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Abstract—It is well known that the Viterbi and Viterbi Monomial-
Based Phase Estimator, which includes the Mth Power Estimator, 
performs poorly for cross QAM signals. However, it is shown here 
that by allowing the power of the monomial to be negative, much 
improved performance can be realized at medium to high signal-
to-noise ratios (SNR). Monte Carlo simulations are used to 
demonstrate the efficacy of this novel simple extension, for 32- 
and 128-QAM systems. In principle, this extension can also be 
applied to other constellations, e.g., (4,12)-PSK. 
 
Keywords—Synchronization, blind phase estimation, 

quadrature amplitude modulation, blind carrier phase recovery. 

I. INTRODUCTION 
HE need for blind phase recovery in quadrature amplitude 
modulation (QAM) systems is well established.  In order to 

satisfy this need, many systems have been invented. These 
systems can be grouped into two areas – those that require 
established gain control and those that do not. The Fourth 
Power Phase Estimator [1]-[3], which is a special case of the 
Viterbi and Viterbi (V&V) monomial-based estimators [4], the 
Eighth-Order Estimator (EOE) [5], the Concentration Ellipse 
Orientation (CEO) [6], and more recently the iterative methods 
(DCA-a and DCA-b) of Alvarez-Diaz and Lopez-Valcarce [7] 
are systems in the latter category. Among the former category 
are the Reduced-Constellation Fourth Power Estimator [1], the 
two methods of Georghiades [1] which require finding the 
mode of the probability density of the phase, the rather 
complex Minimum Distance Estimator (MDE) [8], the Two-
Stage Conjugate (2SC) algorithm which according to Rice et 
al. [8] is similar to the Two-Pass algorithm of [9, pg. 33], the 
optimal method, proposed by Wang and Serpedin [10], who 
along with Ciblat [11] have also introduced the APP Estimator, 
which approximately implements the optimal estimator, and 
more recently the Reduced Constellation Eighth-Order 
Estimator (RCEOE) for cross QAM signals [12].   
   The purpose of this paper is to propose another phase 
estimator that does not require established gain control and is 
no more complicated than the V&V monomial-based 
estimator, although with slightly increased computational 
expense due to the required reciprocal operation. In fact, it is 
identical to this estimator, except negative powers of the 
monomial are now allowed. Although this seems to be a trivial 
idea, it is not at all self-evident. Indeed, the authors could find 

no hint in the literature that negative powers would be of any 
interest. In fact, all previous authors have assumed non- 
negative powers. 
  This simple but effective extension is demonstrated for 32-
QAM and 128-QAM.  We show that for these systems 
operating at medium to high signal-to-noise ratios (SNR), the 
negative power monomial-based estimator can provide much 
improved performance over the conventional V&V monomial-
based estimator. However, in principle, this new extension can 
also be used for other constellations, e.g. (4,12)-PSK which is 
useful in the non-linear satellite channel [13]. 
 The organization of this paper is as follows: in Section II, a 
statement of the problem we are trying to solve is presented, 
followed in Section III by a review of the V&V monomial-
based estimators that are known to solve this problem. In 
Section IV, we present our method that improves the 
performance of these estimators, and we demonstrate the 
effectiveness of our improvement in Section V.  In Section VI, 
we consider some implementation issues for these new 
estimators. Finally, in Section VII, we provide some 
concluding remarks.     

II. STATEMENT OF THE PROBLEM 
The received signal is given by  

)()()( nVnXenY j += θ ,    1,,0 −= Nn   (1) 

where { })()()( njXnXnX ir +=  is the sequence of zero-

mean unit variance, i.e., ( ) 1)(
2

=nXE , independently and 
identically distributed (i.i.d.) QAM complex transmitted 
symbols, { })()()( njVnVnV ir +=  is a zero-mean circular 
white  Gaussian noise process, independent of )(nX  and with 

variance 2σ in each component, and θ  is the phase angle to be 
determined by observing the received signal ).(nY  
Furthermore, the received signal-to-noise ratio is 

( ).2/1 2σ=SNR  
 It will also be convenient to rewrite (1) in polar form to get 

)()()( njennY φρ= ,    .1,,0 −= Nn    (2) 
The blind estimation problem is to find an estimate for θ, 

denoted ,θ  without actually detecting the data X. Note that 
because X has quadrant symmetry, it is only possible to recover 
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θ within 2/π rad. Without loss of generality, we assume 
4/4/ πθπ <<− rad.  

