671 research outputs found

    Blind Carrier Phase Recovery for General 2{\pi}/M-rotationally Symmetric Constellations

    Full text link
    This paper introduces a novel blind carrier phase recovery estimator for general 2{\Pi}/M-rotationally symmetric constellations. This estimation method is a generalization of the non-data-aided (NDA) nonlinear Phase Metric Method (PMM) estimator already designed for general quadrature amplitude constellations. This unbiased estimator is seen here as a fourth order PMM then generalized to Mth order (Mth PMM) in such manner that it covers general 2{\Pi}/M-rotationally symmetric constellations such as PAM, QAM, PSK. Simulation results demonstrate the good performance of this Mth PMM estimation algorithm against competitive blind phase estimators already published for various modulation systems of practical interest.Comment: 14 pages, 12 figures, International Journal of Wireless & Mobile Networks (IJWMN

    Blind Phase Recovery in Cross QAM Communication Systems with the Reduced Constellation Eigth-Order Estimator (RCEOE)

    Get PDF
    The eighth-order (EOE) phase estimator [4] is modified to work for an eight-symbol symmetrical constellation, so that the large signal-to-noise (SNR) performance is not limited by self-noise. By using only the eight highest energy points of cross- QAM constellations, a reduced constellation eighth-order estimator (RCEOE) is proposed. Computer simulations for 128-QAM show that this new method performs substantially better than the recently introduced APP phase estimator of Wang et al. [8]. However, simulations with 32-QAM show little performance advantage of the RCEOE over the APP estimator, for SNR values normally of interest, whereas for low SNR, the improvement is significant. Application to any constellation which can be reduced to an 8-symbol quadrant symmetrical sub-constellation is straightforward

    Low Complexity Blind Equalization for OFDM Systems with General Constellations

    Get PDF
    This paper proposes a low-complexity algorithm for blind equalization of data in OFDM-based wireless systems with general constellations. The proposed algorithm is able to recover data even when the channel changes on a symbol-by-symbol basis, making it suitable for fast fading channels. The proposed algorithm does not require any statistical information of the channel and thus does not suffer from latency normally associated with blind methods. We also demonstrate how to reduce the complexity of the algorithm, which becomes especially low at high SNR. Specifically, we show that in the high SNR regime, the number of operations is of the order O(LN), where L is the cyclic prefix length and N is the total number of subcarriers. Simulation results confirm the favorable performance of our algorithm

    A Simple Improvement to the Viterbi and Viterbi Monomial-Based Phase Estimators

    Get PDF
    It is well known that the Viterbi and Viterbi Monomial- Based Phase Estimator, which includes the Mth Power Estimator, performs poorly for cross QAM signals. However, it is shown here that by allowing the power of the monomial to be negative, much improved performance can be realized at medium to high signalto- noise ratios (SNR). Monte Carlo simulations are used to demonstrate the efficacy of this novel simple extension, for 32- and 128-QAM systems. In principle, this extension can also be applied to other constellations, e.g., (4,12)-PSK

    Benchmarking of Carrier Phase Recovery Circuits for M-QAM Coherent Systems

    Get PDF
    We benchmark blind carrier phase recovery DSP circuits in terms of SNR penalty, power dissipation, latency, area usage, and cycle slip probability, to identify optimal implementations for 16, 64, and 256QAM

    A Summative Comparison of Blind Channel Estimation Techniques for Orthogonal Frequency Division Multiplexing Systems

    Get PDF
    The OFDM techniquei.e. Orthogonal frequency division multiplexing has become prominent in wireless communication since its instruction in 1950’s due to its feature of combating the multipath fading and other losses. In an OFDM system, a large number of orthogonal, overlapping, narrow band subchannels or subcarriers, transmitted in parallel, divide the available transmission bandwidth. The separation of the subcarriers is theoretically optimal such that there is a very compact spectral utilization. This paper reviewed the possible approaches for blind channel estimation in the light of the improved performance in terms of speed of convergence and complexity. There were various researches which adopted the ways for channel estimation for Blind, Semi Blind and trained channel estimators and detectors. Various ways of channel estimation such as Subspace, iteration based, LMSE or MSE based (using statistical methods), SDR, Maximum likelihood approach, cyclostationarity, Redundancy and Cyclic prefix based. The paper reviewed all the above approaches in order to summarize the outcomes of approaches aimed at optimum performance for channel estimation in OFDM system

    Performance Prediction of Nonbinary Forward Error Correction in Optical Transmission Experiments

    Get PDF
    In this paper, we compare different metrics to predict the error rate of optical systems based on nonbinary forward error correction (FEC). It is shown that the correct metric to predict the performance of coded modulation based on nonbinary FEC is the mutual information. The accuracy of the prediction is verified in a detailed example with multiple constellation formats, FEC overheads in both simulations and optical transmission experiments over a recirculating loop. It is shown that the employed FEC codes must be universal if performance prediction based on thresholds is used. A tutorial introduction into the computation of the threshold from optical transmission measurements is also given.Comment: submitted to IEEE/OSA Journal of Lightwave Technolog
    • …
    corecore