47 research outputs found

    A Universal Decoder Relative to a Given Family of Metrics

    Full text link
    Consider the following framework of universal decoding suggested in [MerhavUniversal]. Given a family of decoding metrics and random coding distribution (prior), a single, universal, decoder is optimal if for any possible channel the average error probability when using this decoder is better than the error probability attained by the best decoder in the family up to a subexponential multiplicative factor. We describe a general universal decoder in this framework. The penalty for using this universal decoder is computed. The universal metric is constructed as follows. For each metric, a canonical metric is defined and conditions for the given prior to be normal are given. A sub-exponential set of canonical metrics of normal prior can be merged to a single universal optimal metric. We provide an example where this decoder is optimal while the decoder of [MerhavUniversal] is not.Comment: Accepted to ISIT 201

    Joint signal detection and channel estimation in rank-deficient MIMO systems

    Get PDF
    L'évolution de la prospère famille des standards 802.11 a encouragé le développement des technologies appliquées aux réseaux locaux sans fil (WLANs). Pour faire face à la toujours croissante nécessité de rendre possible les communications à très haut débit, les systèmes à antennes multiples (MIMO) sont une solution viable. Ils ont l'avantage d'accroître le débit de transmission sans avoir recours à plus de puissance ou de largeur de bande. Cependant, l'industrie hésite encore à augmenter le nombre d'antennes des portables et des accésoires sans fil. De plus, à l'intérieur des bâtiments, la déficience de rang de la matrice de canal peut se produire dû à la nature de la dispersion des parcours de propagation, ce phénomène est aussi occasionné à l'extérieur par de longues distances de transmission. Ce projet est motivé par les raisons décrites antérieurement, il se veut un étude sur la viabilité des transcepteurs sans fil à large bande capables de régulariser la déficience de rang du canal sans fil. On vise le développement des techniques capables de séparer M signaux co-canal, même avec une seule antenne et à faire une estimation précise du canal. Les solutions décrites dans ce document cherchent à surmonter les difficultés posées par le medium aux transcepteurs sans fil à large bande. Le résultat de cette étude est un algorithme transcepteur approprié aux systèmes MIMO à rang déficient

    To code or not to code

    Get PDF
    It is well known and surprising that the uncoded transmission of an independent and identically distributed Gaussian source across an additive white Gaussian noise channel is optimal: No amount of sophistication in the coding strategy can ever perform better. What makes uncoded transmission optimal? In this thesis, it is shown that the optimality of uncoded transmission can be understood as the perfect match of four involved measures: the probability distribution of the source, its distortion measure, the conditional probability distribution of the channel, and its input cost function. More generally, what makes a source-channel communication system optimal? Inspired by, and in extension of, the results about uncoded transmission, this can again be understood as the perfect match, now of six quantities: the above, plus the encoding and the decoding functions. The matching condition derived in this thesis is explicit and closed-form. This fact is exploited in various ways, for example to analyze the optimality of source-channel coding systems of finite block length, and involving feedback. In the shape of an intermezzo, the potential impact of our findings on the understanding of biological communication is outlined: owing to its simplicity, uncoded transmission must be an interesting strategy, e.g., for neural communication. The matching condition of this thesis shows that, apart from being simple, uncoded transmission may also be information-theoretically optimal. Uncoded transmission is also a useful point of view in network information theory. In this thesis, it is used to determine network source-channel communication results, including a single-source broadcast scenario, to establish capacity results for Gaussian relay networks, and to give a new example of the fact that separate source and channel coding does not lead to optimal performance in general networks

