f1 = y1 + k77k78 + k79 + k52

in P .
These polynomials define intermediate variables y0, y1 and form the system of equation F .
Assume we want to introduce the intermediate variable y2 with

f2 = y2 + k79k78 + k78k77 + k5 + k61.

It holds that y2 = y1 + y0 + k53 + k79 + k52 + k5 + k61. Therefore, we do not need to introduce y2 and can
continue computation with y0 and y1. This does not only save us one variable, but we also have replaced a
quadratic equation by a (potentially more useful) linear one. ut

The nice aspect is that these variables carry through: As soon as we have concluded that all variables bi,12
for i = 0..T − 1 will always have the same value, we can replace all of them in all polynomials by only one,
say b0,12. Obviously, the same is true for bi,13 but also many other ones. When we have replaced bi,12bi,13
by b0,12b0,13, we obtain even more similar variables. Consequently, we obtain a substantially smaller number
of monomials than before. Note that there are different ways of considering similar variables. In any case,
we need a solver that can first identify them and second make use of them by replacing all linear relations
within a given system.

While the above definition captures any behavior for any system of equations, we see that it applies very
well to Trivium, see Figure 1 for some experimental results on Trivium-R. Here, we have generated T = 32
instances of Trivium with no = 66 output bits. On the x−axis we see the number of initialization rounds;
on the y−axis we have the total number of variables in use. As we can see the number of intermediate
variables has greatly decreased; even for only 32 instances of Trivium. For R = 600 rounds we also produce
66 ·32 = 2112 output equations. The model in [31] can just handle one instance of Trivium. So it would need
288 + 3 · 2112 = 6624 variables to produce that amount of output equations. When using more instances of
Trivium we get even more efficient.

To produce the smallest number of monomials possible in our system we change the algorithm to generate
the system. Instead of going forward and generating the Trivium instance we start with the output and go
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Fig. 1: Number of variables for T = 32 instances of Trivium and no = 66 output bits; Number of Rounds R
against number of variables ν with and without similar variables

backwards and just generate the variables we need. This way, we just generate the variables and monomials
that are needed. Note that this is contrary to earlier algebraic modellings of Trivium such as [32,31].

To evaluate our representation of Trivium, we made several experiments with the fast Gröbner basis
PolyBoRi [9]. PolyBoRi is specialized on Gröbner basis for Boolean polynomial rings and uses a variant of
Faugère’s F4 algorithm (see [20]).

We use a server node with a AMD-Opteron-6276@2.3Ghz processor and abort a computation if it exceeds
16 Gb of RAM or 24 hours of time. We tried to solve resulting systems of equations that represents Trivium-
R for varying number of rounds R with and without similar variables. Table 2 shows the results of the
experiments.

R Similar variables Memory [Gb] Time [h] Note

150 No 8 < 1

300 Yes 3 1 degrevlex

420 Yes 11 13 suited monomial ordering

Table 2: Experimental results for solving systems of equations based on Trivium-R for varying numbers of
rounds R with and without similar variables. The suited monomial ordering is the degrevlex -ordering with
k0 < . . . < k79 < a0,0 < b0,0 < c0,0 < a1,0 < b1,0 < c1,0 < . . . < cT−1,R−1 with T instances of Trivium.

Without similar variables we can solve a system of equations that represents Trivium-150, but we are
not able to solve a system for R > 160. Moreover, the behavior of PolyBoRi heavily depends on the chosen
monomial ordering (like any Gröbner basis solver). The best we could do was Trivium-420 with a degrevlex -
ordering and k0 < . . . < k79 < a0,0 < b0,0 < c0,0 < a1,0 < b1,0 < c1,0 < . . . < cT−1,R−1 with T instances of
Trivium. The system of equations has 1300 variables and 3900 monomials in 1500 equations. If we chose a
different sorting of the variables we never got comparable results as indicated in Table 2 by solving Trivium-
300 with a degrevlex -ordering. This was the only variant of Trivium that was solved consistently.

Thus solving polynomial systems arising for large R is still out of reach for current Gröbner basis imple-
mentations like PolyBoRi. The memory consumption is simply too high.

We have hence designed a solver which can handle such large numbers of equations and variables and
will describe it in the following section.

