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Abstract

Despite the remarkable foreseen advancements in maximizing network capacities, the
in-expansible nature of radio spectrum exposed outdated spectrum management tech-
niques as a core limitation. Fixed spectrum allocation inefficiency has generated a
proliferation of dynamic spectrum access solutions to accommodate the growing de-
mand for wireless, and mobile applications.

This research primarily focuses on spectrum occupancy prediction which equip dy-
namic users with the cognitive ability to identify and exploit instantaneous availabil-
ity of spectrum opportunities. The first part of this research is devoted to identifying
candidate occupancy prediction techniques suitable for SOP scenarios are extensively
analysed, and a theoretical based model selection framework is consolidated. The
performance of single user Bayesian/Markov based techniques both analytically and
numerically. Understanding performance bounds of Bayesian/Markov prediction al-
lows the development of efficient occupancy prediction models. The third and fourth
parts of this research investigates cooperative decision and data-based occupancy pre-
diction. The expected cooperative prediction accuracy gain is addressed based on
the single user prediction model. Specifically, the third contributions provide analyt-
ical approximations of single user, as well as cooperative hard fusion based spectrum
prediction. Finally, the forth contribution shows soft fusion is superior and more ro-
bust compared to hard fusion cooperative prediction in terms of prediction accuracy.
Throughout this research, case study analysis is provided to evaluate the performance
of the proposed approaches. Analytical approaches and Monte-Carlo simulation are
compared for the performance metric of interest. Remarkably, the case study analysis
confirmed that the statistical approximation can predict the performance of local and
hard fusion cooperative prediction accurately, capturing all the essential aspects of
signal detection performance, temporal dependency of spectrum occupancy as well as

the finite nature of the network.
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Chapter 1

Introduction

1.1 Background

The ubiquity of mobile phones and Wi-Fi access points overemphasises the impending
age of Internet of things (IoT), which intuitively projects an exponential increase
in demand for wireless data traffic. The seemingly augmenting mobile services sub-
scription rate as well as the proliferation of mobile media consumption overshadows
the efforts by the wireless communication industry to fulfil the requirements for
next generation communication systems. The anticipated (1000x) demand factor
in data traffic, which was set as a target requirement for (5G) networks, manifests
the axiom of exponential increase in wireless data traffic. Advanced receiver design,
multi-antenna techniques accompanied by cooperative and heterogeneous networks
deployments, actualized the current innovative state of wireless communication
development to address the increasing demand. However, despite the remarkable
foreseen advancements in maximizing network capacities, the in-expansible nature
of radio spectrum exposed outdated spectrum management techniques as a core
limitation. Spectrum scarcity is the paradigm that describes the artificial problem
in spectrum sharing regulation policies created by inefficient allocation of frequency
bands [1, 6, 7].

Fixed spectrum allocation inefficiency has generated a proliferation of dynamic
spectrum access solutions to accommodate the growing demand for wireless, and mo-
bile applications. Software-defined radios (or cognitive radio) networks which offer a
dynamic spectrum access management policy of fixed allocated licensed bands, could

potentially solve the artificial spectrum scarcity problem. Dynamic Spectrum Access
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Fig. 1.1 An example of spectrum sensing and access in a typical DSA time-slotted
system.

(DSA) systems typically consist of licensed Primary users (PU’s), and opportunistic
Secondary users (SU’s). Primary users are the incumbent owners of the spectrum,
while the secondary users opportunistically access the spectrum, and are required to
inflict limited interference on the primary users (Fig.1.1). To fulfil such requirements,
secondary users must be equipped with a cognitive ability, and reconfigurability, to
identify and exploit instantaneous availability of spectrum opportunities (holes) [6, 8].
Spectrum management framework classifies such cognitive ability into few generic func-
tions, referred to as cognitive radio cycle functions. These functions are represented
by the secondary user’s ability to preform spectrum Sensing, Decision, Sharing, and
Mobility [8, 9]. Spectrum occupancy prediction (SOP) models were proposed in DSA
literature to optimize cognitive cycle functional processing time [10]. SOP models
add agility, and adaptability to cognitive radio functions to optimize processes such
as periodic spectrum sensing scheduling, and channel selection in spectrum decision
[8]. Similarly, SOP models allow the implementation of a proactive spectrum mobility
strategy based on predicted occupancy patterns which avoids collisions with incumbent

primary users [10, 11]. The resource efficiency that spectrum prediction potentially
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adds to dynamic spectrum access, emphasizes the importance of this cognitive radio

enabling process.

1.2 Motivation

Despite the crucial role of spectrum prediction in enabling cognitive radio to efficiently
utilize spectrum opportunities, spectrum prediction literature is scarce. Current
literature on spectrum prediction in DSA systems lacks a consolidated framework for
model selection, as well as prediction performance analysis. Additionally, candidate
prediction techniques suitable for SOP scenarios are not extensively classified nor
immediately identified. Current framework of prediction model selection is application
dependent where SOP proposals restrict the model validity to a specific technology
scenario.  While several proposals simulated Bayesian/Markov based prediction
models for different wireless technologies, the abstract ability of these models to
provide accurate occupancy modelling and prediction is still not intuitively clear [10].
In other words, the functional relationship between prediction performance measures

and model parameters are not explicitly studied, formulated nor approximated.

In this thesis, performance analysis of spectrum prediction is the primary focus.
In particular, this research is devoted to explore the performance of Bayesian/Markov
based techniques (namely, Hidden Markov Model HMM) both analytically and nu-
merically. Understanding performance bounds of HMM based prediction allows the
development of efficient SOP models. An extensive review of sequential prediction in
cognitive radio is pursued to identify the statistical framework of prediction model se-
lection. Then, numerical recursive techniques and statistical approximations of single,
and multi-user spectrum prediction performance analysis are proposed. Section-1.3
provides an overview of spectrum occupancy, while Subsection-1.4 provides an intro-

duction into the proposed HMM model.

1.3 Spectrum Occupancy Prediction Overview

The motivation for SOP models is to minimize the accumulated time delay due to cog-
nitive cycle serial functional processing. By predicting the channel status in advance,
more processing time becomes available for spectrum sensing, decisions, and mobility

(Fig.1.2) [10]. Performance gains of SOP can is manifested in the context of:
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« Wireless Regional Access Networks WRAN (802.22); TV UHF/VHF bands
attracted attention as an ideal candidate to provide high speed data com-
munication, due to its appealing radio characteristics (low noise, reasonable
antenna size and line of sight). As analogue TV bands are being unused with
the dominance of digital TV; these UHF/VHF bands represent an opportunity
to provide valuable growth capital for service providers [12]. 802.22 WRAN
provides two methods of obtaining spectrum occupancy, 1) through geo-location
and database, and 2) through spectrum sensing. Spectrum occupancy predic-
tion is a potentially valuable asset in optimizing 802.22 sensing and dynamic
spectrum access abilities.  Through additional layer of machine learning,
cognitive radio networks are able to opportunistically utilize the spatial/ tem-

poral spectrum opportunities to provide data access in WRAN white TV spaces.

« Consumer Cognitive Radar (DSA cognitive radar) [7, 13—-15]: Cognitive radar
is a concept developed by S. Haykin as the future of fully adaptive and efficient
radar that adjusts its parameters for faster and more accurate surveillance [14].
Though dynamic spectrum access was not initially proposed since the intended
application was predominantly military focused; consumer radar adopting both
DSA and cognitive radar concepts is a new realization of the cognitive radar[15].
Consumer radar with DSA capabilities can be realized in vehicular and/or aerial
scenarios. Such radar would make an efficient use of limited shared spectrum
bands, while providing intelligent collision avoidance and environment awareness.
One feasible scenario involves collision avoidance for vehicle highway scenario [1].
The motivation in this thesis to address this particular application stems from
the ARC project for automotive radar interference mitigation/avoidance [5] (76-
77 GHZ band set by the Australian Communication Authority for automotive
radars [16]).

