178 research outputs found

    A Semi-Blind Source Separation Method for Differential Optical Absorption Spectroscopy of Atmospheric Gas Mixtures

    Full text link
    Differential optical absorption spectroscopy (DOAS) is a powerful tool for detecting and quantifying trace gases in atmospheric chemistry \cite{Platt_Stutz08}. DOAS spectra consist of a linear combination of complex multi-peak multi-scale structures. Most DOAS analysis routines in use today are based on least squares techniques, for example, the approach developed in the 1970s uses polynomial fits to remove a slowly varying background, and known reference spectra to retrieve the identity and concentrations of reference gases. An open problem is to identify unknown gases in the fitting residuals for complex atmospheric mixtures. In this work, we develop a novel three step semi-blind source separation method. The first step uses a multi-resolution analysis to remove the slow-varying and fast-varying components in the DOAS spectral data matrix XX. The second step decomposes the preprocessed data X^\hat{X} in the first step into a linear combination of the reference spectra plus a remainder, or X^=AS+R\hat{X} = A\,S + R, where columns of matrix AA are known reference spectra, and the matrix SS contains the unknown non-negative coefficients that are proportional to concentration. The second step is realized by a convex minimization problem S=argminnorm(X^AS)S = \mathrm{arg} \min \mathrm{norm}\,(\hat{X} - A\,S), where the norm is a hybrid 1/2\ell_1/\ell_2 norm (Huber estimator) that helps to maintain the non-negativity of SS. The third step performs a blind independent component analysis of the remainder matrix RR to extract remnant gas components. We first illustrate the proposed method in processing a set of DOAS experimental data by a satisfactory blind extraction of an a-priori unknown trace gas (ozone) from the remainder matrix. Numerical results also show that the method can identify multiple trace gases from the residuals.Comment: submitted to Journal of Scientific Computin

    ICA of Functional MRI Data: An Overview

    Get PDF
    Independent component analysis (ICA) has found a fruitful application in the analysis of functional magnetic resonance imaging (fMRI) data. A principal advantage of this approach is its applicability to cognitive paradigms for which detailed a priori models of brain activity are not available. ICA has been successfully utilized in a number of exciting fMRI applications including the identification of various signal-types (e.g. task and transiently task-related, and physiology-related signals) in the spatial or temporal domain, the analysis of multi-subject fMRI data, the incorporation of a priori information, and for the analysis of complex-valued fMRI data (which has proved challenging for standard approaches). In this paper, we 1) introduce fMRI data and its properties, 2) review the basic motivation for using ICA on fMRI data, and 3) review the current work on ICA of fMRI with some specific examples from our own work. The purpose of this paper is to motivate ICA research to focus upon this exciting application

    Perceptually motivated blind source separation of convolutive audio mixtures

    Get PDF

    A frequency-based BSS technique for speech source separation.