3 Solving the system

Before going into details for the experiments, we describe our strategy to solve rather sparse systems over
F2 arising from the above representation of Trivium. We have based our solver on multivariate quadratic
polynomials over F2 as this is generally enough to capture full Trivium. Specifically, our goal was to develop
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a working implementation than can handle around 106 variables and 106 equations, respectively, over F2. To
the best of our knowledge, software with such special properties is not available at the moment. Our solver
is organized around a specialized C++-core that natively handles quadratic polynomials over F2 and the
ElimLin and SL algorithm. In addition, we have used several other building blocks which we describe in the
remainder of the section. We report experimental results in Sec. 4.

3.1 Main core

ElimLin or Elimination of Linear variables has been investigated in [12,16]. We generalize it with a monomial
ordering, so the algorithm becomes

1. First we generate the Macaulay matrix for the system according to some monomial ordering τ .
2. Echelonize the matrix according to τ . This naturally splits up the system into linear equations L and

quadratic equations Q.
3. For each element p ∈ L, use the leading term LT(p). If there is at least one equation in Q that also

contains the variable LT(p), eliminate LT(p) in Q.
4. If we substitute at least one variable in Q, go back to step 2.

We want to stress that ElimLin preserves the overall degree of our system Q. In addition, it automatically
detects all similar variables (see def. 1). Moreover ElimLin is able to deal with rather large but sparse systems
of equations.

The original ElimLin algorithm did not have any ordering but used heuristics to determine which variable
to eliminate in the non-linear part of the overall system. We found this approach fine for small systems
but difficult to use for larger ones: The likelihood to fall into local optima was simply too high—even with
advanced heuristics. Determining the correct order proved to be challenging and required careful experiments
as can be seen in section 2.2. Hence, we used the degree reverse lexical (degrevlex) ordering. Note that this
also works well in case of Gröbner basis algorithms. In the case of Trivium, we take the key variables first
and sort the intermediate variables ascending according to rounds and instances of Trivium. We want to
stress that the ordering is crucial in our analysis. Like in Gröbner techniques the results differ significantly
depending on the ordering.

Sparse Linearization. ElimLin cannot conclude that a · b + a = 1 ⇒ a = 1, b = 0 for some variables
a, b ∈ F2 and therefore cannot solve arbitrary systems of equations. Hence we use a new variant of Extended
Linearization that we call Sparse Linearization.

In the XL-algorithm we multiply all quadratic polynomials with any monomial up to a degree D − 2
that can be generated by the used variables. While these new equations are algebraically dependent, they
can produce linearly independent rows in the Macaulay matrix. There is a variant for sparse systems called
XSL in which systems of equations get multiplied by already used monomials. It has been used in the past
to attack different cryptographic systems in [15].

Even XSL produces new monomials and increases the overall total degree of polynomial systems. Hence
we may not use it for huge, structured systems of equations. The Sparse Linearization (SL) preserves the
total degree and structure of the system by doing as follows:

We multiply each polynomial f in the polynomial system F with any variable ν contained in quadratic
monomials of f . If the total degree of νf increases, we do not insert the new polynomial into F . Further we
check if all monomials of νf are already used in F . If so, we insert νf into the system.

After SL is done we need to check for linear dependence of the new polynomials. We do this by the
echelonization step of ElimLin.

Sparse polynomial core. The core of our algorithm is substitution of variables from linear equations and
echelonization. While the first requires polynomials, the second needs linear matrices. In particular Gröbner
basis algorithms would construct a so-called Macaulay matrix and go back and forth between a matrix and
a polynomial representation, see [3] for an overview. In our implementation, we used the polynomials over
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F2 directly but also implemented matrix-like operations (e.g. row addition) directly for polynomials. To this
aim, each polynomial is stored as a (sorted) list of monomials rather than sparse vectors over F2. To make
computations fast, we also keep a dictionary of lead terms, monomials in use by each polynomial and also a
list of variables in use per polynomial. This way, addition of two polynomials with the same lead term and
elimination of variables does not depend on the overall number of polynomials anymore. For speed, this part
of the code is written in C++ (approx. 2500 lines).

M4RI. While the sparse strategy from above turned out to be efficient for sparse matrices, it fails if the ma-
trices become increasingly dense. Note that this is inevitable when solving such a system: In all experiments,
we had a degeneration from sparse to dense shortly before solving the overall system. To remedy this, we
incorporated the fastest known, open source linear algebra package for matrices over F2, namely the Method
of the 4 Russians Implementation (M4RI) [2]. Experimentally, we have found that matrices with less than ≈
1/1000 non-zero coefficients in the corresponding matrix over F2 should be handled by our sparse strategy
described above and by M4RI otherwise.