1.3.1 Spectrum Occupancy Classification

Unless specified otherwise , in the cognitive DSA system design such as 802.22 [12],
spectrum occupancy state is the result of the stochastic sampling process of radio
environment. However, typical stochastic sampling intuitively carries stochastic
randomness gained from combination of sampling process accuracy and/or underly-

ing stochastic activity patterns [17]. Spectrum occupancy prediction models target
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Spectrum Sniffing Spectrum Access

Channel
Access
Policy

Fig. 1.2 Spectrum prediction in dynamic spectrum access framework
the usage of spectrum bands utilized by both incumbent users, and opportunistic users.

SOP models broadly target parameters such as channel availability i.e. pre-
diction of channel status as idle or busy, as well as duty cycle i.e. prediction of
the average fraction of time the primary user is occupying the channel [1, 18]. In
the DSA literature, spectrum occupancy prediction techniques address prediction ei-
ther explicitly [19-21], or implicitly. Tmplicit approaches present SOP models as pri-
mary /secondary user’s occupancy/activity models. Statistical SOP models proposed
for spectrum occupancy analysis include Poisson processes [22, 23], Bayesian predic-
tion [24, 25], and linear regression [26, 27]. Machine learning based techniques have
also been proposed for model learning including neural networks, time regression, and
space vector machines [10, 28, 29]. The framework of current research into spectrum

occupancy can be divided into the following generic categories:

o Measurement campaign modelling: An empirical research conducted in specific
scenarios (indoor, outdoor) to collect real life data using an antenna that covers
specific frequency band. Statistical analysis, averaging and maximization are
conducted to generate an approximate statically density functions and/ or simple

statistical description of power, channel occupancy, etc. Though such modelling
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is able to capture the real life data, it is however, riddled with inaccuracy, spatial

and temporal dependency[18].

« Statistical primary user modelling and prediction: Statistical modelling aims
to find the best suitable stochastic procedure that describes a specific primary
user(s) mode of operation and its channel utilization. Given such statistical esti-
mation, prediction of possible presence of absence in future instances is possible
[10, 11].

Chapter-2 elaborates on spectrum prediction classification and presents our pub-
lished framework and review on spectrum prediction in dynamic spectrum access sys-
tems. The basis of the proposed framework is the sequential statistical prediction

introduced in next the section as well as Chapter-2.

1.3.2 Statistical Prediction

Statistical prediction in it’s simplest form is: "Given an observation sequence x1.;_1 up
to time instant ¢ — 1, and before the symbol at time ¢ is revealed the predictor guesses

n

the next value x; based on the previous ¢ — 1 observations ". The observations are
assumed to follow a stationary stochastic process, and thus statistical properties can be
derived from the past observations and an effective rule can be postulated from these
statistics. The predictor measures the loss function between the actual value and the
predicted value. The loss function measures the quality of the prediction and provides
the input to compare prediction rules [17, 30]. Based on the main components of the
statistical prediction problem presented in Chapter-2, HMM (in the next subsection)

is introduced in Section-1.4, and more details are presented in Chapter-3.

1.3.3 Bayesian Based Spectrum Prediction

Bayesian-based prediction techniques provide powerful, and flexible tools to learn and
adapt to the radio environment. Secondary users within the cognitive radio network,
collect sensing information, and utilize statistical correlation, to infer possible future
states of the primary user usage patterns. Bayesian Mixture models scenario are
extensively studied in information and coding theory [31-33]. Bayesian algorithms
are minimax optimal, and are universal under self information loss functions [34-
36]. The algorithms perform well under both probabilistic and deterministic non-
stochastic settings [31, 34, 35, 37, 38]. Additionally, Markov-based construction is
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attractive due to the desirable convergence properties of Markov chain based models
[39-42]. Markov chain, and partially observable Markov models are commonly used for
spectrum occupancy modelling. Chapter-3 considers single user prediction scenarios

are based on HMM system model.

1.3.4 Cooperative spectral prediction

Spectrum prediction in single secondary user environment is commonly known
as local spectrum prediction.  Consequently, cooperative spectrum prediction in
multi-user environment was proposed to improve the collective accuracy of spectrum
occupancy prediction [43, 44]. Cooperative fusion of secondary user’s decisions has
been studied extensively in DSA based solutions to address diverse optimization
problems. A multitude of decision fusion techniques were used such as hard and
soft for temporal and, spatial fusion for local node decisions [45]. Combined decision

fusion and Bayesian estimation has been also suggested for decentralized tracking [46].

In spectrum occupancy prediction literature, cooperative spectrum prediction fu-
sion was only studied in handful of papers such as [20] where a coalition based game
theory approach was implanted for a multi-primary /secondary users environment. The
study showed general improvements when using cooperative prediction, but the results
lacked fine details of improvement in terms of dependency on traffic load, and/or de-
tection accuracy. Chapter-4 and Chapter-5 focus on hard and soft fusion of spectrum

prediction decisions, respectively.

1.4 Mathematical Preliminaries for Spectrum Oc-

cupancy Prediction

The flow chart in Fig-1.3 highlights the sequence of spectrum occupancy prediction
process. Spectrum sensing provides occupancy observations for local spectrum pre-
diction. Given the selected prediction model (Chapter-2), the model parameters are
estimated based on a training sequence. Then, Bayesian methods are used to esti-
mate the probability that the next spectrum opportunity is available. Finally, using
a predefined threshold the prediction decision is made and passed to spectrum de-
cision function. This section provides background information on spectrum sensing,

hidden Markov models, and maximum likelihood estimation Baum Welch algorithm
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[47]. Background and related contents contained in this section are used for system
models in Chapter-2, and statistical analysis of spectrum prediction in Chapter-3 and
Chapter-5.

Spectrum Sensing

STEPL

‘ Spectrum Occupancy Prediction

STEP2

L P‘a_ra mgters and Prior Model Selection
Estimation
Bayesian Calculation I I

Fig. 1.3 Spectrum occupancy prediction Howchart

. o Dynamic Spectrum Access
Occupancy decision

1.4.1 Some Theoretical Preliminaries

The theories and mathematical background in this subsection are the basis of statis-

tical analysis for SOP models in Chapter-3 and Chapter-5, as well as Section-1.4.3.

To estimate the probability of error in estimation of a random variable, Fano
inequality serves as bound for error probability, and definitions of Markov chain sta-
tionary distribution, Cesaro mean, and Entropy rate are needed to derive such ap-

proximation.

Theorem 1.4.1 (Cesaro Mean). Cesaro mean for convergent sequences states

n
% 21 a;, then
1=

regarding the arithmetic mean states [48]: let a, — A, let b,
lim b, = A.

n—o0

Theorem 1.4.2 (Entropy Rate). Entropy rate of a stochastic process X,, is defined
by H(X) = lim —H(X™) [38]. For a stationary process the limit exists and equals
n—00 7
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the other notion of entropy rate defined as H (X) = lim H(X,|X»1).

n—0o0

Theorem 1.4.3 (Fano Inequality). let X be a random variable with finite outcomes
in X, let X = g9(Y) be an estimated value of X for some deterministic function of g

that takes values in X, then the loose probability of error bound is stated as [38]

>

H(X[Y) - 1

e — eX X
pe = pe(X # X)) log | X

v

or more strongly as

H(Ber(pe)) + pelog(|X —1]) = H(X]Y)

Where H(X[|Y) = Ep(;.,) log, m, and Ber(p.) is error Bernoulli random variable.

Distance measure Following [31], instantaneous Distance, and total distance be-

tween probability distributions P, (Q),, are defined as:

P<xt|x0-t71> =
d 4o1) = P 1) In ————— D, =) [E|d].
t(xt‘xo.t 1) a; (37t|5170.t 1) an(ﬂﬁt‘iUo;tfl)’ ; [ t]
Where d; is the instantaneous KL divergence. While D, is the total distance

counterpart. D,, is chosen as the distance measure in Section-1.4.