III. REVIEW OF THE V&V PHASE ESTIMATOR 
In [4], Viterbi and Viterbi introduced phase estimators 

suitable for M-ary Phase-Shift Keying (M-PSK). Specifically, 
the V&V phase estimate is given by 

( )( ) ,angle1 1

0

)(







= ∑
−

=

N

n

njMenF
M

φρθ          (3) 

where )(⋅F  is a real-valued arbitrary nonlinear function.  
 The monomial V&V estimators result from the special case 

of ( )( ) ( ),nnF kρρ =  .,,2,1,0 Mk =   Note that if ,Mk = (3) 
reduces to the Mth Power Estimator [1], whose phase estimate 
is usually stated as 
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For QAM signals —all of which have quadrant symmetry— 
4=M  and [ ]MXE *  is negative.  Hence, Wang and Serpedin 

[10] and Wang et al. [11] investigated estimators for QAM that 
were given specifically by  

( )( ) .angle
4
1 1

0

)(4
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Wang and Serpedin [10] were able to find the optimum non-
linear function )(⋅F  that minimizes the variance of the 
estimator (5). (Much earlier, Paden [14] had done the same for 
QPSK).  However, this function is a complicated function of 
the constellation and SNR. (Please see [10] and [11] for 
details).  Therefore, these authors also considered the 
monomial estimators, i.e.,  
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However, as shown in Fig. 3 and Fig. 11 of [11], these 
monomial-based estimators perform poorly for cross QAM 
constellations, a fact that is also well-known for the Fourth 
Power Estimator [1]-[3]. 

IV. SUGGESTED IMPROVEMENT TO THE V&V MONOMIAL-
BASED ESTIMATOR 

The reason for the poor performance of the V&V monomial-
based estimator is that the symbols of the constellation with the 
highest energy are not on the diagonal lines ir XX =  or 

ir XX −= . Indeed, elimination of all the received points that 
are not on these lines is the basis for the APP Estimator [11], 
(which approximates the optimal estimator, i.e., (5) with the 
optimum nonlinearity) and the separation of 16-QAM into two 
classes for the 2SC estimator [8]. However, in order to do this, 
established gain control is necessary.  

This gain control requirement can be removed by taking the 
reciprocal of the received symbol. In the absence of noise, this 
action would produce a received constellation whose symbols 
of highest energy will lie on the required lines, as demonstrated 
in Figs. 1(a) and 1(b) —note the four symbols of the inner 

square of the 32-QAM constellation of Fig. 1(a), shown 
emphasized, have been mapped to the points of the outer 
square of Fig. 1(b).  Hence, improved performance can be 
expected at medium to large SNR when this transformed 
constellation is applied to the V&V monomial-based estimator 
of (6). However, the same effect can be achieved with the 
original received constellation in (6) but now allowing k  to be 
negative. As simple as this sounds, no one has apparently 
suggested this before.  The next section presents simulations 
that demonstrate the efficacy of such an approach.  Note that 
for ,4−=k  (4) can be used with 4−=M  instead of (6). 
Indeed, more generally, for ,Mk −=  (4) can be used in place 
of (3).   
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Fig. 1(a). Constellation of 32-QAM. 
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Fig. 1(b). Constellation of the transformed received 32-QAM, in the 

absence of noise. Each point is the reciprocal of the corresponding point in the 
original constellation, above. 

 

V. PERFORMANCE VERIFICATION 
 In order to determine the mean-square-error (MSE) of the 

phase estimate of the V&V monomial estimator with negative 
k values, Monte Carlo (MC) simulations were performed for 
32-QAM and 128-QAM. In each case, unless otherwise noted, 
1,000 MC trials were utilized, and θ  was assumed to be 0.2 
radians, although simulations show the performance does not 
depend upon this value.   



 

The results of these simulations with 1,000 MC trials for 32-
QAM with 500=N  are shown in Fig. 2, and for 128-QAM 
with 7500=N  are shown in Fig. 3. From these figures, it is 
clear that it is possible to optimize the performance over a 
given SNR interval by the appropriate choice of .k  For 
example, for 32-QAM and 2520 ≤≤ SNR dB, 2−=k  
provides the best performance. This is also the case for 128-
QAM and  3127 ≤≤ SNR dB. As will be shown later in this 
section, these SNR ranges correspond to the operating ranges 
for probability of symbol error for practical systems. 