3.2 Further building blocks

While the core is already pretty efficient, it can be made more suitable for solving systems of equations
coming from Trivium-instances when coupled with the techniques below. Note that all these techniques have
been implemented in Sage [36]. The full code (including test cases and comments) consists of ≈ 6500 lines.

Sparse Target Linearization or STL is a generalization of the SL technique from above. Instead of limiting
ourselves to degree-2 polynomials, we work with polynomials up to some degree d > 2. In our calculations
we are using a degree up to d = 4, which has proven optimal for equations coming from Trivium.

Analogous to SL, we multiply every polynomial f in F with any monomial µ in f . Afterwards we
consider linear combinations of polynomials. Our target is to get new quadratic polynomials into the system
while strictly bounding the number of new monomials in F in order to select good candidates we use the
evolutionary strategy described below.

Note that we are working locally with a degree of regularity of 4. Here, locally means that we do not
compute all syzygies of degree three and four and we do not continue calculating with the polynomials with
degree greater to 2. That is the main difference of STL and Gröbner basis algorithms (with a limited degree
of regularity).

For random systems of equations, the STL strategy is doomed to fail due to the lack of useful quadratic
equations afterwards. Our experiments show that it works fine for structured systems like Trivium, cf. Sec. 4.

Evolutionary Strategy. To get the polynomials that should be used in the STL step we use a evolutionary
strategy. We want to obtain (quadratic) equations that contains both key variables (xi) and output bits (zj).
More generally: these equations should cover as many rounds of Trivium as possible. That means if we have
an equation involving variables arx and ary where rx < r and ry > R with r < R and as is a intermediate
variable introduced in round s we want to maximize ry − rx.

Unfortunately, it proved difficult to implement this strategy directly into the STL algorithm.

Hence, we have formulated this as a goal for an evolutionary strategy (ES), which is used to figure out the
useful equations in the STL step: The more rounds are covered, the higher the score for the corresponding
polynomial, and the higher the chance that it can replicate within the evolutionary algorithm. All equations
of degree 4 or lower are then harvested from the ES and fed into the STL step. Usually, cryptanalysis does
not allow the successful application of genetic or evolutionary strategies. In this case, however, the problem
seems to have enough degrees of freedom and the optimization goal can be formulated clearly enough so
that it works empirically. Note: This strategy does not work when using degree 2 only. It requires degree 3
or higher. Otherwise, the ES does not have enough freedom to find new equations. Thus we use it only in
cooperation with STL.
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Guessing. In most cryptographic attacks, we start with some (deterministic) strategy to single out the
promising keys and then bridge the gap for the full attack with brute force. We use the same strategy here
by guessing the value of some variables and feed them into the overall solver before starting key recovery.
To maximize the effect of the guessing step, we use the variables that occur most often in all polynomials
system-wide. As expected, other selection strategies did not work that well for Trivium. More details on this
idea are given in Sec. 3.4.

3.3 Big picture

Online- and Offline-Phase. Our solving algorithm is divided into an online and an offline-phase (precom-
putation). The main goal is to use trade-offs between the different algorithms. For example, the STL-step
is quite powerful, but also quite slow. Hence, we only use it once and for all for a given, general system
of equations (offline-phase). Once this system has been simplified, we insert all known output-bits, guessed
variables and then recover the key. In detail we have

Offline: Generating the raw equations, ElimLin, SL, ES, STL and determine the variables which will be
guessed later.

Online: Add guessed variables, output-bits, ElimLin and SL.

As mentioned above, the solver contains approx. 2500 lines of C++-code and approx. 6500 lines of Sage-
code. Sage is a CAS described in [36]. It was used on an AMD-Opteron-6276@2.3GHz with 256 nodes and
1 TB of RAM. Each node had access to at most 256 GB of RAM at a time. After the system has been
simplified, the online-phase runs on a normal PC with 16 GB RAM.

Running the solver The above described parts of the solver varying significantly in running time. Therefore,
our strategy to solve a polynomial system is to perform operations often if they can be executed quick.