Beta-Bernoulli Distribution Bernoulli random variable X takes only the values
0 or 1 representing failure and success, respectively. The probability mass function

parametrised by p the probability of success is:

flkip) =p"(1=p)" P ke{o,1}

If p is assumed to be drawn from a random distribution, then the conjugate prior

distribution is then a Beta distribution given by:

p(pla, B) ~ Beta(a, ) a, >0

a—1 -1
p(p|a,5,a,b) = (p)]g(cilg))

B(a, ) = /01 t (1 — )P tat
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where B(a, () is the standard beta function. The posterior predictive distribution

is the compound distribution given by :

Bk+a,1—k+p)
B(a, 5)

The Beta-Bernoulli distribution is a special case of the Beta-Binomial distribution

f(kla, B) =

[49, 50] for the number of successes k in n trials :

I'(n+1) B(k+a,n—k+f)

e us  prpy B(a, 3)

Beta-Bernouli and Beta-binomial are used in Chapter-3/Chapter-4 for the pro-
posed approximation of local, and cooperative prediction error distribution, respec-

tively.

1.4.2 Spectrum Sensing in Dynamic Spectrum Access

Spectrum sensing provides a method of using the spectrum more efficiently. Spectrum
sensing enables cognitive radio devices to access, and monitor free sections of radio
spectrum. Cognitive radio must relay on spectrum sensing to keep monitoring the
spectrum to avoid undue interference. Sensing functions must then be able to detect

other transmissions, and identify the sources.

Cognitive Radio Spectrum Sensing Basics

Spectrum sensing provides the instantaneous occupancy status of every spectrum
opportunity. Consequently, spectrum sensing algorithms must accommodate several
considerations to effectively coexist in a multi-user environment. Sensing must be
continuous to avoid causing interference to primary users, but also to identify alter-
native spectrum availabilities. Sensing cognitive ability to recognize the transmission
source and type in order to identify spurious interference sources is crucial element of

the functionality.

Spectrum sensing can be also performed in a cooperative manner where several
radio units to improve sensing robustness to hidden sources. However, parameters
such as sensing bandwidth and transmission type identification are the some of the

key challenges to sensing algorithm design. Additionally, accuracy and window timing
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control the efficiency of spectrum sensing utilization of available spectrum opportuni-
ties. Signal detection techniques used in spectrum sensing includes energy detectors,
cyclostationary, matched filter and Bayesian detectors. Basic energy detector is de-
scribed in subsection-1.4.2 along with correct/incorrect detection probabilities. Each
secondary user prediction performance relies on spectrum sensing accuracy. The re-
sults in Chapter-3 and Chapter-5 are presented against sensing detection probabilities,
as well as HMM model parameters (subsection-1.4.3) [45].

Spectrum Detection Accuracy

The received signal z,, is detected by a complex baseband equivalent of an energy
detector. The two hypothesis of present, and absent signals for an observation period
of T" or the equivalent of N samples for each time slot ¢. Test statistics ®,,; for time
slot ¢ for a large number of samples N is assumed to be Gaussian distributed (Central

limit Theorem) [51]. The test statistic of the analogue energy detector can be given

as:
oo ~ N QU Ell2 7] - VIz, ) (1.1)
i=1 i=1
E[|z,[*] = o3, + 0]s]*
Vllz D) = (00,)" + 0oy |5 (1.2)

where s; is the transmitted signal, channel noise is assumed as a zero mean Gaus-
2

Wy

sian noise w, with variance o- , and 6 = [0, 1] the null and alternative hypothesis,

respectively.
1 YN |si?
pr = Nzl—12|t| (1.3)
oz

Hypothesis testing on the detection statistics yields the the series y,, i.e., the oc-
cupancy perceived by each SU. The uncertainty around spectrum sensing performance
is quantified by the probability of correct detection Py(r), and the probability of false
alarm, and Py(r) can be defined using central limit theorem approximation for large

number of samples N [45]:
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Py(r) = Q= 22) (1.4
A— \/NUfu(l + pr)

Pd(r) ~ Q( \/NU?H(l + Pr)

)

The probability of detection P; = 1— P, is the probability of successfully observing
the channel correctly as busy where P,, is the miss-detection probability, and the
probability of false alarm Py is the probability of observing occupied channel while
the primary user is idle. For constant false alarm based approaches (CFAR), the

threshold A in is calculated, for a large number of samples N using inverse Q-function

1.4.3 Hidden Markov Model

This section describes the estimation and training of hidden models analysed in
Chapter-3. HMM is the proposed system model for single /multi user spectrum predic-
tion occupancy as seen by the secondary user, which is used in in Chapter-3, Chapter-4,
and Chapter-5. Markov-based construction is attractive due to the desirable conver-
gence properties of Markov chain based models [39-42]. Markov property describes
the case when the probability of current event z; only depends on the probability of
previous event x;_ i.e., p(x:|x'™') = p(x4|zs_1) [48]. The Discrete-Time HMM can be

fully defined as follows:

A2 (P,E,v) (1.5)
v ép(xo =1), :1e€{l,.K}

P2 p(z; = jlos =4) :je{l,.K}

E, = p(yre = klo: =j) ke {1,..L}.

Where P is the hidden state transition matrix, L is the total number of hidden states,
E, is the observation emission matrix, K is the total number of possible observation

states, and v is the initial state vector.

Event Space and transition matrix

The two state of a primary user activity in a frequency channel are Idle and Busy.
Define {z; : t > 1},2 € {0,1} as the channel state at time slot ¢ as irreducible
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stationary Markov chain. The transition probability matrix between states ¢, j € [0, 1]

ie. p(xy = jlxo, .., xs—1 = 1) = p(x¢|x,—1 = i is given by [48]:

P11 P12
P = [p;] = { ] (1.6)
P21 P22

Where P is a transition probability matrix for all time instants 1..t.

Observation Space, and the emission matrix

In a two state hidden Markov model, observations are independent and identically
distributed random variables. The two hypothesis of a secondary user’s perceived
occupancy are present, and absent. The relation between the observation sequence
y1.¢, and the hidden event space is the emission matrix that represents the probability
of an observation is an outcome of a specific hidden state. The emission matrix is

designed as follows :

E = [ey] = [ ] (1.7)
€21 €22

Secondary user’s model is a hidden Markov model characterized by the transition

P, and emission E, matrices, as well as the initial state distribution p(zg). The

observation sequence ¥, is characterised by the emission matrix E, of each SU which

maps Markov chain based PU channel activity zi; to the perceived SU spectrum

occupancy Yi.:

L= Py(r) Py(r)
1-— Pd(T) Pd(T)

r =

re{1,2,., R} (1.8)

HMM Estimation and Forward-Backward algorithm

For a finite state space HMM, local prediction utilizes forward backward algorithm to
estimate the joint posterior probability of primary user activity and secondary user’s
observation sequences p(Zo., y14-1) [52]. Define &, x € [0,1] as the predicted state
value by SU:

Plios, Y1) = plzo) [r_[l p(zvnlxn_n] I pl) (1.9

The prediction problem can be formulated using the Bayesian notion p(&|y1.4—1)
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as the probability of the next state given a vector of past observations. Using the

Bayesian definition of joint posterior probability relation:

p(Z¢|y14-1) Z p(xe|xe1)p(ag|yre—1) 1€ {1,2}. (1.10)
xt =3
The last term in the equation above, represents the predictive posterior probability
at time instant ¢ given the observation sequence. This posterior probability can be
calculated using the Forward-Backward algorithm. The forward probability oy (i) =

p(y1.4—1, T, = 1) is calculated recursively for a observation vector yi.:

ar-1(8) = p(yr—1, 2421 = 1), 1<t<T -1 (1.11)
a1(i) = p(zo = )p(ye|xy = 1) 1,7 € 41,2}
. (j) = p(yelwe = j) Z:Oét—l(i)p(fft = jlai— = 1) (1.12)
p(Y1e) = ZQT(i) (1.13)

While the backward probability 5;(7) = p(vs41., ©: = 1) the probability of observing
all future events from this state. Since the initial state is assumed as given (i.e. the
prior probability of this state = 1). The backward probability is calculated recursively

for a observation vector y;11.1:

ﬁt(l) :p(yr,t+1:T7xt :’L), t=1T — 1,T—2,,1 (114)
Br(i) =1
2
) =2 Bera()p(xe = jloes = )p(Yesa|ze = ) (1.15)
i=1

The Forward-Backward algorithm computes the expectation of how often each

transition/emission is used, and repeats until convergence.

