thesis

A frequency-based BSS technique for speech source separation.

Abstract

Ngan Lai Yin.Thesis (M.Phil.)--Chinese University of Hong Kong, 2003.Includes bibliographical references (leaves 95-100).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Blind Signal Separation (BSS) Methods --- p.4Chapter 1.2 --- Objectives of the Thesis --- p.6Chapter 1.3 --- Thesis Outline --- p.8Chapter 2 --- Blind Adaptive Frequency-Shift (BA-FRESH) Filter --- p.9Chapter 2.1 --- Cyclostationarity Properties --- p.10Chapter 2.2 --- Frequency-Shift (FRESH) Filter --- p.11Chapter 2.3 --- Blind Adaptive FRESH Filter --- p.12Chapter 2.4 --- Reduced-Rank BA-FRESH Filter --- p.14Chapter 2.4.1 --- CSP Method --- p.14Chapter 2.4.2 --- PCA Method --- p.14Chapter 2.4.3 --- Appropriate Choice of Rank --- p.14Chapter 2.5 --- Signal Extraction of Spectrally Overlapped Signals --- p.16Chapter 2.5.1 --- Simulation 1: A Fixed Rank --- p.17Chapter 2.5.2 --- Simulation 2: A Variable Rank --- p.18Chapter 2.6 --- Signal Separation of Speech Signals --- p.20Chapter 2.7 --- Chapter Summary --- p.22Chapter 3 --- Reverberant Environment --- p.23Chapter 3.1 --- Small Room Acoustics Model --- p.23Chapter 3.2 --- Effects of Reverberation to Speech Recognition --- p.27Chapter 3.2.1 --- Short Impulse Response --- p.27Chapter 3.2.2 --- Small Room Impulse Response Modelled by Image Method --- p.32Chapter 3.3 --- Chapter Summary --- p.34Chapter 4 --- Information Theoretic Approach for Signal Separation --- p.35Chapter 4.1 --- Independent Component Analysis (ICA) --- p.35Chapter 4.1.1 --- Kullback-Leibler (K-L) Divergence --- p.37Chapter 4.2 --- Information Maximization (Infomax) --- p.39Chapter 4.2.1 --- Stochastic Gradient Descent and Stability Problem --- p.41Chapter 4.2.2 --- Infomax and ICA --- p.41Chapter 4.2.3 --- Infomax and Maximum Likelihood --- p.42Chapter 4.3 --- Signal Separation by Infomax --- p.43Chapter 4.4 --- Chapter Summary --- p.45Chapter 5 --- Blind Signal Separation (BSS) in Frequency Domain --- p.47Chapter 5.1 --- Convolutive Mixing System --- p.48Chapter 5.2 --- Infomax in Frequency Domain --- p.52Chapter 5.3 --- Adaptation Algorithms --- p.54Chapter 5.3.1 --- Standard Gradient Method --- p.54Chapter 5.3.2 --- Natural Gradient Method --- p.55Chapter 5.3.3 --- Convergence Performance --- p.56Chapter 5.4 --- Subband Adaptation --- p.57Chapter 5.5 --- Energy Weighting --- p.59Chapter 5.6 --- The Permutation Problem --- p.61Chapter 5.7 --- Performance Evaluation --- p.63Chapter 5.7.1 --- De-reverberation Performance Factor --- p.63Chapter 5.7.2 --- De-Noise Performance Factor --- p.63Chapter 5.7.3 --- Spectral Signal-to-noise Ratio (SNR) --- p.65Chapter 5.8 --- Chapter Summary --- p.65Chapter 6 --- Simulation Results and Performance Analysis --- p.67Chapter 6.1 --- Small Room Acoustics Modelled by Image Method --- p.67Chapter 6.2 --- Signal Sources --- p.68Chapter 6.2.1 --- Cantonese Speech --- p.69Chapter 6.2.2 --- Noise --- p.69Chapter 6.3 --- De-Noise and De-Reverberation Performance Analysis --- p.69Chapter 6.3.1 --- Speech and White Noise --- p.73Chapter 6.3.2 --- Speech and Voice Babble Noise --- p.76Chapter 6.3.3 --- Two Female Speeches --- p.79Chapter 6.4 --- Recognition Accuracy Performance Analysis --- p.83Chapter 6.4.1 --- Speech and White Noise --- p.83Chapter 6.4.2 --- Speech and Voice Babble Noise --- p.84Chapter 6.4.3 --- Two Cantonese Speeches --- p.85Chapter 6.5 --- Chapter Summary --- p.87Chapter 7 --- Conclusions and Suggestions for Future Research --- p.88Chapter 7.1 --- Conclusions --- p.88Chapter 7.2 --- Suggestions for Future Research --- p.91Appendices --- p.92A The Proof of Stability Conditions for Stochastic Gradient De- scent Algorithm (Ref. (4.15)) --- p.92Bibliography --- p.9

    Similar works