18 research outputs found

    Spaceborne LiDAR Surveying and Mapping

    Get PDF
    Laser point cloud data have the characteristics of high elevation accuracy, fast processing efficiency, strong three-dimensional (3D) vision, and wide application fields. It will be one of the core datasets of the new generation national global topographic database. The rapid advancement of spaceborne laser earth observation technology allows the collection of global 3D point cloud data, which has brought a new breakthrough in the field of satellite-based earth observation, and its significant advantages of all-day time, high accuracy and high efficiency will lead the future development of space precise mapping technology. This chapter firstly introduces the principle and development status of satellite-based LiDAR technology, then presents the basic technical framework of satellite-based LiDAR 3D mapping, and analyzes the data processing methods of spaceborne photon point clouds, and finally, focuses on the application research in various fields including precise geolocation of combined with satellite images, fusion of multi-source topographic information, polar mapping, 3D objects reconstruction, and shallow sea topographic mapping, etc

    Very High Resolution (VHR) Satellite Imagery: Processing and Applications

    Get PDF
    Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing

    Hyperspectral Imaging for Fine to Medium Scale Applications in Environmental Sciences

    Get PDF
    The aim of the Special Issue “Hyperspectral Imaging for Fine to Medium Scale Applications in Environmental Sciences” was to present a selection of innovative studies using hyperspectral imaging (HSI) in different thematic fields. This intention reflects the technical developments in the last three decades, which have brought the capacity of HSI to provide spectrally, spatially and temporally detailed data, favoured by e.g., hyperspectral snapshot technologies, miniaturized hyperspectral sensors and hyperspectral microscopy imaging. The present book comprises a suite of papers in various fields of environmental sciences—geology/mineral exploration, digital soil mapping, mapping and characterization of vegetation, and sensing of water bodies (including under-ice and underwater applications). In addition, there are two rather methodically/technically-oriented contributions dealing with the optimized processing of UAV data and on the design and test of a multi-channel optical receiver for ground-based applications. All in all, this compilation documents that HSI is a multi-faceted research topic and will remain so in the future

    Assessing spring phenology of a temperate woodland : a multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations

    Get PDF
    PhD ThesisVegetation phenology is the study of plant natural life cycle stages. Plant phenological events are related to carbon, energy and water cycles within terrestrial ecosystems, operating from local to global scales. As plant phenology events are highly sensitive to climate fluctuations, the timing of these events has been used as an independent indicator of climate change. The monitoring of forest phenology in a cost-effective manner, at a fine spatial scale and over relatively large areas remains a significant challenge. To address this issue, unmanned aerial vehicles (UAVs) appear to be a potential new platform for forest phenology monitoring. The aim of this research is to assess the potential of UAV data to track the temporal dynamics of spring phenology, from the individual tree to woodland scale, and to cross-compare UAV results against ground and satellite observations, in order to better understand characteristics of UAV data and assess potential for use in validation of satellite-derived phenology. A time series of UAV data were acquired in tandem with an intensive ground campaign during the spring season of 2015, over Hanging Leaves Wood, Northumberland, UK. The radiometric quality of the UAV imagery acquired by two consumer-grade cameras was assessed, in terms of the ability to retrieve reflectance and Normalised Difference Vegetation Index (NDVI), and successfully validated against ground (0.84≤R2≥0.96) and Landsat (0.73≤R2≥0.89) measurements, but only NDVI resulted in stable time series. The start (SOS), middle (MOS) and end (EOS) of spring season dates were estimated at an individual tree-level using UAV time series of NDVI and Green Chromatic Coordinate (GCC), with GCC resulting in a clearer and stronger seasonal signal at a tree crown scale. UAV-derived SOS could be predicted more accurately than MOS and EOS, with an accuracy of less than 1 week for deciduous woodland and within 2 weeks for evergreen. The UAV data were used to map phenological events for individual trees across the whole woodland, demonstrating that contrasting canopy phenological events can occur within the extent of a single Landsat pixel. This accounted for the poor relationships found between UAV- and Landsat-derived phenometrics (R2<0.45) in this study. An opportunity is now available to track very fine scale land surface changes over contiguous vegetation communities, information which could improve characterization of vegetation phenology at multiple scales.The Science without Borders program, managed by CAPES-Brazil (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior)

    Integrated Applications of Geo-Information in Environmental Monitoring

    Get PDF
    This book focuses on fundamental and applied research on geo-information technology, notably optical and radar remote sensing and algorithm improvements, and their applications in environmental monitoring. This Special Issue presents ten high-quality research papers covering up-to-date research in land cover change and desertification analyses, geo-disaster risk and damage evaluation, mining area restoration assessments, the improvement and development of algorithms, and coastal environmental monitoring and object targeting. The purpose of this Special Issue is to promote exchanges, communications and share the research outcomes of scientists worldwide and to bridge the gap between scientific research and its applications for advancing and improving society

    Evaluation of low-cost Earth observations to scale-up national forest monitoring in Miombo Woodlands of Malawi