Staring with initial estimates of the transition and emission matrices, Baum-
Welch training iteratively recalculates each matrix probabilities from the training
sequence using (Equations-1.14 and Equation-1.11), then uses the outcome to estimate
the state transition matrices. Baum-Welch algorithm is special case of the Expectation

Maximization (EM) algorithm. HMM posterior probability is non-stationary random
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variable, and is a function of the observation series. Thus, analytical expression of the
stationary conditional predictive posteriori (and hence error probability in Subsection-
1.4.4) is counter-intuitive, and hard to obtain in a closed form for arbitrary HMM

models [35, 53]. In Summary, HMM prediction follows the general steps (Fig.1.4):

« HMM Training: the observation sequence is used to train the HMM, and re-
estimate the model parameters. The transition, and the emission probabilities

are calculated using Baum-Welch algorithm.

HMM decoding: to estimate the hidden state corresponding to the observed

sequence. Forward algorithm is used to calculate the corresponding posterior

probability of the hidden state given the observed sequence.

HMM prediction decision is hypothesis testing of the SU predicted value Z;

Instantaneous error function calculation of the SU predicted occupancy value z;

against the actual system state x; (Subsection-1.4.4).

Channel Occupancy
HMM Training A < Sequence
v
Posterior Probability | | Next Slot Prediction
Estimation )
RSN Binary Hypothesis \‘
Probability > ‘T,es\tlir:l - ——— | Access decision ‘

Fig. 1.4 HMM Prediction Flow chart

1.4.4 Mean Prediction Error

Under the two state ON/OFF model, prediction error is a Bernoulli random variable
(Ey, where Ey = &, @ xy, Ey € {0,1}). m the error in prediction at time instant ¢, and

the mean prediction error pi, are defined as in 1.16.
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e = P(Et = 1)
_ . 1S
Te = tllglo E(m) = lim - ;(7@) (1.16)

The existence and equality in (1.16) requires the convergence of the quantity
p(Z¢|y1.4—1) according to Cesdro Mean (Theorem-1.4.1). Additionally, define the local

(prediction) miss-detection 74, and false alarm probability 7, as:

Ty =T p(xy =0)
Ta = (1 —7)p(z; = 1)

to indicate mean prediction error for busy and idle channels, respectively. Ad-

ditionally, the conditional entropy rate of prediction probability (Theorem-1.4.2) is

given by:
(A ’ - ) li T _ 1 L (1 11)
H €T . = lim E Be,Y1:t o) ~ :
t1Y1:t—1 i p( »Y1: 1) g2 (xt’ylzt 1)
”(‘%t|y1:t—1) - tliIIl Eﬂ(jt|y1:t—1) (118)

Using Fano Inequality (Theorem-1.4.3), the mean prediction error pi, can be loosely
bounded [38]:

_ H(Ze|yre-1) — 1
Te =
log(|R])

Where p(Z¢|y1.t-1), or using the tighter Fano bound (Theorem-1.4.3):

(1.19)

H(ﬁe> Z H(it‘yl:tfl)

The entropy rate for finite Markov processes is studied by Blackwell in [40] using
a probability distribution on a Borel set of measures expressed using a integral that
is hard to evaluate. A closed form expression for (1.16) requires the calculation of
the limiting distribution of p(Z|y;4—1). Such expression requires the calculation of
convergence of non-stationary Markov chain. Thus, mean prediction error required

the complete characterisation of the predictive posterior probability (p(Z:|y14—-1))-
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1.5 Research Questions and Contribution

Based on the literature review conducted in this work as presented in Chapter-2, three
research questions were formulated. In general the literature review presented can be

summarized into the following:
« Existing methods for statistical prediction.
« Existing work on spectral occupancy modelling.
» Existing limited work on spectrum occupancy prediction.

Based on the literature review the gaps in the research conduced so far and the scope
for improving the techniques were identify, which are formulated as research questions

as given below:

Research Question 1: How accurate is Bayesian spectrum pre-
diction with information uncertainty and error? What are the

mean prediction error characteristics?

Under this research question, spectrum prediction under the family of Bayesian models
is investigated. The performance of a secondary user prediction is studied against the
error introduced by wireless channel, and sensing/sampling process. These errors
can be quantified as detection error, and false alarm probability. The relation is
studied for different scenarios of primary user activity patterns as well as channel
conditions. Monte-Carlo simulations are utilized to investigate mean prediction error
for HMM based spectrum prediction models. Then, a practical approximation of mean
prediction error is constructed as a function of HMM model parameters. The expected

deliverables outcome of this research question will include:

« A practical and tractable model selection framework based on sequential predic-

tion theory.
o Numerical performance analysis of single user HMM based spectrum prediction.

e Numerical approximation of HMM prediction error as a function of model pa-

rameters.
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Research Question 2: How can multi-user cooperation improve
the spectral prediction performance? How well Hard fusion

based prediction fares compared to local spectrum prediction?

Under this research question, spectrum prediction with cooperative hard decision fu-
sion rules is investigated. The impact of multi-user cooperation is studied against the
error introduced by wireless channel. The relation is studied for different scenarios of
primary user activity patterns as well as channel conditions. Monte-Carlo simulations
are utilized to investigate mean prediction error for hard fusion based spectrum pre-
diction models. Then, construct a practical approximation of mean prediction error is
constructed as a function of HMM model parameters. The expected deliverables will

out of this research question will include:

o Numerical performance analysis of cooperative Hard fusion based spectrum pre-

diction.

o Numerical approximation of cooperative hard fusion based prediction as a func-

tion of model parameters.

Research Question 3: How can multi-user soft combining im-
prove the spectral prediction performance? How well soft fu-
sion based prediction fares compared to local spectrum pre-
diction?

Under this research question, spectrum prediction for cooperative soft fusion of spec-
trum decisions is investigated. The relation is studied for different scenarios of primary
user activity patterns as well as channel conditions. Monte-Carlo simulations are uti-
lized to investigate mean prediction error for soft fusion based spectrum prediction
models. Then, alternative fusion rules based on HMM model parameters are pro-

posed. The expected deliverables will out of this research question will include:

o Numerical performance analysis of cooperative Hard fusion based spectrum pre-

diction.

» Propose alternative soft fusion based techniques based on HMM model param-

eters.
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1.5.1 Contribution Summary

In this thesis, case study analysis is provided to evaluate the performance of the
proposed approaches in different applications in wireless communication and cognitive
radio. All the work in this research has been peer-reviewed and published, or
submitted for publication. In summary, the findings of this thesis focuses on two
major streams; firstly, single user (local) occupancy prediction model selection and
performance is addressed. Secondly, cooperative spectrum prediction where the
performance of decision (hard) based as well as data (soft) fusion is addressed. The
main contributions of our work are presented in Chapter-2 - Chapter-5. Remarkably,
the case study analysis confirmed that the statistical approximation is able to predict
the performance of local and hard fusion cooperative prediction accurately, capturing
all the essential aspects of signal detection performance, temporal dependency of

primary user activity as well as the finite nature of the network.