In the offline phase we do the following.
Let F be the polynomial system that we want to solve. Our main tools are ElimLin and SL because they are
most efficient. We perform one iteration of both algorithms and get the system F . We call F and F equal
if they have the same echelonized Macaulay matrix. If F and F are not the same, we do another iteration
until no change occurs or the system is solved. If no change occurs and the system is not solved, we do one
iteration of STL and the evolutionary strategy. Afterwards we start with ElimLin and SL again.

Unlike Gröbner basis computation, our approach is heuristic. There is no guarantee that we will solve a
polynomial system. We abort the computation if one of the following happens:

1. The polynomial system F is solved.
2. No change occurred after an STL/evolutionary strategy step followed by ElimLin and SL.
3. The polynomial system is inconsistent.

In the online phase we do the same without the resource intensive steps STL and evolutionary strategy.
Note that running the proposed solver is not equal to computing a Gröbner basis at degree 4. First, SL

does not introduce new monomials to keep up sparsity of the polynomial system as long as possible. Even
in Gröbner basis based algorithms for sparse systems of equations we get new quadratic monomials of total
degree two. That leads to a dense Macaulay matrix and therefore to increased memory usage. As described
above, STL only uses a degree of regularity of four locally.

3.4 Scaling the attack

In all algebraic attacks, a big question is scalability and also comparability to the underlying cipher. To tackle
the scalability we guess some variables. This way, we can easily scale our attack and also control its running
time. We give more details below. For the second, we express both our attack and a brute force scenario
in seconds. While other bases for comparison are possible such as time-area-product (mostly for hardware
implementations), skill and resources of an attacker (e.g. see [1]) or time-memory-product, we stick to time
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as the only factor for its simplicity. In particular, it is difficult to assign a sensible number for “memory” to a
hardware implementation. Moreover, “memory” does not really speed up our attack but is a pure necessity:
If we do not have enough memory, the attack does not work at all. Up to now, there are no clever ways to
trade time for memory (or vice versa) using the solver described here.

All in all, we use a throughput oriented hardware implementation of Trivium (Table 2, Trivium64 in
[25]) as basis for our comparison [25]. To the best of our knowledge, this is the fastest, throughput oriented
implementation of Trivium. The authors report a throughput of B = 22.2996 × 109 bps. To implement
Trivium-R, we assume that we need to clock this implementation a total of (R + 2) times on average: the
first R clocks for the preclocking phase and the other 2 clocks to derive 2 output bits on average. The last
number is justified as follows: When the attacker learns the first output bit, she can terminate the brute
force attack for around 1/2 of all keys. This goes on for all further bits. With the second output bit she
can terminate the second half of all keys, with the third another half and so on. So we need on average two
output bits to make our decision for some ν = 80 . . . 100. So we have B

R+2 Trivium applications per second.
To scale up our attack, we assume that we guess a total of r bits and achieve an overall time complexity

(in Trivium computations) of

Tp :=
B((2r − 1)Tf + Ts)

R+ 2
,

where Ts is the time of a successful computation of a solution and Tf is the time our solver needs to recognize
a failure in the guessed variables; both are average times for a given system. As we see, Tf is dominant in our
computations. This is in line with other algorithms in this area such as [7]. Note that we assume that we get
the data for all Trivium output as an input. So we do not calculate it which is a quite realistic assumption.
Furthermore we know that we have a unique solution, namely the key of the cipher.

4 Experiments

This section consists of three parts. First we consider the model and we see a saturation of variables and mono-
mials when adding Trivium instances. Second we present on some parameter studies to further strengthen
our system of equations. Finally, we use our insights to actually attack Trivium using the techniques de-
scribed in the previous sections. We stress that the overall system of equations can be generated before we
get the actual data for the output. This way our attack splits into an online and offline phase as outlined
in Sec. 3.4. All experiments were done on the cluster described in 3.3.As we do not use any parallelizing
techniques we are only using one core. Furthermore we want to stress that the online phase only requires a
standard computer with 16Gb of RAM.

