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Abstract

Separating high-dimensional data like images
into independent latent factors, i.e indepen-
dent component analysis (ICA), remains an
open research problem. As we show, existing
probabilistic deep generative models (DGMs),
which are tailor-made for image data, under-
perform on non-linear ICA tasks. To address
this, we propose a DGM which combines bijec-
tive feature maps with a linear ICA model to
learn interpretable latent structures for high-
dimensional data. Given the complexities of
jointly training such a hybrid model, we in-
troduce novel theory that constrains linear
ICA to lie close to the manifold of orthogo-
nal rectangular matrices, the Stiefel manifold.
By doing so we create models that converge
quickly, are easy to train, and achieve better
unsupervised latent factor discovery than flow-
based models, linear ICA, and Variational
Autoencoders on images.

1 Introduction

In linear Independent Component Analysis (ICA), data
is modelled as having been created from a linear mixing
of independent latent sources (Cardoso, 1989a,b, 1997;
Comon, 1994). The canonical problem is blind source
separation; the aim is to estimate the original sources of
a mixed set of signals by learning an unmixing matrix,
which when multiplied with data recovers the values of
these sources. While linear ICA is a powerful approach
to unmix signals like sound (Everson & Roberts, 2001),
it has not been as effectively developed for learning
compact representations of high-dimensional data like
images, where assuming linearity is limiting. Non-
linear ICA methods, which assume non-linear mixing
of latents, offer better performance on such data.
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In particular, flow-based models have been proposed as
a non-linear approach to square ICA, where we assume
the dimensionality of our latent source space is the same
as that of our data (Deco & Brauer, 1995; Dinh et al.,
2015). Flows parameterise a bijective mapping between
data and a feature space of the same dimension and can
be trained via maximum likelihood for a chosen base
distribution in that space. While these are powerful
generative models, for image data one typically wants
fewer latent variables than the number of pixels in an
image. In such situations, we wish to learn a non-square
(dimensionality-reducing) ICA representation.

In this work, we highlight the fact that existing proba-
bilistic deep generative models (DGMs), in particular
Variational Autoencoders (VAEs), underperform on
non-linear ICA tasks. As such there is a real need
for a probabilistic DGM that can perform these tasks.
To address this we propose a novel methodology for
performing non-square non-linear ICA using a model,
termed Bijecta, with two jointly trained parts: a highly-
constrained non-square linear ICA model, operating on
a feature space output by a bijective flow. The bijective
flow is tasked with learning a representation for which
linear ICA is a good model. It is as if we are learning
the data for our ICA model.

We find that such a model fails to converge when trained
naively with no constraints. To ensure convergence,
we introduce novel theory for the parameterisation of
decorrelating, non-square ICA matrices that lie close
to the Stiefel manifold (Stiefel, 1935), the space of or-
thonormal rectangular matrices. We use this result to
introduce a novel non-square linear ICA model that
uses Johnson-Lidenstrauss projections (a family of ran-
domly generated matrices). Using these projections,
Bijecta successfully induces dimensionality reduction
in flow-based models and scales non-square non-linear
ICA methods to high-dimensional image data. Further
we show that it is better able to learn independent la-
tent factors than each of its constituent components in
isolation and than VAEs. For a preliminary demonstra-
tion of the inability of VAEs and the ability of Bijecta
to discover ICA sources see Fig 1.
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(a) Sample Images
(b) VAE Sources (c) Bijecta Sources

Figure 1: Here we take a dSprites heart and, using a randomly sampled affine transformation, move it around a
black background (a). The underlying sources of the dataset are affine transformations of the heart. In (b-c)
images in the center correspond to the origin of the learnt source space. Images on either side correspond to
linearly increasing values along one of the learnt latent sources whilst the other source remains fixed. Bijecta (c)
has learned affine transformations as sources (white diagonals), whereas a VAE (with ICA-appropriate prior) (b)
has learned non linear transforms (white curves). The VAE has not discovered the underlying latent sources.