In the first contribution, a consolidated framework based on sequential prediction
theory, as well as a survey on current SOP models proposed in literature is presented.
Based on an in-depth review of sequential prediction as well as spectrum occupancy,
it is identified that prediction model selection is not instantly clear in SOP literature.
The review places techniques adopted in literature into categories based on their the-
oretical predictor classes. This classification approach highlights candidate prediction
techniques suitable for SOP scenarios not extensively covered in current literature.
Firstly, the fundamentals of statistical prediction are reviewed. Then, based on the
stochastic mixture model framework, parametric and non-parametric approaches for
underlying stochastic source assignment are reviewed. Secondly, spectrum occupancy
prediction is described in terms of the stochastic class assignment. Mixture model
formulation is extended to cooperative spectrum occupancy prediction using deci-
sion (Hard), and data (Soft) fusion techniques. Finally, theoretical and practical

challenges of sequential spectrum occupancy prediction implementation are presented.

In the second contribution, performance analysis of HMM based occupancy pre-
diction is addressed using Monte-Carlo simulation techniques. Firstly, the prediction
error of one step-ahead (single time slot) prediction against the channel detection
errors, as well as primary user’s state transition probability is addressed to assess the
model accuracy. Prediction error is also investigated against the observation sequence

length to examine the correlation between prediction accuracy, and the number of



1. Introduction 22

samples required to calculate the next state probability. The prediction formulation is
further examined for two step-ahead prediction assuming an incorrect one step-ahead
prediction was made. Consequently, a new recursive equation to estimate HMM
prediction performance as a function of channel detection errors is proposed based on
HMM posterior probability. Finally, a new generalized Beta-Bernoulli approximation
of the predictive posterior probability for local HMM based SOP is presented which

provides a tractable expression of HMM based prediction performance.

The third contribution of our work put forth performance analysis of cooperative
hard fusion based spectrum prediction. Specifically, hard fusion techniques are anal-
ysed for cooperative prediction based on channel detection errors to assess prediction
gains of hard fusion. The performance analysis of local spectrum prediction using
Monte-Carlo simulation techniques is further extended to hard fusion cooperative
prediction. In particular, an analysis of secondary user’s mean prediction error is
presented in terms of primary user’s activity pattern, and spectrum sensing errors.
We utilize Bayesian filtering, and known information theory inequalities, to express
cooperative prediction error bounds. Finally, a new generalized Beta-Binomial ap-
proximation of the predictive posterior probability for cooperative hard fusion based

SOP is presented which provides a tractable expression of prediction performance.

The fourth contribution address soft decision based fusion for cooperative SOP.
Monte-Carlo simulation performance analysis of local SOP is extended to soft fusion
cooperative prediction . Soft fusion techniques are compared to local spectrum pre-
diction, as well as benchmarked against hard fusion techniques. In particular, soft
fusion superiority in terms of robustness as well as prediction accuracy is identified.
Accordingly, alternative soft fusion techniques are proposed based on local prediction
model parameters. The alternative techniques conceptually attempt to avoid common
control channel requirements, while providing identical performance to known soft fu-
sion techniques.

Throughout this research, a case study analysis is presented to evaluate the perfor-
mance of the proposed approaches. In particular, analytical approaches and Monte-
Carlo simulation results of the performance metric of interest are compared. Remark-
ably, the case study analysis confirmed that the statistical approximation is able to
predict the performance of local and hard fusion cooperative prediction accurately,

capturing all the essential aspects of signal detection performance, temporal depen-
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dency of spectrum occupancy as well as the finite nature of the network.

1.5.2 Publications

« H. Eltom, S. Kandeepan, B. Moran, and R. J. Evans, “Spectrum occupancy
prediction using a hidden Markov model” 2015 9th International Conference on
Signal Processing and Communication Systems (ICSPCS), Dec 2015 [2].

« H. Eltom, S. Kandeepan, Y. C. Liang, B. Moran, and R. J. Evans, “HMM
based cooperative spectrum occupancy prediction using hard fusion,” 2016 IEEE

International Conference on Communications Workshops (ICC), May 2016 [3].

« H. Eltom, S. Kandeepan, R. J. Evans, Y. C. Liang, and B. Ristic,"Statistical
Spectrum Occupancy Prediction for Dynamic Spectrum Access: A Classification

" EURASIP Journal on Wireless Communications and Networking, February
2018 [4].

« Hamid Eltom, Sithamparanathan Kandeepan, Y.C. Liang, and Robin J.
Evans,"Cooperative Soft Fusion for HMM based Spectrum Occupancy Predic-

tion", Submitted to IEEE Communications letters.

« Hamid Eltom, Sithamparanathan Kandeepan, Y.C. Liang, and Robin J.
Evans,"An approximation of stationary posterior distribution of HMM based

Spectrum Occupancy Prediction", Submitted to IEEE Communications letters.

o Hourani, A., Evans, R., Sithamparanathan, K., Moran, W., Eltom, H. '
Stochastic Geometry Methods for Modelling Automotive Radar Interference In:
IEEE Transactions on Intelligent Transportation Systems, 2017 [5].

1.6 Thesis Structure

In Chapter-2 background information on cognitive radio, statistical prediction theory,
and Bayesian mixture models are provided. Firstly, the fundamentals of statistical
prediction are reviewed. Then, based on stochastic mixture models, parametric and
non-parametric stochastic approaches for underlying stochastic source modelling
are reviewed. Secondly, spectrum occupancy prediction is described in terms of
these techniques. Cooperative spectrum occupancy prediction is studied for both

decision (Hard), and data (Soft) fusion. Finally, theoretical and practical challenges
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of sequential spectrum occupancy prediction implementation are presented. This
chapter introduces the first contribution in the form a survey on statistical prediction

in cognitive radio literature [4].

In Chapter-3, local prediction performance for an HMM based predictors is
presented. The prediction error performance dependency on HMM parameters is
presented [2]. The analytical formulation of prediction error is formulated in a
recursive equation [3] in conjunction with research question 2. The chapter also
propose a new generalized Beta-Bernoulli approximation of the predictive posterior
probability for local HMM based SOP models.

In Chapter-4, we present a contribution related to research question 2. In this
chapter, we further extend the numerical performance analysis of local spectrum
prediction, and address possible gains from cooperative spectrum prediction. In
particular, an analysis of secondary user’s mean prediction error is presented in terms
of primary user’s activity pattern, and spectrum sensing errors. We utilise Bayesian
filtering, and known information theory inequalities, to express mean prediction error
for single secondary user [3]. Then, the analysis of Hard Fusion based cooperative
spectrum prediction is presented to highlight possible improvements of cooperative

spectrum prediction.

In Chapter-5, we present a contribution related to research question 3. Soft decision
based fusion for cooperative SOP is presented based on the local prediction model.
The soft fusion based techniques are benchmarked based on hard fusion performance
presented in Chapter-4. Alternative soft fusion techniques are proposed based on
local prediction model parameters in Chapter-3. The chapter discusses prediction
error analytical approximations for local prediction in Chapter-3, and cooperative
prediction in Chapter-4. Finally, contribution summary and conclusion are presented

in Chapter-6 along with future work.
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Prediction Model Classification

Our contribution in this chapter is a consolidated top-down classification of spectrum
occupancy prediction. SOP taxonomy is presented in a sequential prediction based
framework. This allows the authors to dissociate the spectrum prediction model from
the application assumptions. In other words, this review paper addresses spectrum
prediction model selection based on the theoretical sequential prediction stochastic
class. The review places techniques adopted in literature into categories based on their
theoretical predictor classes. This classification approach highlights candidate predic-
tion techniques suitable for SOP scenarios not extensively covered in current literature.
Firstly, the fundamentals of statistical prediction are reviewed. Then, based on the
stochastic mixture model framework, parametric and non-parametric approaches for
underlying stochastic source assignment are reviewed. Secondly, spectrum occupancy
prediction in terms of the stochastic class assignment. Mixture model formulation
is extended to cooperative spectrum occupancy prediction using is formulated for
decision (Hard), and data (Soft) fusion techniques. Finally, theoretical and practical

challenges of sequential spectrum occupancy prediction implementation are presented.