Saturation. When adding different Trivium instances with identical key variables but different IV constants
that lie in the same master cube, the overall number of variables and monomials in the quadratic monomials
of the overall system tends towards a saturation point (cf. Fig. 2a–2b). More specifically; we fix 80 − i IV
bits to zero and set the remaining i bits to all possible values from Fi

2.
We have plotted saturation for 32 instances in Figures 2a–2b, counting both the number of variables and

the number of quadratic monomials needed for the system consisting of all instances of Trivium. In these
figures, we have first added the IV with Hamming weight 0, then all IV with Hamming weight 1 and so
forth. Note that instances with the same Hamming weight yield the same number of variables. As we can
see in these graphs, the amount of variables needed to generate an instance becomes significantly lower if
we generate instances with higher Hamming weight.

The saturation of monomials needs a lower Hamming weight of the IV, so the saturation of monomials is
much flatter than the saturation of variables. Note that variables that are not in the quadratic (saturated)
part of the system are only found in the linear terms. Furthermore, we stress that Figures 2a–2b are chosen
only as an example. This effect also exists if the number of rounds increases (up to R = 1152). However,
if the number of rounds grows we need to generate more instances to see this effect; it seems that we need
to generate exponentially more instances to see the saturation. All in all, this points to a kind of “basis”:
Trivium instances for IV with small Hamming weight serve as a kind of basis for Trivium instances of higher
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Fig. 2: Saturation in the model of Trivium

Hamming weight. While this seems obvious when looking at the generating equations, it is still interesting to
see how strong this effect is in practice. Unfortunately, we were unable to derive a closed formula depending
on the number of instances and rounds but have to leave this as an open question.

In conclusion, saturation means that we can obtain more defining equations from many instances than
we would expect from one instance alone. In a sense, this is the key observation to launch our attack.

Saturation should occur in other ciphers as well since the system of equation is generated by a repeatedly
execution of an update function.

Note that we did not take the output equations into account yet but only those equations defining the
system itself. While the output introduces additional, unknown monomials it will not add new variables as
we will see in the next paragraph.

Output and parameters. While output equations clearly help us to linearize the system, the very structure
of Trivium in our model yields a lot of additional monomials. Therefore, we do not add additional values for
output equations or the output equations at all until the full (structural) system is completely simplified.
Consider the output function:

zi := ci−65 + ci−110 + ai−65 + ai−92 + bi−68 + bi−83 .

It uses 6 state bits from different rounds. If we insert for either of these state bits it produces 5 more
monomials for each occurrence of the corresponding state bit in a quadratic monomial. Hence using more
output bits per instance leads to far more monomials than we can afford.

Figure 3 compares systems with T = 64 instances and increasing number of rounds R. In the first
experiment we used no = 1 and in the second no = 66. We see that many output bits do not necessarily
lead to a more useful system because we get much more monomials. Even if we use two output equations we
get a system with nearly double the number of monomials which we cannot solve easier. Note that figure 3
reflects the monomials needed for one instance while figure 2b shows the number of monomials needed for
the whole system of equations. Therefore the saturation can also be seen in figure 3.

When we use no = 66 output bits the number of monomials at R = 700 rounds is negligibly smaller than
the number of monomials for full Trivium (R = 1152). We choose no = 66 because for no > 66 we need to
introduce new intermediate variables even for the output and that destroys the purpose of (over)defining the
system for the linearization step. For no = 1 output bits, the same effect occurs for R = 925 rounds. Since
we want to linearize our system to derive a solution we get the following conjecture.

Conjecture 1. The complexity of our attack on Trivium does not grow after R = 925 rounds using no = 1
output bit and after R = 700 rounds using no = 66 output bits. That means if we are able to break R = 925
rounds with one output bit we are able to break full Trivium with one output bit.
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Fig. 3: Comparing monomials with no = 1 and no = 66; Initialization rounds R against number of quadratic
monomials µ; The numbers next to the lines are the significant parts of the IV (binary). The rest of the IV
is zero. Consider the Hamming weight of these numbers.

In a nutshell: Since the number of monomials does not increase, neither does the difficulty of the attack.
Unfortunately, both settings are out of reach for a practical test at the moment.

In addition, we obtained the following result: When choosing 2i instances of Trivium, it is optimal to
arrange them in a master cube rather than sampling them “at random” from all possible 280 IV. In particular,
such a system becomes fully unsolvable with our methods.

Attacks. In this paragraph we describe the attacks and their complexities.
In Figure 3 we have illustrated the number of monomials depending on the number of output bits. With

this in mind we have specialized our attack to the case no = 1. Based on this, we generate a system with
Trivium-625 instances.