    Get PDF
    This study explored the extent that low-cost Earth Observations (EO) data could effectively be combined with in-situ tree-level measurements to support national estimates of Above Ground Biomass (AGB) and Carbon (C) in Malawi’s Miombo Woodlands. The specific objectives were to; (i) investigate the effectiveness of low-cost optical UAV orthomosaics in geo-locating individual trees and estimating AGB and C, (ii) scale-up the AGB estimates using the canopy height model derived from the UAV imagery, and crown diameter measurements; and (iii) compare results from (ii), ALOS-PALSAR-2, Sentinel1, ESA CCI Biomass Map datasets, and Sentinel 2 vis/NIR/SWIR band combination datasets in mapping biomass. Data were acquired in 2019 from 13 plots over Ntchisi Forest in 3-fold, vis-a-vis; (i) individual tree measurements from 0.1ha ground-based (gb) plots, (ii) 3-7cm pixel resolution optical airborne imagery from 50ha plots, and (iii) SAR backscatter and Vis/NIR/SWIR bands imagery. Results demonstrate a strong correlational relationship (R2 = 0.7, RMSE = 11tCha-1) between gb AGB and gb fractional cover percent (FC %), more importantly (R2 = 0.7) between gb AGB and UAV-based FC. Similarly, another set of high correlation (R2 = 0.9, RMSE = 7tCha-1; R2 = 0.8, RMSE = 8tCha-1; and R2 = 0.7) was observed between the gb AGB and EO-based AGB from; (i) ALOS-PALSAR-2, (ii) ESA-CCI-Biomass Map, and (iii) S1-C-band, respectively. Under the measurement conditions, these findings reveal that; (i) FC is more indicative of AGB and C pattern than CHM, (ii) the UAV can collect optical data of very high resolution (3-7cm resolution with ±13m horizontal geolocation error), and (iii) provides the cost-effective means of bridging the ground datasets to the wall-to-wall satellite EO data (£7 ha-1 compared to £30 ha-1, per person, provided by the gb system). The overall better performance of the SAR backscatter (R2 = 0.7 to 0.9) establishes the suitability of the SAR backscatter to infer the Miombo AGB and fractional cover with high accuracy. However, the following factors compromised the accuracy for both the SAR and optical measurements; leaf-off and seasonality (fire, aridness), topography (steep slopes of 18-74%), and sensing angle. Inversely, the weak to moderate correlation observed between the gb height and UAV FC % measurements (R2 = 0.4 to 0.7) are attributable to the underestimation systematic error that UAV height datasets are associated with. The visual lacunarity analysis on S2-Vis/NIR/SWIR composite band and SAR backscatter measurements demonstrated robust, consistent and homogenous spatial crown patterns exhibited particularly by the leaf-on tree canopies along riverine tree belts and cohorts. These results reveal the potential of vis/NIR/SWIR band combination in determining the effect of fire, rock outcrops and bare land/soil common in these woodlands. Coarsening the EO imagery to ≥50m pixel resolution compromised the accuracy of the estimations, hence <50m resolution is the ideal scale for these Miombo. Careful consideration of the aforementioned factors and incorporation of FC parameter in during estimation of AGB and C will go a long way in not only enhancing the accuracy of the measurements, but also in bolstering Malawi’s NFMS standards to yield carbon off-set payments under the global REDD+ mechanism

    Remote sensing technology applications in forestry and REDD+

    Get PDF
    Advances in close-range and remote sensing technologies are driving innovations in forest resource assessments and monitoring on varying scales. Data acquired with airborne and spaceborne platforms provide high(er) spatial resolution, more frequent coverage, and more spectral information. Recent developments in ground-based sensors have advanced 3D measurements, low-cost permanent systems, and community-based monitoring of forests. The UNFCCC REDD+ mechanism has advanced the remote sensing community and the development of forest geospatial products that can be used by countries for the international reporting and national forest monitoring. However, an urgent need remains to better understand the options and limitations of remote and close-range sensing techniques in the field of forest degradation and forest change. Therefore, we invite scientists working on remote sensing technologies, close-range sensing, and field data to contribute to this Special Issue. Topics of interest include: (1) novel remote sensing applications that can meet the needs of forest resource information and REDD+ MRV, (2) case studies of applying remote sensing data for REDD+ MRV, (3) timeseries algorithms and methodologies for forest resource assessment on different spatial scales varying from the tree to the national level, and (4) novel close-range sensing applications that can support sustainable forestry and REDD+ MRV. We particularly welcome submissions on data fusion

    Block Adjustment without GCPs for Chinese Spaceborne SAR GF-3 Imagery

    No full text
    The Gaofen-3 (GF-3) satellite is the first C-band multi-polarization synthetic aperture radar (SAR) with the ability of high-accuracy mapping in China. However, the Ground Control Points (GCPs) are essential to ensure the accuracy of mapping for GF-3 SAR imagery at present. In this paper, we analyze the error sources that affect the geometric processing and propose a new block adjustment method without GCPs for GF-3 SAR imagery. Firstly, the geometric calibration of GF-3 image is carried out. Secondly, the rational polynomial coefficient (RPC) model is directly generated after the geometric calibration parameters compensation of each image. Finally, we solve the orientation parameters of the GF-3 images through DEM assisted planar block adjustment and conduct ortho-rectification. With two different imaging modes of GF-3 satellite, which include the QPSI and FS2, we carry out the block adjustment without GCPs. Experimental results of testing areas including Wuhan city and Hubei province in China show that the geometric mosaic accuracy and the absolute positioning accuracy of the orthophoto are better than one pixel, which has laid a good foundation for the application of GF-3 image in global high-accuracy mapping

    Sustainable Agriculture and Advances of Remote Sensing (Volume 1)

    Get PDF
    Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publishing the results, among others

    Progress in Landslide Research and Technology, Volume 1 Issue 2, 2022

    Get PDF
    This open access book provides an overview of the progress in landslide research and technology and is part of a book series of the International Consortium on Landslides (ICL). It gives an overview of recent progress in landslide research and technology for practical applications and the benefit for the society contributing to understanding and reducing landslide disaster risk
    corecore