In this chapter, Section-2.1- and Section-2.2 provide the background and problem
components for sequential prediction problem. A brief review of empirical and statis-
tical based approaches for SOP models is presented in Section-2.3. Then, a review of
current spectrum occupancy techniques is presented in Section-2.4, Section-2.5. Lastly,
the challenges in spectrum occupancy prediction are listed in Section-2.9. This chapter
introduces the first contribution in the form a survey on statistical prediction in cog-
nitive radio literature. The contribution of this chapter is published in the European

Association for Signal Processing EURASIP journal on wireless communications and
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networking [4].

2.1 Background

Prediction theory asks the question: Is it possible to forecast the short term evolution
of an event? And if possible, how can we quantify the performance of this forecast?,
and quantify the prediction accuracy [35, 54|. Sequential prediction is deeply embed-
ded in statistics [17], information theory [36, 55|, machine learning [36, 48, 55, 56],
source coding theory [56], and gambling [57] among many other disciplines. The term
prediction in literature, generally refers to sequential prediction with an implicit notion
of time dependency. However unlike the estimation problem, the sequential predic-
tion does not seek an interpretation of information, but rather an exploitation of the
information to forecast future events [36]. A well known definition of the sequential

prediction problem is [34-36, 54]:

Let a predictor receive a series of sequential observations x'™! =

{x1,29...; 2,1} drawn from a sample space X. At time instant t, the pre-
dictor performs an action a, based on the previous observations x'~' before
the observation x; is available. Once x; is available, the predictor then

updates the loss function l(ay, x).

The loss function [(a;,x;) is a distance measure e.g., a squared error
l(as, z;) = (zy — a;)®. The action a; is generally assigned a; = #; (where Z; is

the predictor’s guess of x;) for "next event prediction Alternatively, a; can
represent the confidence in next event prediction i.e. the conditional probability
a; = pi(x|zo4—1) of one-step ahead prediction, given a series of observations up to
t — 1. General loss function assignments transform sequential prediction problem into

a decision problem [34, 35].

There are two main formulations of the sequential prediction problem. The first is
classical prediction where the underlying source is assumed known, and the observa-
tions are assumed identically distributed (not necessarily independent). The second
formulation is universal prediction, where no specific assumptions are made about how

the observed series is generated !. Conceptually, universal prediction compares the

IProbabilistic assumptions are made about the M sources prior, and under probabilistic action a;
assumptions see [54, 58, 59].
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designed predictor to an indexed set M of stochastic sources (e.g. distributions, codes,
or polynomials). The true observation generating mechanism is generally assumed to
be a member of the predictor stochastic source set M [31, 35]. The universal prediction
algorithm is expected to perform at least as well as the best member of set M in terms
of prediction loss [54, 58, 59]. The universal predictor is not necessarily a member of
M [59], but can be created as a mixture of predictor set M [33]. Universal prediction

formulation can be summarised as:

Let M be an indexed set of arbitrary predictors. There exist prediction
strategies for each sequence xo;_1 that can possibly be realised, which can
predict essentially as well as the predictor in M that turns out to be best
for that sequence "with hindsight" [54, 59].

In classic statistics [60, 61], the underlying stochastic process is assumed to be known.
However, more recent approaches recognise unknown or non-existent underlying
stochastic process [35]. Merhav et. al targeted a universal definition of prediction
with emphasis on the universality of the predictor, while addressing the triviality of
some predictor classes. Predictor choice is a trade-off between an optimal predictor
that fits a specific set of observations, versus a universal predictor that accounts for
all possible sets of observations. Prediction problem can formulated by two defining
characteristics. The first is the underlying (Known, Unknown, or non-existent)
stochastic process [54]. The second characteristic is the loss function that measure

the accuracy of the prediction [38].

For example, a universal predictor may be compared to (or constructed from) a
parametrised stochastic set { Py, 6 € M} such as a set of memoryless Poisson sources,
a finite set of kth-order Markov models, or a set of auto-regressive models of order p
[35, 36, 54, 58]. However, the sequential predictor performance generally depends on
the predictor set Ml class "complexity" or richness, which quantifies the class type, size,
and statistical regression between observations [35, 36, 54, 58]. Thus, a set of finite
kth-order Markov models is more practical for the predictor design than the set of all
arbitrary order Markov models due to the set size (see [35] for universality guarantee
and indexed class size). If the predictor utilises Bayesian methods, a well known
Bayesian mixture model is constructed as a weighted linear sum of the parametrised
sources. Bayesian mixture models are the most common algorithms for predictor

design (see Bayesian mixture models, and redundancy-capacity theorem for optimality
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analysis [31, 33, 35, 36]). However, they are by no means the only available methods,

nor perform well for all arbitrary loss functions [54, 58, 59].

2.2 Statistical Prediction

In broad terms, a sequential predictor is either fitted to the observation series i.e.
curve fitting or the observation generating stochastic distribution i.e., density fitting
to estimate future observations. Thus, statistical prediction is categorised based on the
assumptions about the existence or non-existence of an underlying stochastic source
[35, 36, 54, 58]. Statistical prediction is commonly presented under either probabilis-
tic or deterministic settings. Prediction loss function, regret, and redundancy are
discussed in Subsection-2.2.3, while Subsection-2.2.4 provides an overview of Bayesian

based techniques.

2.2.1 Probabilistic Settings

The classical definition of the sequential prediction problem assumes an arbitrary
known stochastic process {Py, # € M} is responsible for generating the observations
xo [17, 60, 61]. Accordingly, optimal prediction is formulated as the minimisation of
the expected value of the predictor loss function [31, 32, 34-36]. For example, if {X;}
is an arbitrary parametrised random source, the action a; = ; is set as one step-
ahead prediction, and the loss function is the squared distance I(as, ;) = (a; — x¢)?
then the optimal predictor will always choose the conditional mean as it’s predicted
value. One of the most well known techniques that utilises this approach is the Kalman
filter [48, 63, 64] (see Section-2.5). Practically, the underlying stochastic process are
unknown, so a replacement stochastic assignment Q is created based on the predictor
set Ml of stochastic predictors. The performance of the designed sequential predictor
Q is compared to the best predictor P in the class M. The designed predictor Q has

asymptotically small prediction regret compared to P [58, 59].

2The major cases are: 0/1 loss function for probabilistic action a;, and 0/1 loss for ON/OFF
non-stochastic observations, see [54, 58, 59] for analysis, and [58, 59, 62] for Starkov codes, Hedge
algorithm, and game theory approaches for sequential prediction.
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2.2.2 Deterministic Settings

There are two sequential prediction approaches when the underlying source is assumed
deterministic. The first is curve fitting, where a deterministic function f(z) is assumed
responsible for generating the observations. Curve fitting generally exploits statisti-
cal regression in the observation series. Moving Average, and Auto-regressive linear
models (see Section-2.6) are commonly used for deterministic settings prediction. The
second approach seeks a universal deterministic predictor. The predictor class set M
is a set of polynomials or code sequences. This construction avoids probabilistic as-
sumptions about the observation source. However, when the designed predictor Q is
constructed from the predictor set class M, a prior probability distribution is often
assumed. Finally under most loss function assumptions, predictor design techniques
for deterministic and probabilistic settings are dual, but may diverge for different loss

functions (e.g. 0/1 loss function) [54, 59].

2.2.3 Loss Function and Regret

One step-ahead prediction commonly seeks the estimated state value at the next
prediction slot a; = 2. Alternatively, the action is set a; = p;(z¢|z'™!) as a con-
ditional probability assignment to measure the confidence in next step prediction.
Probabilistic prediction assignment provides more information about the state of
the system compared to next event prediction. The loss in prediction is measured
between the designed predictor’s guess, and the true value of z;. Absolute, squared
distance measures are common choices for for next event prediction loss function,
while log distance is commonly used for probabilistic settings prediction. However,
0/1 loss function poses a challenge to several universal prediction algorithms including

Bayesian mixture models [58, 59].