2 Background

2.1 Independent Component Analysis

The goal of ICA is to learn a set of statistically in-
dependent sources that ‘explain’ our data. ICA is a
highly diverse modelling paradigm with numerous vari-
ants: learning a mapping vs learning a model, linear
vs non-linear, different loss functions, different genera-
tive models, and a wide array of methods of inference
(Cardoso, 1989a; Mackay, 1996; Lee et al., 2000).

Here, we specify a generative model and find point-wise
maximum likelihood estimates of model parameters in
the manner of (Mackay, 1996; Cardoso, 1997). Con-
cretely, we have a model with latent sources s 2 S =
Rds generating data x 2 X = Rdx , with ds  dx. The
linear ICA generative model factorises as

p(x, s) = p(x|s)p(s), p(s) =
dsY

i=1

p(si),

where p(s) is a set of independent distributions appro-
priate for ICA. In linear ICA, where all mappings are
simple matrix multiplications, the sources cannot be
Gaussian distributions. Recall that we are mixing our
sources to generate our data: A linear mixing of Gaus-
sian random variables is itself Gaussian, so unmixing
is impossible (Lawrence & Bishop, 2000). To be able
to unmix, to break this symmetry, we can choose any
heavy-tailed or light-tailed non-Gaussian distribution
as our prior p(s) that gives us axis alignment and in-
dependence between sources. A common choice is the
family of generalised Gaussian distributions,

p(si) = GG(si|µ,↵, ⇢)

p(si) =
⇢

2↵�(1/⇢)
exp

✓
� |si � µ|

↵

◆⇢�
(1)

with mean µ, scale ↵ and shape ⇢. For ⇢ = 2 we recover
the Normal distribution, and for ⇢ = 1 we have the
(heavy-tailed) Laplace. As ⇢ ! 1 the distribution
becomes increasingly sub-Gaussian, tending to a uni-
form distribution. As such, the generalised Gaussian
is a flexible framework for specifying ICA-appropriate

priors as it allows for the specification of a sub or super
Gaussian distribution by way of a single parameter: ⇢.

2.2 Manifolds for the unmixing matrix A+

In linear ICA we want to find the linear mapping A+

resulting in maximally independent sources. This is
more onerous than merely finding decorrelated sources,
as found by principal component analysis (PCA).

When learning a linear ICA model we typically have
the mixing matrix A as the (pseudo)inverse of the
unmixing matrix A+ and focus on the properties of
A+ to improve convergence. A+ linearly maps from
the data-space X to the source space S. It can be
decomposed into two linear operations. First we whiten
the data such that each component has unit variance
and these components are mutually uncorrelated. We
then apply an orthogonal transformation and a scaling
operation (Hyvärinen et al., 2001, §6.34) to ‘rotate’
the whitened data into a set of coordinates where the
sources are independent and decorrelated. Whitening
on its own is not sufficient for ICA — two sources can
be uncorrelated and dependent (see Appendix A).

Thus we can write the linear ICA unixing matrix as
A+ = �RW (2)

where W 2 Rds⇥dx is our whitening matrix, R 2
Rds⇥ds is an orthogonal matrix and � 2 Rds is a
diagonal matrix. Matrices that factorise this way
are known as the decorrelating matrices (Everson &
Roberts, 1999): members of this family decorrelate
through W, and �R ensures that sources are statisti-
cally independent, not merely uncorrelated. The opti-
mal ICA unmixing matrix is the decorrelating matrix
that decorrelates and gives independence.

2.3 Flows

Flows are models that stack numerous invertible
changes of variables. One specifies a simple base distri-
bution and learns a sequence of (invertible) transforms
to construct new distributions that assign high proba-
bility to observed data. Given a variable z 2 Z = Rdx ,
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we specify the distribution over data x as

p(x) = p(z)

����det
@f

�1

@z

���� , (3)

where f is a bijection from Z ! X , ie Rdx ! Rdx , and
p(z) is the base distribution over the latent z (Rezende
& Mohamed, 2015; Papamakarios et al., 2019).

For more flexible distributions for x, we specify x
through a series of composed functions, from our sim-
ple initial p into a more complex multi-modal distri-
bution; for example for a series of K + 1 mappings,
z = fK � ... � f0(x). By the properties of determinants
under function composition

p(x) = p(zK)
KY

i=0

����det
@f

�1
i

@zi+1

���� , (4)

where zi+1 denotes the variable resulting from the
transformation fi(zi), p(zK) defines a density on the
K

th, and the bottom most variable is our data (z0 = x).