It is also interesting to note that the performance with 
0=k is better than the performance with 4=k for 32-QAM 

for SNR above about 20 dB. This is opposite to the case for 
128-QAM where the performance for k = 4 is always better. 

Also, by observation of Fig. 2 and Fig. 3, it is clear that the 
maximum mean-square error is 0.2 rad2. This is because the 
phase error becomes uniformly distributed between 4/π− and 

,4/π as explained by Tavares et al. [15].  Hence, the variance 
is 2.048/2 =π  rad2.     

Note that in all the figures above, experimental results are 
given for the Fourth Power Estimator ( 4=k ); however, 
theoretical results could have been found with (13) of [2], or 
more explicitly, with (8) of [16]. 

Additionally, in Fig. 2 and Fig. 3, simulation results are 
given for the EOE. This estimator’s performance was chosen 
to represent the performance of the other estimators which do 
not require established gain control, as [6] and [7] show that 
the performance of EOE, CEO, DCA-a and DCA-b are similar 
for 32-QAM with N=500 and 128-QAM with N=7500. From 
Fig. 2, it is clear that our new extension provides improved 
performance over EOE for 32-QAM with 3,2 −−=k  or 

4− and 23≥≈SNR dB. Similarly, Fig. 3 shows that for 128-
QAM, our method provides improved performance over EOE 
with 3−=k  or 4−=k and 32≥≈SNR dB.  For ,2−=k  
however, SNR must be greater than 33 dB.  
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Fig. 2.  Mean Square Error of Phase Estimates for 32-QAM.  N = 500. 
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  Fig. 3. Mean Square Error of Phase Estimates for 128-QAM.  N = 7500. 

 
It is also of particular interest to find the effects of the phase 

estimate on the probability of symbol error, esP . This was 
done and the results for 32-QAM are shown in Fig. 4, where it 
is clearly seen that 2−=k provides the best performance for 
the SNR values normally of interest, thereby confirming the 
results in Fig. 2.   However, for 25≥SNR dB, 4−=k  provides 
the best results. In addition, our new extension gives improved 
performance over EOE for 22≥SNR dB, again confirming the 
results in Fig. 2. 

Note that the probability of symbol error was computed 
using MC simulations to find the expected value of the 
following:  
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and aSNR  is the SNR  in absolute units, i.e. not in dB.  

(This method of simulating esP  is called quasi-analytical 
estimation [17]. Strictly speaking, (7) is a very tight upper 
bound).  

Note also that 10,000 phase estimates were used at each 
SNR  to generate the curves in Fig. 4. As each phase estimate 
requires 500=N symbols, this means that 5×106 symbols 
were utilized to estimate esP at each .SNR  Furthermore, the 
Gaussian noise only curve in Fig. 4 was generated using 

( )20/erfc2 SNRPes ≈ .  
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Fig. 4.  Probability of Symbol Error for 32-QAM.  N=500. 

 
For 128-QAM and ,7500=N esP  is given in Fig. 5, which 

again shows that for the monomial V&V estimators, 2−=k  
provides the best performance for the SNR values normally of 
interest. Clearly, however, for 31≥SNR dB, 4−=k provides 
the best results, even providing improved performance over 
EOE for 32≥SNR dB, Nevertheless, the performance for 

2−=k  is close to optimum for this range, as well  (at least for 
33≤SNR dB). Thankfully, these results are consistent with 

those in Fig. 3. 
  Note that (7) was again used; however, with the 20 replaced 
by 82, and with 1,000 phase estimates for each SNR  to 
generate the curves in Fig. 5. As each phase estimate requires 

7500=N  symbols, this means that 7.5×106 symbols were 
utilized to estimate esP  at each .SNR  Additionally, the curve 
labeled ‘Gaussian Noise Only’ in Fig. 5 was generated using 

( )82/erfc2 SNRPes ≈ . 
By inspection of Fig. 4 and Fig. 5, it is clear that 

substantially more samples were used for 128-QAM than for 
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Fig. 5. Probability of Symbol Error for 128-QAM, N=7500. 

 
 32-QAM; this is required in order to obtain similar probability 
of symbol error. This is also the case for more complex 
estimators which are gain independent, such as EOE. 