The predictor regret expresses the instantaneous loss due to choice of probability
assignment Q rather than the true source P. Subsequently, Redundancy loss refers to
the statistical expectation of regret for an observation sequence of length n [34, 35].
For example, if a source QQ is used in place of P, and a self information loss function
is assumed a; = py(x]x'™), l(ay, xr) = —log(ps(z¢|z*~1)) then the redundancy loss
limit to be achieved by an optimal predictor is the entropy rate of the source H(PP)
[34, 35]. In other words, no additional loss due to the use of Q instead of P [58, 59].

KL-divergence is commonly used to measure performance distance, and can be defined
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by the cross entropy between P and Q as:

- P(x]z*")
dy(z'™1) = log ———~
t(x ) Og Q(xt|xt_1)
Dn = ZEp(xt|xt‘1){dt}
t=1

E{..} =Y stcxt P(a")[..], d; is the instantaneous Kullback-Leibler (KL) divergence,
and D,, is the total distance counterpart [35, 38]. Other possible choices for distance

between P and Q are absolute, squared, Hellinger, and absolute divergence distances
[31].

2.2.4 Bayesian Methods for Source Assignment

Bayesian Mizture models with self-information (entropy) loss are extensively studied in
information and coding theory [31-33]. Bayesian algorithms are minimax optimal, and
are universal under self information loss functions [34-36]. These methods perform well
under both probabilistic and deterministic non-stochastic settings [31, 34, 35, 37, 38].
Probability source assignment for Q is either Parametric or Non-parametric. The
former assumes a single parametrised source {Q = P,} in the predictor set M, while
the later assumes Q,, as a mixture of sources with prior {w(6),6 € M} [34]. Mixture
source assignment utilises a weighted linear sum of distributions {Fy, € M} with
a prior distribution on the predictor index set M [35, 36]. Using a non-negative
normalised weighting function w(#). The mixture model density function is defined

as:

Qu (') = /M w(0) Py(z')do

Upper, and lower loss bounds for Bayesian mixtures are defined using Minimax and
Maximin approaches [34, 35]. However, the challenge in such models is the appropriate
choice of the weights w(#), i.e the prior distribution of the parameter § € M. Mixture
models generally differ in terms of the size of the predictor index class C', stochastic
class type Py, and mixture prior w(6). Different mixture models can be grouped into

the four generic approaches:
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Plug-in Approach

This approach can be considered as a mixture model with the number of mixtures
C = 1. The underlying source is assumed to be a single parametrised by 6. The
chosen predictor {F;} probability function is created by estimating the value of 0
based on the series z;_;. The parameter ét = ét(xt_l) can be estimated using a
maximum likelihood estimator [35, 48]. However, plug-in approaches are heuristic and
lack theoretical justification [35, 36].

Finite Mixture Models

In finite mixture models, the replacement source Q,, is a sum of finite number of
stochastic sources. The number of mixtures C' < oo is generally decided beforehand
based on the application objectives, or through trial and error with different values
of C. Prior distribution often set in advance (uninformative uniform distribution is

common choice).
c
Qu(") = 3 Po()w(6:)
i=1

Expectation-Maximisation EM algorithm is used to estimate the parameter set
6 € M [48, 65, 66].

Kernel Density Estimation

Kernel density estimation places a Kernel i.e a function that satisfies probability den-
sity axioms on each observation sample. The samples are assumed independent, and

identically distributed. The stochastic source Q,, is defined as:

n

Qul") = > Ko - )

=1

h > 0 is the smoothing parameter, and the Kernel K(.,.) is a non negative density

function. Uniform, triangular, Epanechnikov, and normal kernels are some of common
choices [48, 65, 66].

Infinite mixture models

When the class M size is infinite, the prior distribution on 6 is a smooth continuous
function. The prior distribution is generally assumed drawn from a hyper-parametrised

distribution i.e. a probability distribution over probability distributions. A common
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non-parametric Bayesian method is the Dirichlet process D(a, G) where « is concen-
tration parameter, and G is the distribution over # € M. Samples of 6, at each time
instant ¢ are calculated iteratively from G using Monte-Carlo Markov chain meth-
ods. Infinite mixture model allows dynamic classification of data into clusters without

having to specify the number of clusters in advance [65-67].

2.3 Empirical Spectrum Occupancy Prediction

Spectrum occupancy prediction models broadly target parameters such as channel
availability i.e. prediction of channel status as idle or busy, as well as duty
cycle i.e. prediction of the average fraction of time the primary user is occupying
the channel [1, 18]. Measurements on spectrum occupancy show that spectrum
prediction is necessary to improve spectrum utilization efficiency (Fig-2.2). The
common motivation for SOP techniques is to minimise the accumulated time delay
due to cognitive cycle processing. By predicting the channel status in advance, more
processing time becomes available for spectrum sensing, decisions, and mobility [10].
SOP models address prediction either explicitly[20, 24, 68], or implicitly. Implicit
approaches present SOP models as primary/secondary user activity models. In this
review, both implicit, and explicit formulations are addressed as statistical SOP
models. Statistical SOP models proposed for spectrum occupancy analysis include
Poisson processes [22, 23|, Bayesian prediction [24, 25|, and linear regression [26, 27].
Machine learning based techniques have also been proposed for model learning
including neural networks, time regression, and space vector machines [10, 28, 29].
The surveys in [10, 11] provide a good taxonomy of primary user’s activity model
collection. This review abstracts and consolidate SOP models in DSA systems, and

extends the aforementioned works.

The flow chart in Fig-2.1 highlights the temporal sequence of spectrum occupancy
prediction process presented in this section. The flowchart is reused from Chapter-1,
where it was used to highlight spectrum sensing/prediction interrelation. This section
focuses on model selection, while the next three sections address selected model classes.
Current spectrum occupancy prediction techniques are presented using the statistical
sequential prediction definition. Current spectrum occupancy research can be broadly
divided into measurement campaigns, and statistical occupancy modelling. Notably,

spectrum measurements are often used to estimate the selected SOP model parameters.



2. Spectrum Prediction Model Classification 33

Spectrum Sensing
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‘ Spectrum Occupancy Prediction
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Mode Pa_ra mgters 7 I I Prior Model Selection I
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Bayesian Calculation e Dynamic Spectrum Access
Occupancy decision  d

Fig. 2.1 Spectrum occupancy prediction flowchart (this figure is repeated for the con-
venience of the reader)

2.3.1 Spectrum Measurement campaigns

A spectrum measurement campaign is an empirical data collection conducted
for specific scenarios (indoor/outdoor) to collect spectrum occupancy samples on
pre-selected frequency bands (television white bands/cellular bands). Statistical
analysis, and estimation are conducted to generate an approximate statistical
description of average power, or channel occupancy. The campaign captures real
life spectrum occupancy scenarios, it’s riddled with sampling inaccuracy as well as
spectral, spatial, and temporal dependency. However, the data collected in these
measurement campaigns are utilised to infer a suitable class set M for the predictor
design [1, 18, 69, 70]. Campaigns in Hong Kong in [70], and Melbourne [1] assessed
spectrum occupancy patterns for a large section the of radio spectrum. The survey
by Chen el. [18] provides an intensive review of several measurement campaigns for

selected wireless communication technologies.

Fig.2.2 presents raw spectrogram results of spectrum monitoring experiment con-

ducted in three different urban environments in Melbourne metropolitan [1]. The
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spectrum campaign addressed spectral allocation for cognitive radio Device-to-Device
communications and small cell networks. The spectrum occupancy is quantized by
comparing the received signal level to an adaptive detection threshold based on the
noise power. Raw samples collected over all frequency sweeps are shown for three
urban environment class. The work results indicated that frequency ranges 402 — 460
MHz, and 520 — 820 MHz (vacated analogue TV band) are suitable candidates for
DSA applications [1].