Computing the determinant of the Jacobian (det@f
�1

@z )
in Eq. (3) can be prohibitively costly, especially when
composing multiple functions as in Eq. (4). To address
this, flows use coupling layers that enforce a lower
triangular Jacobian such that the determinant of the
Jacobian is simply the product of its diagonal elements.
We use recently proposed coupling layers based on ra-
tional quadratic splines (RQS) to enforce this lower
triangular structure (Durkan et al., 2019). They form
highly flexible flows that typically require fewer com-
posed mappings to achieve good performance relative
to other coupling layers. See Appendix H for details.

3 Non-Square ICA using Flows

Variational Autoencoders seem like a natural fit for
learning a compressed set of statistically independent
latent variables (Kingma & Welling, 2014; Rezende
et al., 2014). It seems natural to train a VAE with
an appropriate non-Gaussian prior, and expect that
it would learn an appropriate ICA model. However,
this is not the case. In Khemakhem et al. (2020) some
experiments suggest that VAEs with ICA-appropriate
priors are unsuited to performing non-linear ICA. In our
experiments (§5) we further verify this line of inquiry
and show that VAEs struggle to match their aggregate
posteriors to non-Gaussian priors and thus are unable
to discover independent latent sources.

Though source separation can be achieved by ‘disen-
tangling’ methods such as the �-VAE (Higgins et al.,
2017) and �-TCVAE (Chen et al., 2018), these meth-
ods require post-hoc penalisation of certain terms of
the VAE objective, at times inducing improper priors
(in the �-TCVAE in particular (Mathieu et al., 2019)).
Further, precise tuning of this penalisation, a form of

soft supervision, is key to getting appropriate repre-
sentations (Rolinek et al., 2019; Locatello et al., 2019).
Stühmer et al. (2019) obtains a variety of non-linear
ICA using VAEs with sets of Generalised Gaussian pri-
ors, but even then � penalisation is required to obtain
’disentangled’ representations.

As such there is a need for probabilistic DGMs that can
separate sources without added hyperparameter tuning
and that can do so by matching ICA-appropriate priors.
Our solution combines linear ICA with a dimensionality-
preserving invertible flow f✓. The flow acts between our
data space of dimensionality and the representation
fed to the linear ICA generative model; learning a
representation that is well fit by the simple, linear ICA
model. As we demonstrate in experiments (§5), this
hybrid model, which we call Bijecta, succeeds where
VAEs fail: it can match non-Gaussian priors and is
able to discover independent latent sources on image
datasets.

3.1 A Linear ICA base distribution for flows

Our aim here is to develop a non-square ICA method
that is both end-to-end differentiable and computation-
ally efficient, such that it can be trained jointly with
a flow via stochastic gradient descent. We begin by
choosing our base ICA source distribution to be a set of
independent generalised Gaussian distributions, Eq (1)
with µ = 0, ↵ = 1 and ⇢ varying per experiment; and
the ICA model’s likelihood to a be a Gaussian.

p(si) = GG(si|µ = 0,↵ = 1, ⇢), for i 2 {1, . . . , ds},
p(z|s) = N (x|As,⌃✓),

where A 2 Rdx⇥ds is our (unknown) ICA mixing ma-
trix, which acts on the sources to produce a linear mix-
ture; and ⌃✓ is a learnt or fixed diagonal covariance.
This linear mixing of sources yields an intermediate
representation z that is then mapped to the data by
a flow. Our model has three sets of variables: the
observed data x, the flow representation z = f

�1(x),
and ICA latent sources s. It can be factorised as

p✓(x, s) = p✓(x|s)p(s) = p(z|s)p(s)
����det

@f
�1
✓

@z

���� (5)

While it is simple to train a flow by maximum likelihood
method when we have a simple base distribution in
Z, here to obtain a maximum likelihood objective we
would have to marginalise out s to obtain the evidence
in Z; a computationally intractable procedure:

p(z;A,⌃✓) =

Z
ds p(z|s;A, ,⌃✓)p(s). (6)

A contemporary approach is to use amortised varia-
tional inference for the linear ICA part of our model.
This means we introduce an approximate amortised
posterior for s and perform importance sampling on
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xzs

A ⌃✓ ✓

N

(a) Generative Model

xzs

A+ b� ✓

N

(b) Variational Posterior

Figure 2: The generative model (a) and variational
posterior (b), as defined in Eq (8).