    Get PDF
    Ngan Lai Yin.Thesis (M.Phil.)--Chinese University of Hong Kong, 2003.Includes bibliographical references (leaves 95-100).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Blind Signal Separation (BSS) Methods --- p.4Chapter 1.2 --- Objectives of the Thesis --- p.6Chapter 1.3 --- Thesis Outline --- p.8Chapter 2 --- Blind Adaptive Frequency-Shift (BA-FRESH) Filter --- p.9Chapter 2.1 --- Cyclostationarity Properties --- p.10Chapter 2.2 --- Frequency-Shift (FRESH) Filter --- p.11Chapter 2.3 --- Blind Adaptive FRESH Filter --- p.12Chapter 2.4 --- Reduced-Rank BA-FRESH Filter --- p.14Chapter 2.4.1 --- CSP Method --- p.14Chapter 2.4.2 --- PCA Method --- p.14Chapter 2.4.3 --- Appropriate Choice of Rank --- p.14Chapter 2.5 --- Signal Extraction of Spectrally Overlapped Signals --- p.16Chapter 2.5.1 --- Simulation 1: A Fixed Rank --- p.17Chapter 2.5.2 --- Simulation 2: A Variable Rank --- p.18Chapter 2.6 --- Signal Separation of Speech Signals --- p.20Chapter 2.7 --- Chapter Summary --- p.22Chapter 3 --- Reverberant Environment --- p.23Chapter 3.1 --- Small Room Acoustics Model --- p.23Chapter 3.2 --- Effects of Reverberation to Speech Recognition --- p.27Chapter 3.2.1 --- Short Impulse Response --- p.27Chapter 3.2.2 --- Small Room Impulse Response Modelled by Image Method --- p.32Chapter 3.3 --- Chapter Summary --- p.34Chapter 4 --- Information Theoretic Approach for Signal Separation --- p.35Chapter 4.1 --- Independent Component Analysis (ICA) --- p.35Chapter 4.1.1 --- Kullback-Leibler (K-L) Divergence --- p.37Chapter 4.2 --- Information Maximization (Infomax) --- p.39Chapter 4.2.1 --- Stochastic Gradient Descent and Stability Problem --- p.41Chapter 4.2.2 --- Infomax and ICA --- p.41Chapter 4.2.3 --- Infomax and Maximum Likelihood --- p.42Chapter 4.3 --- Signal Separation by Infomax --- p.43Chapter 4.4 --- Chapter Summary --- p.45Chapter 5 --- Blind Signal Separation (BSS) in Frequency Domain --- p.47Chapter 5.1 --- Convolutive Mixing System --- p.48Chapter 5.2 --- Infomax in Frequency Domain --- p.52Chapter 5.3 --- Adaptation Algorithms --- p.54Chapter 5.3.1 --- Standard Gradient Method --- p.54Chapter 5.3.2 --- Natural Gradient Method --- p.55Chapter 5.3.3 --- Convergence Performance --- p.56Chapter 5.4 --- Subband Adaptation --- p.57Chapter 5.5 --- Energy Weighting --- p.59Chapter 5.6 --- The Permutation Problem --- p.61Chapter 5.7 --- Performance Evaluation --- p.63Chapter 5.7.1 --- De-reverberation Performance Factor --- p.63Chapter 5.7.2 --- De-Noise Performance Factor --- p.63Chapter 5.7.3 --- Spectral Signal-to-noise Ratio (SNR) --- p.65Chapter 5.8 --- Chapter Summary --- p.65Chapter 6 --- Simulation Results and Performance Analysis --- p.67Chapter 6.1 --- Small Room Acoustics Modelled by Image Method --- p.67Chapter 6.2 --- Signal Sources --- p.68Chapter 6.2.1 --- Cantonese Speech --- p.69Chapter 6.2.2 --- Noise --- p.69Chapter 6.3 --- De-Noise and De-Reverberation Performance Analysis --- p.69Chapter 6.3.1 --- Speech and White Noise --- p.73Chapter 6.3.2 --- Speech and Voice Babble Noise --- p.76Chapter 6.3.3 --- Two Female Speeches --- p.79Chapter 6.4 --- Recognition Accuracy Performance Analysis --- p.83Chapter 6.4.1 --- Speech and White Noise --- p.83Chapter 6.4.2 --- Speech and Voice Babble Noise --- p.84Chapter 6.4.3 --- Two Cantonese Speeches --- p.85Chapter 6.5 --- Chapter Summary --- p.87Chapter 7 --- Conclusions and Suggestions for Future Research --- p.88Chapter 7.1 --- Conclusions --- p.88Chapter 7.2 --- Suggestions for Future Research --- p.91Appendices --- p.92A The Proof of Stability Conditions for Stochastic Gradient De- scent Algorithm (Ref. (4.15)) --- p.92Bibliography --- p.9

    Hybrid solutions to instantaneous MIMO blind separation and decoding: narrowband, QAM and square cases