It is also of interest to determine how these estimators 
behave with respect to the number of samples, N.  Simulations 
were conducted for 32-QAM for low SNR and high SNR and 
are shown in Fig. 6(a) and Fig. 6(b), respectively. 

As can be seen, in general, the performance is inversely 
proportional to the number of samples. This, however, is not 
the case for 3−=k and :4−=k  for these, the performance is 
independent of the number of samples for low SNR. This effect 
is also seen for 128-QAM in Figs. 7(a) and 7(b).   Note that 
10,000 Monte Carlo trials were used for each point in Fig. 7(a). 

The question —important if coding is used— then presents 
itself: for what range of SNR, is the performance independent  
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Fig. 6(a). Mean Suare Error of Phase Estimates as a function of N  

for 32-QAM . SNR=19 dB. 
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Fig. 6(b). Mean Square Error of Phase Estimates as a function of N for 32-
QAM. SNR=25 dB.  

 



 

of the number of samples?  Fig. 8 shows that for 32-QAM and 
,4−=k  increasing the number of samples does not improve 

the performance if 20≤SNR dB. Similar curves can be 
determined for other powers. 

 

II. SOME IMPLEMENTATION CONSIDERATIONS 
Having established that the monomial-based V&V 

estimators with negative powers are of benefit, especially for 
32-QAM or 128-QAM at high SNR, the question now becomes 
how complex is it to implement them.  The answer to this 
question depends upon what assumptions are made concerning 
the available data. For example, it is straightforward to create 

)(nje φ  in hardware, simply by using a bandpass limiter on the 
modulated signal and then translating to baseband. Indeed, by 
adding a bandpass multiplier (as used in FM transmitters) 
before translating to baseband, it is also easy to create .)(4 nje φ  
Furthermore, by amplitude demodulation of the modulated 
signal, )(nρ  can be made readily available. If we were to 
assume these latter two signals are available, then each phase 
estimate would require about 3N real multiplications and N 
real reciprocal operations for .2−=k   (We are ignoring the 
final angle determination, as this occurs once every N 
samples).   

However, we will assume a worst case scenario, i.e., only 
the real part and the imaginary part of (1) are available, as is 
typical in QAM systems.  

The 2−=k  estimator can be implemented in two ways as 
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the order of each calculated term is smaller than in the former. 
This may be important to reduce overflow problems in fixed-
point implementations.   

For the 4−=k  estimator, we can use 
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The number of calculations needed for each of these is 
shown in Table I, where the computational burden of other 
gain-independent estimators as determined by [7] is also 
shown.  Note that DCA-a and DCA-b are iterative estimators 
which also require some method of phase initialization which 
further adds to their computational burden.  Please see [7] for 
details. 
 As can be seen from Table I, in order for the negative power 
monomial-based V&V estimator to remain competitive in 
terms of computational burden, there has to be a fast method to 
accomplish reciprocation. Fortunately, such methods exist: see, 
for example, [18]-[19].  
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Fig. 7(a). Mean Square Error of Phase Estimates as a function of N for 128-
QAM.  SNR=26 dB. 
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Fig. 7(b). Mean Square Error of Phase Estimates as a function of N for 128-

QAM. SNR=31 dB. 
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Fig. 8. Mean Square Error of Phase Estimates for 32-QAM and k = -4. 

 
 



 

TABLE I.  COMPUTATIONAL BURDEN OF THE VARIOUS GAIN- 
INDEPENDENT PHASE ESTIMATORS 

Estimator No. of Real 
Multiplications 

No. of Real 
Reciprocations 

No. of Real 
Additions 

EOE 11N 0 8N 
DCA-a 2N/iteration 0 3N/iteration 
DCA-b 4N/iteration 0 4N/iteration 

Fourth Power 
( )4=k  

5N 0 4N 

1,2 Zk −=  11N N 5N 

2,2 Zk −=  12N N 6N 

4−=k  9N N 6N 
 

III. CONCLUSION 
It has been demonstrated using Monte Carlo simulations that 

blind recovery of the phase for cross QAM signals can be 
greatly improved at medium and high SNR by allowing 
negative powers in the V&V monomial phase estimator. Even 
though this is a simple idea, it appears to be novel, as previous 
authors have assumed non-negative powers, up until now. It 
has further been established that 2−=k  provides the best (or 
close to) performance for 32-QAM and 128-QAM for the SNR 
values normally of interest.  
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