Eq (6), taking gradients through our samples using
the reparameterisation trick (Kingma & Welling, 2014;
Rezende et al., 2014). Amortised stochastic variational
inference offers numerous benefits: it scales training to
large datasets by using stochastic gradient descent, our
trained model can be applied to new data with a simple
forward pass, and we are free to choose the functional
& probabilistic form of our approximate posterior. Fur-
ther our ICA model is end-to-end differentiable, making
it optimal for jointly training with a flow.

We choose a linear mapping in our posterior, with
q�(s|z) = Laplace(s|A+z,b�), where we have intro-
duced variational parameters � = {A+

,b�} corre-
sponding to an unmixing matrix and a diagonal diver-
sity. Using samples from this posterior we can define a
lower bound L on the evidence in Z
log p(z;A,⌃✓) � L(z;�,A,⌃✓)

= Es⇠q[log p(z|s)�KL(q�(s|z)||p(s)) (7)
Using the change of variables equation, Eq (3), and the
lower bound on the evidence for ICA in (7) for Z, we
can obtain a variational lower bound on the evidence
for our data x as the sum of the ICA model’s ELBO
(acting on z) and the log determinant of the flow:

log p✓(x;A,⌃✓) � L(x; ✓,�,A,⌃✓)

= L(z;�,A,⌃✓) + log

����det
@f

�1
✓

@z

���� (8)

As such our model is akin to a flow model, but with
an additional latent variable s; the base distribution
p(z) of the flow is defined through marginalizing out
the linear mixing of the sources. We refer to a model
with n non-linear splines mapping from X to Z as an
n-layer Bijecta model.

In the case of non-square ICA, where our ICA model
is not perfectly invertible, errors when reconstructing
a mapping from S to Z may amplify when mapping
back to X . To mitigate this we add an additional reg-
ularisation term in our loss that penalises the L1 error
of each point when reconstructed into X . This penali-
sation can be weighted according to the importance of
high-fidelity reconstructions for a given application.

We attempted to train Bijecta with unconstrained mix-
ing and unmixing matrices, but found that jointly train-

ing a linear model with a powerful flow was not trivial
and models failed to converge when naively optimising
Eq (8). We found it crucial to appropriately constrain
the unmixing matrix to get models to converge. We
detail these constraints in the next section.

4 Whitening in A+
, without SVD

What are good choices for the mixing and unmixing
matrices? Recall in Sec 2.2 we discussed various tradi-
tional approaches to constraining the unmixing matrix.
For our flow-based model, design choices as to the pa-
rameterisation of A+ stabilise and accelerate training.
As before, the mixing matrix A is unconstrained during
optimisation. However, without the constraints on A+

we describe in this section, we found that joint training
of a flow with linear ICA did not converge.

Recall Eq (2) — linear ICA methods carry out whiten-
ing W, performing dimensionality reduction projecting
from a dx-dimensional space to a ds-dimensional space,
and the remaining rotation and scaling operations are
square. When training with a flow the powerful splines
we are learning can fulfill the role of the square matrices
R and �, but doing this ahead of the whitening itself.
Put another way, the outputs from the flow can be
learnt such that they are simply a whitening operation
away from being effective ICA representations in S.
Thus, to minimise the complexities of jointly training a
powerful flow with a small linear model, we can simply
set A+ = W, such that the unmixing matrix projects
from dz to ds and is decorrelating. Statistical indepen-
dence will come from the presence of the KL term in
Eq (7): the flow will learn to give z representations
that, when whitened, are good ICA representations in
S. See Fig 3 for a visual illustration of this process and
a comparison with the steps involved in linear ICA.