    Get PDF
    Future wireless communication systems are desired to support high data rates and high quality transmission when considering the growing multimedia applications. Increasing the channel throughput leads to the multiple input and multiple output and blind equalization techniques in recent years. Thereby blind MIMO equalization has attracted a great interest.Both system performance and computational complexities play important roles in real time communications. Reducing the computational load and providing accurate performances are the main challenges in present systems. In this thesis, a hybrid method which can provide an affordable complexity with good performance for Blind Equalization in large constellation MIMO systems is proposed first. Saving computational cost happens both in the signal sep- aration part and in signal detection part. First, based on Quadrature amplitude modulation signal characteristics, an efficient and simple nonlinear function for the Independent Compo- nent Analysis is introduced. Second, using the idea of the sphere decoding, we choose the soft information of channels in a sphere, and overcome the so- called curse of dimensionality of the Expectation Maximization (EM) algorithm and enhance the final results simultaneously. Mathematically, we demonstrate in the digital communication cases, the EM algorithm shows Newton -like convergence.Despite the widespread use of forward -error coding (FEC), most multiple input multiple output (MIMO) blind channel estimation techniques ignore its presence, and instead make the sim- plifying assumption that the transmitted symbols are uncoded. However, FEC induces code structure in the transmitted sequence that can be exploited to improve blind MIMO channel estimates. In final part of this work, we exploit the iterative channel estimation and decoding performance for blind MIMO equalization. Experiments show the improvements achievable by exploiting the existence of coding structures and that it can access the performance of a BCJR equalizer with perfect channel information in a reasonable SNR range. All results are confirmed experimentally for the example of blind equalization in block fading MIMO systems

    Review of Artifact Rejection Methods for Electroencephalographic Systems

    Get PDF
    Technologies using electroencephalographic (EEG) signals have been penetrated into public by the development of EEG systems. During EEG system operation, recordings ought to be obtained under no restriction of movement for routine use in the real world. However, the lack of consideration of situational behavior constraints will cause technical/biological artifacts that often mixed with EEG signals and make the signal processing difficult in all respects by ingeniously disguising themselves as EEG components. EEG systems integrating gold standard or specialized device in their processing strategies would appear as daily tools in the future if they are unperturbed to such obstructions. In this chapter, we describe algorithms for artifact rejection in multi-/single-channel. In particular, some existing single-channel artifact rejection methods that will exhibit beneficial information to improve their performance in online EEG systems were summarized by focusing on the advantages and disadvantages of algorithms

    Convolutive Blind Source Separation Methods

    Get PDF
    In this chapter, we provide an overview of existing algorithms for blind source separation of convolutive audio mixtures. We provide a taxonomy, wherein many of the existing algorithms can be organized, and we present published results from those algorithms that have been applied to real-world audio separation tasks

    Blind Source Separation Based on Covariance Ratio and Artificial Bee Colony Algorithm

    Get PDF
    The computation amount in blind source separation based on bioinspired intelligence optimization is high. In order to solve this problem, we propose an effective blind source separation algorithm based on the artificial bee colony algorithm. In the proposed algorithm, the covariance ratio of the signals is utilized as the objective function and the artificial bee colony algorithm is used to solve it. The source signal component which is separated out, is then wiped off from mixtures using the deflation method. All the source signals can be recovered successfully by repeating the separation process. Simulation experiments demonstrate that significant improvement of the computation amount and the quality of signal separation is achieved by the proposed algorithm when compared to previous algorithms

    Learning Bijective Feature Maps for Linear ICA

    Get PDF
    Separating high-dimensional data like images into independent latent factors, i.e independent component analysis (ICA), remains an open research problem. As we show, existing probabilistic deep generative models (DGMs), which are tailor-made for image data, underperform on non-linear ICA tasks. To address this, we propose a DGM which combines bijective feature maps with a linear ICA model to learn interpretable latent structures for high-dimensional data. Given the complexities of jointly training such a hybrid model, we introduce novel theory that constrains linear ICA to lie close to the manifold of orthogonal rectangular matrices, the Stiefel manifold. By doing so we create models that converge quickly, are easy to train, and achieve better unsupervised latent factor discovery than flow-based models, linear ICA, and Variational Autoencoders on images.Comment: 8 page
    corecore