    Signal Processing for Compressed Sensing Multiuser Detection

    Get PDF
    The era of human based communication was longly believed to be the main driver for the development of communication systems. Already nowadays we observe that other types of communication impact the discussions of how future communication system will look like. One emerging technology in this direction is machine to machine (M2M) communication. M2M addresses the communication between autonomous entities without human interaction in mind. A very challenging aspect is the fact that M2M strongly differ from what communication system were designed for. Compared to human based communication, M2M is often characterized by small and sporadic uplink transmissions with limited data-rate constraints. While current communication systems can cope with several 100 transmissions, M2M envisions a massive number of devices that simultaneously communicate to a central base-station. Therefore, future communication systems need to be equipped with novel technologies facilitating the aggregation of massive M2M. The key design challenge lies in the efficient design of medium access technologies that allows for efficient communication with small data packets. Further, novel physical layer aspects have to be considered in order to reliable detect the massive uplink communication. Within this thesis physical layer concepts are introduced for a novel medium access technology tailored to the demands of sporadic M2M. This concept combines advances from the field of sporadic signal processing and communications. The main idea is to exploit the sporadic structure of the M2M traffic to design physical layer algorithms utilizing this side information. This concept considers that the base-station has to jointly detect the activity and the data of the M2M nodes. The whole framework of joint activity and data detection in sporadic M2M is known as Compressed Sensing Multiuser Detection (CS-MUD). This thesis introduces new physical layer concepts for CS-MUD. One important aspect is the question of how the activity detection impacts the data detection. It is shown that activity errors have a fundamentally different impact on the underlying communication system than data errors have. To address this impact, this thesis introduces new algorithms that aim at controlling or even avoiding the activity errors in a system. It is shown that a separate activity and data detection is a possible approach to control activity errors in M2M. This becomes possible by considering the activity detection task in a Bayesian framework based on soft activity information. This concept allows maintaining a constant and predictable activity error rate in a system. Beyond separate activity and data detection, the joint activity and data detection problem is addressed. Here a novel detector based on message passing is introduced. The main driver for this concept is the extrinsic information exchange between different entities being part of a graphical representation of the whole estimation problem. It can be shown that this detector is superior to state-of-the-art concepts for CS-MUD. Besides analyzing the concepts introduced simulatively, this thesis also shows an implementation of CS-MUD on a hardware demonstrator platform using the algorithms developed within this thesis. This implementation validates that the advantages of CS-MUD via over-the-air transmissions and measurements under practical constraints

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments

    Mathematical optimization and game theoretic techniques for multicell beamforming

    Get PDF
    The main challenge in mobile wireless communications is the incompatibility between limited wireless resources and increasing demand on wireless services. The employment of frequency reuse technique has effectively increased the capacity of the network and improved the efficiency of frequency utilization. However, with the emergence of smart phones and even more data hungry applications such as interactive multimedia, higher data rate is demanded by mobile users. On the other hand, the interference induced by spectrum sharing arrangement has severely degraded the quality of service for users and restricted further reduction of cell size and enhancement of frequency reuse factor. Beamforming technique has great potential to improve the network performance. With the employment of multiple antennas, a base station is capable of directionally transmitting signals to desired users through narrow beams rather than omnidirectional waves. This will result users suffer less interference from the signals transmitted to other co-channel users. In addition, with the combination of beamforming technique and appropriate power control schemes, the resources of the wireless networks can be used more efficiently. In this thesis, mathematical optimization and game theoretic techniques have been exploited for beamforming designs within the context of multicell wireless networks. Both the coordinated beamforming and the coalitional game theoretic based beamforming techniques have been proposed. Initially, coordinated multicell beamforming algorithms for mixed design criteria have been developed, in which some users are allowed to achieve target signal-to-interference- plus-noise ratios (SINRs) while the SINRs of rest of the users in all cells will be balanced to a maximum achievable SINR. An SINR balancing based coordinated multicell beamforming algorithm has then been proposed which is capable of balancing users in different cells to different SINR levels. Finally, a coalitional game based multicell beamforming has been considered, in which the proposed coalition formation algorithm can reach to stable coalition structures. The performances of all the proposed algorithms have been demonstrated using MATLAB based simulations

    Spectrum prediction in dynamic spectrum access systems

    Get PDF
    Despite the remarkable foreseen advancements in maximizing network capacities, the in-expansible nature of radio spectrum exposed outdated spectrum management techniques as a core limitation. Fixed spectrum allocation inefficiency has generated a proliferation of dynamic spectrum access solutions to accommodate the growing demand for wireless, and mobile applications. This research primarily focuses on spectrum occupancy prediction which equip dynamic users with the cognitive ability to identify and exploit instantaneous availability of spectrum opportunities. The first part of this research is devoted to identifying candidate occupancy prediction techniques suitable for SOP scenarios are extensively analysed, and a theoretical based model selection framework is consolidated. The performance of single user Bayesian/Markov based techniques both analytically and numerically. Understanding performance bounds of Bayesian/Markov prediction allows the development of efficient occupancy prediction models. The third and fourth parts of this research investigates cooperative decision and data-based occupancy prediction. The expected cooperative prediction accuracy gain is addressed based on the single user prediction model. Specifically, the third contributions provide analytical approximations of single user, as well as cooperative hard fusion based spectrum prediction. Finally, the forth contribution shows soft fusion is superior and more robust compared to hard fusion cooperative prediction in terms of prediction accuracy. Throughout this research, case study analysis is provided to evaluate the performance of the proposed approaches. Analytical approaches and Monte-Carlo simulation are compared for the performance metric of interest. Remarkably, the case study analysis confirmed that the statistical approximation can predict the performance of local and hard fusion cooperative prediction accurately, capturing all the essential aspects of signal detection performance, temporal dependency of spectrum occupancy as well as the finite nature of the network
    corecore