In previous linear ICA methods, the whitening pro-
cedure W has been derived in some data-aware way.
A common choice is to whiten via the Singular Value
Decomposition (SVD) of the data matrix, where W =
⌃UT , ⌃ is the rectangular diagonal matrix of singular
values of X, and the columns of U are the left-singular
vectors. Computing the SVD of the whole dataset is
expensive for large datasets; for us, in the context of
Bijecta, we would be re-calculating the SVD of the
representations Z = f

�1(X) of the entire dataset after
every training step. One route around this would be
online calculation of the whitening matrix (Cardoso &
Laheld, 1996; Hyvärinen et al., 2001). This introduces
an extra optimisation process that also has to be tuned,
and would interact with the training of the flow.

To tackle these shortcomings of existing whitening
methods, we propose a new method for linear non-
square ICA that uses Johnson–Lindenstrauss (JL)
transforms (also known as sketching) (Woodruff, 2014),
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(a) Linear ICA (b) Bijecta

Figure 3: (a) Sequence of actions that are performed by the elements of A+, the unmixing matrix of linear ICA.
W whitens the correlated data and �R then ensures that the whitened (decorrelated) data is also independent.
(b) Sequence of actions that are performed by the elements of Bijecta. f�1 maps data to a representation for which
the whitening matrix is the ICA matrix. W now whitens f

�1(x) and the result is also statistically independent.

which not only works effectively as a linear ICA method,
but also works in conjunction with a flow model. These
JL transforms have favourable properties for ICA, as
we demonstrate in theoretical results. Further, this
method samples part of the whitening matrix at initial-
isation and leaves it fixed for the remainder of training,
requiring no hyper-parameter tuning and making it
extremely computationally efficient. This method is
novel and efficient when used as a whitening method
within linear ICA, and when combined with a flow as
in Bijecta is a powerful method for non-linear ICA as
we demonstrate in experiments.

4.1 Approximately-Stiefel matrices

We have set A+ = W, the whitening matrix. W has
two aims in non-square ICA. The first is dimensional-
ity reduction, projecting from a dx-dimensional space
to a ds-dimensional space. The second is to decorre-
late the data it transforms, meaning that the resulting
projection will have unit variance and mutually uncor-
related components. More formally we wish for W of
dimensionality ds ⇥ dx to be decorrelating.

The set of orthogonal decorrelating rectangular matri-
ces lie on the Stiefel Manifold (Stiefel, 1935) denoted
V. For matrices with r rows and c columns, a matrix
G 2 V(r, c) iff GG⇤ = I (G⇤ the conjugate transpose
of G). Constraining the optimisation of W to this man-
ifold can be computationally expensive and complex
(Bakir et al., 2004; Harandi & Fernando, 2016; Siegel,
2019) and instead we choose for W to be approximately
Stiefel, that is to lie close to V(ds, dx). This is justified
by the following theorem, proved in Appendix A:

Theorem 1. Let G be a rectangular matrix and G̃ be
its projection onto V(r, c). As the Frobenius norm ||G�
G̃|| ! 0 we have that ||GXXTGT � || ! 0, where
GXXTGT is the cross-correlation of the projection of
data X by G, and  is some diagonal matrix.

Simply put, this shows that as a matrix G approaches

the Stiefel manifold V(r, c) the off-diagonal elements of
the cross-correlation matrix of the projection GX are
ever smaller, so G is ever more decorrelating. Given
these properties we want our whitening matrix to lie
close to the Stiefel manifold.

4.1.1 Johnson-Lindenstrauss projections

By Theorem 1 we know that we want our whitening
matrix to be close to V(ds, dx). How might we enforce
this closeness? By the definition of the Stiefel manifold,
we can intuit that a matrix G will lie close to this
manifold if GGT ⇡ I. We formalise this as:

Theorem 2. Let G 2 Rds⇥dx and let G̃ be its
projection onto V(ds, dx). As the Frobenius norm
kGGT � Ik ! 0, we also have kG̃�Gk ! 0.

The proof for this is presented in Appendix D. Us-
ing this theorem, we now propose an alternative to
SVD-based whitening. Instead of having W = ⌃�1UT

be the result of SVD on the data matrix, we define
our whitening matrix as a data-independent John-
son–Lindenstrauss transform. We must ensure that W,
our rectangular matrix, is approximately orthogonal,
lying close to the manifold V(ds, dx). More formally
by Theorem 2, our goal is to construct a rectangular
matrix W such that WWT ⇡ I.