The following table shows the number of monomials and variables needed for the full system. This also
includes “dummy” variables for the output. When we add concrete data for the output bits to our system
these numbers decrease rapidly. Furthermore we can see that there is a time-data trade-off when guessing
variables. When we guess fewer variables we need more data to launch the attack. When we guess more
variables we need less data but the time complexity increases.

R µ ν #guessed variables data complexity time complexity

625 499,741 15,869 23 211 259.7

625 1, 135, 858 32, 518 0 2 · 211 242.2

Table 3: Experimental results from the Online-phase on Trivium-625 with number of variables ν and number
of monomials µ. Time is measured in Trivium computations.

When our guess was incorrectly, it takes our solver on average 211.6 seconds to report that the system
was inconsistent. However, when we guess correctly the system is solved in 213.8 seconds on average.

We tested 101 keys each both for correct and incorrect guesses. We only present the numbers for the
“incorrect guess”; the ones for the “correct guess” were similar: The fastest run was 210.7, the slowest 213.48

seconds, 95% of all runs were completed in under 212.8 seconds with a variance of 1435 seconds. Using the
reasoning from Sec. 3.4, our attack equals 259.7 Trivium-625 computations and is therefore more efficient
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than brute force (280). We note that we do not actually compute the guessing step of this attack since it is
not feasible to do so.

When we do not guess variables, we need more data and though more instances in our symbolic system.
Generating the full symbolic system becomes a challenge due to the size of the system and RAM usage in the
offline-phase. Thus we generate two systems consisting of 211 instances each. The two systems do not profit
from each other through similar variables in the offline-phase so the number of variables and the number
of monomials is more than doubled. In the online-phase of the attack each system is reduced due to the
linear output equations and similar variables. In our example in the table above we solved the system in
217.1 seconds which leads to 242.2 Trivium computations on average. Again, this experiment was conducted
101 times.

Unfortunately, we are unable to find a closed formula to predict the number of instances we would need
to solve a system for a given number of rounds, as the behaviour of Trivium and the solver is quite erratic
in this respect.

The real bottleneck of our attack is the generation of a symbolic system for a useful number of instances
in the offline-phase. We can overcome this problem with a better implementation of the linear algebra or
the ElimLin algorithm. However, we still cannot really resolve the exponential growth starting at R = 700
(Fig. 3) which works as a kind of barrier for our techniques used to attack Trivium. We want to encourage
others to further improve or enhance the techniques used in this paper.

5 Conclusions

In this paper we have shown that algebraic attacks can be significantly improved. We achieve this by enhanc-
ing the ElimLin algorithm with a variant of eXtended Linearization and using a proper monomial ordering;
in particular the last proved crucial in our experiments. Overall, we built a solver for sparse polynomial sys-
tems that can handle up to 106 monomials in 106 equations. In particular, we solved the system of equations
arising from Trivium-625 with 1, 135, 858 monomials and 32, 518 variables. Before our work, plain ElimLin
was able to solve systems of equations with 3056 variables and 4331 monomials. While this is not quite com-
parable, because the systems solved are not the same, this improvement by a factor of ≈ 262 demonstrates
considerable progress.

In addition, we have seen that using many instances of Trivium rather than only one with a long key
stream significantly improves the attack. All in all, we were able to break a 625 round reduced version of
Trivium in practical time (242.2 Trivium computations) and a data complexity of 212. Other key recovery
attacks on Trivium can do better in terms of rounds with R = 799 but they requires a large amount of data
(240 bits) and time 262 while guessing 62 bits. It is doubtful if this rate can be achieved in practice. An
advantage of our approach is that we actually computed the full attack and did not make extrapolations
from our results, as we do not want to make promises which are hard to keep.

An open questions is the existence of weak keys. They would improve our attack by reducing the overall
number of monomials. While some experiments point at their existence they still elude a full characterization.
Another line of research is the integration of more toolboxes into our solver, most notably SAT-solvers and
more efficient sparse linear algebra packages.

While our experiments were conducted only on Trivium, we are confident that the ideas and lessons
learned are also useful for the algebraic cryptanalysis of other symmetric primitives, such as block ciphers
or hash functions. We want to stress that the potential of algebraic cryptanalysis can only be unleashed if
equal stress is put on modelling techniques and the corresponding solver.
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