We construct approximately orthogonal matrices for
W by way of Johnson-Lindenstrauss (JL) Projections
(Johnson & Lindenstrauss, 1984). A JL projection W
for Rdx ! Rds is sampled at initialisation from a simple
binary distribution Achlioptas (2003):

Wi,j =

(
+1/

p
ds, with probability 1

2

�1/
p
ds, with probability 1

2

(9)

This distribution satisfies E[WWT ] = I, and such
a draw has WWT ⇡ I. We choose to fix W after
initialisation such that A+ = W never updates, greatly
simplifying optimisation.
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(a) Source Images (b) Mixed (c) A FastICA (d) A JL-Cayley ICA

Figure 4: Here we run linear ICA on a pair of images (a) that are mixed linearly (mix = w1 ⇤ image1+w2 ⇤ image2)
(b) to form a dataset with 512 points. In both cases w1 and w2 are sampled from a uniform distribution. We plot
the mixing matrix A for our JL-Cayley model with a quasi-uniform GG prior with ⇢ = 10 (c) and for FastICA
(Hyvärinen & Oja, 1997) as a benchmark. A should recover the source images, which occurs for both models.

(a) Sample Images

(b) VAE Latent Traversals (c) Bijecta Latent Traversals

Figure 5: Here we demonstrate that Bijecta is capable of unmixing non-linearly mixed sources, better than VAEs
with ICA-appropriate priors. We take a dSprites heart and, using a randomly sampled affine transformation,
move it around a 32 by 32 background (a). With 2-D GG priors with ⇢ = 10 for a convolutional VAE (b) and for
Bijecta (c) we plot the generations resulting from traversing the 2-D latent-source space in a square around the
origin. We sketch the learnt axis of movement of the sprite with white lines. In (b) the VAE does not ascribe
consistent meaning to its latent dimensions. It has failed to discover consistent independent latent sources: it
has a sudden change in the learnt axes of movement along the second dimension, as seen by the kink in the
white vertical lines. In (c) Bijecta is able to learn a simple affine transformation along each latent dimension,
consistently spanning the space. In Fig B.2 we show the posterior distributions of both these models and show
that Bijecta is better able to match the GG prior than the VAE, supporting our findings here.

5 Experiments

Here we show that our approach outperforms VAEs
and flows with ICA-priors at discovering ICA sources
in image data. But first, as a sanity check, we show
that a linear ICA model using JL projections to whiten
can successfully unmix linearly mixed sources in Fig
4. For details on how to implement such a linear ICA
model, see Appendix E. We take a pair of images from
dSprites and create linear mixtures of them. We see
that linear ICA with JL projections can successfully
discover the true sources, the images used to create the
mixtures, in the columns of A.

Affine Data Given that we have established that
our novel theory for decorrelating matrices can pro-
duce standalone linear ICA models, we now want to
ascertain that our hybrid model performs well in non-
linear mixing situations. To do so we create a dataset
consisting of a subset of dSprites where we have a light-
blue heart randomly uniformly placed on a black field.
The true latent sources behind these randomly sampled
affine transformations are simply the coordinates of the

heart. First, in Fig B.2 we demonstrate that linear ICA
models are unable to uncover the true latent sources.
As expected non-linear mixing regimes motivate the
use of flexible non-linear models.

We now demonstrate that Bijecta can uncover the la-
tent sources underpinning these affine transformations,
whereas VAEs with ICA-appropriate priors fail to do
so. For details of VAE architecture, see Appendix I.
These VAEs are able to learn to reconstruct data well,
but the learnt latent space does not correspond to the
underlying statistically independent sources (see Figs
1 and B.2). In fact for VAEs the effect of the latent
variables is not consistent throughout the latent space,
as seen in Fig 5. For Bijecta, the learnt latent space
corresponds to the underlying statistically independent
sources (see Figs 1 and B.2), and the meaning of the
latent variables is consistent in Fig 5. Further in Fig 5
the model seems able to extrapolate outside the train-
ing domain: it generates images where the heart is
partially rendered at the edges of the frame, even re-
moving the heart entirely at times, even though such
images are not in the training set.
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(a) Bijecta Factorised Posterior (b) Bijecta latent 5 traversal (c) RQS flow traversal

Figure 6: (a) shows decodings from an 8-layer Bijecta (ds = 32) trained on CelebA with a Laplace prior (GG
⇢ = 1) where we sample from the factorised approximation to Bijecta’s posterior. See Fig J.6 for more such
samples. (b) shows latent traversals for 3 different datapoints all along the same axis-aligned direction, for this
same model. (c) shows traversals for a single embedded training datapoint from CelebA moving along 3 latent
directions in an RQS flow with Laplace base distribution. Though we have selected 3 dimensions, all Z dimensions
had similar latent traversals. In (b-c) Images in the center correspond to the original latent space embedding, on
either side we move up to 6 standard deviations away along this direction with other dimensions remaining fixed.
The flow has not discovered axis-aligned transforms, whereas Bijecta has learned informative latent dimensions:
here the dimension encodes hair thickness. Note that identity is maintained throughout and that the transform is
consistent across different posterior samples. See Appendix J.3 for gallery of transforms for Bijecta.

Natural Images The previous experiments show
that our model is capable of isolating independent
sources on toy data. We complement this finding with
experiments on a more complex natural image dataset,
CelebA, and show that here too our model outperforms
VAEs in learning factorisable representations.

An ersatz test of this can be done by synthesising im-
ages where we sample from a factorised approximation
of Bijecta’s posterior. If the learned latent sources are
actually independent, then the posterior over latent
sources given the entire dataset should factorize into
a product across dimensions, i.e. q(s) =

Q
i q(si). In

this case, we can fit an approximation to the posterior
by fitting ds independent one-dimensional density es-
timates on q(si). If the sources are not independent,
then this factorized approximation to the posterior will
be missing important correlations and dependencies.
In Fig 6a samples from this factorised approximation
look reasonable, suggesting that Bijecta has learnt rep-
resentations that are statistically independent.

To quantify this source-separation numerically, we mea-
sure the total correlation (TC) of the aggregate pos-
teriors of Bijecta (q(s|z)) and VAEs (q(z|x)) as Chen
et al. (2018) do. Intuitively, the TC measures how well
a distribution is approximated by the product of its
marginals – or how much information is shared between
variables due to dependence (Watanabe, 1960). It di-
rectly measures how well an ICA model has learnt decor-
related and independent latent representations (Ever-
son & Roberts, 2001). Formally, it is the KL divergence
between a distribution r(·) and a factorised represen-
tation of the distribution: TC = KL(r(s)||

Q
i r(si)),

where i indexes over (latent) dimensions.

In Table 1, we show that Bijecta learns an aggregate
posterior with significantly lower TC values than both
VAEs with Laplace priors, and �-TCVAEs – which in
their training objective penalise the TC by a factor
� (Chen et al., 2018). Our model has learnt a better
ICA solution. We also include numerical results in
Appendix J.1 showing that Bijecta outperforms linear
ICA on a variety of natural image datasets.

Table 1: Total Correlation Results: We evaluate the
source separation of different models on CelebA via
the TC of the validation set embeddings in the 32-
D latent space of: Laplace prior VAEs, �-TCVAEs
(� = 15), and Bijecta with a Laplace prior (± indicates
the standard deviation over 2 runs). VAEs use the
same architecture and training as Chen et al. (2018).

Laplace-VAE �-TCVAE Laplace-Bijecta

TC: 106.7± 0.9 55.7± 0.1 13.1± 0.4

Dimensionality reduction on flow models To
conclude, having shown that Bijecta outperforms VAEs
on a variety of non-linear ICA tasks, we now contrast
our model’s ability to automatically uncover sources
relative to flow models with heavy-tailed base distribu-
tions. We do so by measuring the cumulative explained
variance by the dimensions in Z for both models. If
a small number of dimensions explains most of Z’s
variance then the model has learnt a bijection which
only requires a small number of dimensions to be in-
vertible. It has in effect learnt the generating sources
underpinning the data.

In Fig 7 we show that Bijecta induces better-
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Figure 7: Explained variance plots for the embedding in Z, as measured by the sums of the eigenvalues of the
covariance matrix of the embeddings, for both our Bijecta model and for an RQS model of equivalent size trained
with a Laplace base distribution (GG distribution with ⇢ = 1). For both Fashion-MNIST (left) and CIFAR 10
(right) datasets we see that the Bijecta model has learned a compressive flow, where most of the variance can be
explained by only a few linear projections. The shaded region denotes the first 64 dimensions, corresponding to
the size of the target source embedding S.

compressed representations in Z than non-compressive
flows. We plot the eigenvalues of the covariance matrix
on the output of the flow, i.e. on Cov(f(X)), to see
how much of the total variance in the learned feature
space Z can be explained in a few dimensions. In doing
so we see that a flow trained jointly with a linear ICA
model with ds = 64 effectively concentrates variation
into a small number of intrinsic dimensions; this is in
stark contrast with the RQS flows trained with only
a Laplace base distribution. This demonstrates that
our model is able to automatically detect relevant di-
rections on a low dimensional manifold in Z, and that
the bijective component of our model is better able to
isolate latent sources than a standard flow.

For a visual illustration of this source separation we
show the difference in generated images resulting from
smoothly varying along each dimension in S for Bijecta
models and in Z for flows in Fig 6. Bijecta is clearly
able to discover latent sources, whereby it learns axis-
aligned transformations of CelebA faces, whereas a flow
with equivalent computational budget and a heavy-
tailed base distribution is not able to.

All flow-based baselines are trained using the objective
in Eq (4), using Real-NVP style factoring-out (Durkan
et al., 2019; Dinh et al., 2015), and are matched in size
and neural network architectures to the flows of Bijecta
models. See Appendix I for more details.

6 Related Work

One approach to extend ICA to non-linear settings is
to have a non-linear mapping acting on the indepen-
dent sources and data (Burel, 1992; Deco & Brauer,
1995; Yang et al., 1998; Valpola et al., 2003). In gen-
eral, non-linear ICA models have been shown to be
hard to train, having problems of unidentifiability: the
model has numerous local minima it can reach under
its training objective, each with potentially different
learnt sources (Hyvärinen & Pajunen, 1999; Karhunen,
2001; Almeida, 2003; Hyvarinen et al., 2019). Some

non-linear ICA models have been specified with addi-
tional structure to reduce the space of potential solu-
tions, such as putting priors on variables (Lappalainen
& Honkela, 2000) or specifying the precise non-linear
functions involved (Lee & Koehler, 1997; Taleb, 2002),
Recent work shows that conditioning the source distri-
butions on some always-observed side information, say
time index, can be sufficient to induce identifiability in
non-linear ICA (Khemakhem et al., 2020).

Modern flows were first proposed as an approach to
non-linear square ICA (Dinh et al., 2015), but are
also motivated by desires for more expressive priors
and posteriors (Kingma et al., 2016; Papamakarios
et al., 2019). Early approaches, known as symplec-
tic maps (Deco & Brauer, 1995; Parra et al., 1995,
1996), were also proposed for use with ICA. Flows offer
expressive dimensionality-preserving (and sometimes
volume-preserving) bijective mappings (Dinh et al.,
2017; Kingma & Dhariwal, 2018). Flows have been
used to provide feature extraction for linear discrim-
inative models (Nalisnick et al., 2019). Orthogonal
transforms have been used in normalizing flows before,
to improve the optimisation properties of Sylvester
flows (Van Den Berg et al., 2018; Golinski et al., 2019).
Researchers have also looked at constraining neural net-
work weights to the Stiefel-manifold (Li et al., 2020).

7 Conclusion

We have developed a method for performing non-linear
ICA large high-dimensional image datasets which com-
bines state-of-the-art flow-based models and a novel
theoretically grounded linear ICA method. This model
succeeds where existing probabilistic deep generative
models fail: its constituent flow is able to learn a rep-
resentation, lying in a low dimensional manifold in
Z, under which sources are separable by linear un-
mixing. In source space S, this model learns a low
dimensional, explanatory set of statistically indepen-
dent latent sources.
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