Sweep Number [ ]

04 1 15 2 25 3 35 4 45 5 55 6

Frequency [GHz]
[ L L N
<120 =110 =100 =30 -80 =70 -60 =50 -40 -30 =20
RX Power [dBm]

Fig. 2.2 Power measurement campaign sample for Melbourne LTE system measure-
ments [1]

2.3.2 Statistical occupancy modelling

Alternatively, statistical occupancy modelling estimates the observation generating
mechanism often based on empirical samples. The scheme utilises a prior belief about
the occupancy state, and updates such belief as new observations are available. Given
the estimated statistical model, spectrum occupancy prediction at future instances is
achievable. Such models examine several statistical techniques with a major literature
focus on Markov processes [20, 71], Poisson processes [22, 23], Bayesian models [24, 25],
neural networks [10, 44, 68], linear regression [26, 27], space vector machine [72],

pattern mining [73, 74], and dictionary based prediction [24]. In a sequential prediction



2. Spectrum Prediction Model Classification 35

framework, these techniques represent different parametrised predictor classes. Models

generally takes several categories with major literature focus on:

Bayesian Models (including HMM) [25, 27, 71, 75-83]

« Queuing theory and Poisson Process [22, 23]
o ON/OFF models [84]

« Dictionary based [19]

 Neural networks [21, 26, 72, 85]

 Linear Regression [25, 73]

 Space Vector Machine[86]

« Pattern Mining [87]

These models assume a specific probability distribution based on the application
e.g. (inter-arrival time as Poisson process [22]) and attempts to identify its parameters.
Other models learn the information from training data and/or in an on-line manner|[10,
17, 29).

Prediction Model Selection

Parameters studied by spectrum occupancy modelling are 1) channel status i.e.
prediction of the spectrum status as idle or busy, 2) and duty cycle i.e. prediction
of average fraction of time the spectrum channel is occupied, or 3) signal/power
i.e. prediction of the power level on a specific channel. These occupancy series
are modelled based on assumptions about their state space, loss function, and
predictor action. For instance, channel status observation series can be modelled as
an ON/OFF (2 state model) binary source model X = [0, 1], or more (e.g. 3 state
model). Similarly, the predictor action a, is commonly modelled as one-step ahead
state prediction i.e. a; = 2, or as a probabilistic assignment i.e. a; = p(x;]z'™).
Common choices for loss functions are self information, 0/1 loss and mean square
error, while regret and redundancy often adopt KL-divergence. However, the loss
function in each proposal is often formulated based on the intended application (e.g.
throughput, sensing accuracy, or hand-off success rate). Performance comparison

metrics such as secondary users’s throughput, spectrum interference and wastage,
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and probability of error (or mean square error) are generally defined based on the
probability density of the one step-ahead prediction. For example, the probability
of incorrect prediction of an available spectrum hole generally describe spectrum

interference or spectrum wastage [88].

Consequently, spectrum occupancy prediction modelling is essentially the selection
of a class M of predictors or (the mixture of sources from class M). The choice
of the predictor class is limited by the application requirements, and constraints.
For example, a set of finite kth-order Markov models is more practical for the
predictor design than the set of all arbitrary order Markov models, due to the set size.
Moreover, HMM model is suitable for finite state occupancy models one step-ahead
prediction given the errors in the wireless channel, while Kalman filter is a more
suitable for infinite state space scenarios. Kernel density estimation is rarely proposed
for on-line prediction, but can be used to construct the probability density of selected
predictor class. Ultimately, the sequential predictor performance depends on the
predictor set Ml "complexity" or richness, which quantifies the class type, size, and

statistical regression between observations [35, 36, 54, 58].

Table.2.1 provides a summary of the current techniques used for spectrum predic-
tion in dynamic spectrum access systems. The fourth column in the table presents
the sample space for the observation series. Finite sets (e.g. ON/OFF), or infinite
set (e.g. real space R) are presented. Additionally, state regression and dependency
on previous events (e.g. first order Markov chain) are presented. Finally, occupancy

series are displayed in the last column.

Prediction Models classification

By dissociating the implementation requirements and assumptions from the stochastic
components of the spectrum prediction model, the author’s distinguish four major

categories of parametrised predictor classes used in literature:

1. Memoryless stochastic sources classes (single source). This category contains
a diverse set of parametrised sources including Bernoulli, Binomial, Poisson,
exponential, uniform, and normal distributions. Such models are better suited

for traffic such as internet of things, telemetry, and applications that use radio



2. Spectrum Prediction Model Classification 38

spectrum.

2. Finite order Markov chain class (finite source memory). The dominant choice is
first order Markov chain with finite/infinite state space such as Hidden Markov
model, Kalman filters, and particle filters. These models are better suited for
applications such as TCP/IP traffic.

3. Finite order linear regression source class. Auto-regressive (AR), and moving-
average (MA) models along with ARMA, and ARIMA models assume linear
regression in the observation series. This set of models is also suitable for

TCP/IP traffic, with the advantage of low complexity implementation.

4. Machine Learning based Techniques including neural networks, support vector

machines and pattern mining can be used for massive access network scenarios.

Table.2.2 highlights few major advantages, and disadvantages of different spec-
trum occupancy prediction categories. For example, stochastic memoryless modes
ignores temporal correlation of the observation series, but could be suitable for low
complexity single PU sparse channel usage scenarios. Similarly, finite Markov models
are suitable for heavy-tail channel usage scenarios such as multimedia transfer.
Similarly, Markov-Bayesian mixtures can be used to model scenarios with multiple
primary and secondary users. Finally, linear regression models exploit further past

measurements with less complexity compared to finite state Markov models.

Fig.2.3 summarizes the sequential prediction theory presented in Section-2.2, and
maps current SOP techniques available in literature. The number of mixture sources
C' in the replacement source assignment @) differentiate mixture models (Subsection-
2.2.4). The figure conceptually illustrate the modelled occupancy series as an input,
where the selected mixture model produces the desired performance measure based
on the selected loss function. A review of current spectrum prediction techniques
is presented for each category in the next three sections. Section-2.4 presents sin-
gle memoryless source approaches, Section-2.5 handles Markov based models, while

Section-2.6 presents linear statistical regression based prediction.
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2.4 Memoryless Stochastic Source Models

In this category, the observations are assumed independent and identically distributed
(i.i.d) random variables drawn from a single parametrised stochastic source. The series
21.4—1 has no conditional dependency on the prediction of Z; i.e. models fall under this
category are memoryless. Practically, one-step ahead prediction is not possible with
such models. Thus, it is often combined with time correlated assumptions (e.g. Poisson
Markov chain [95, 96]) or used to estimate the stochastic source probability density

function Q,, from a training sequence. Models adopted in SOP proposals include:

Bernoulli trial process is the mathematical abstraction of repeated coin tossing.
The random variable x; takes only the values 0 or 1 representing failure and success,
respectively. The series xq, x5...x;_1 is assumed to be independent, and identically
distributed Bernoulli random variables, with probability mass function parametrised
by p [48, 125]:

flkip)=p"1=p) P ke{o,1}

Where £ is the number of trials, and p is the probability a certain outcome e.g.
p=pX;=1).

Binomial distribution models the probability of exactly k£ success in n trials, yield-

ing the probability mass function parametrised by p as:

n!

Poisson distribution describes the probability of a number of £ events in a time

period with a constant average rate A = — [48, 125]:
n

Aee=A

f(k;A) = A

ke{0,1,..}

Exponential distribution: The interval between events in a Poisson distributed
process follows the negative exponential distribution parametrised by A, with proba-
bility density function [48, 125]:

fz; ) =Xe™, >0, A>0.
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In spectrum occupancy literature, memoryless sources are not used as often for
one-step ahead prediction. However, this class of stochastic sources is frequently used
to describe primary user activity. Bernoulli process have been proposed in [89-91] to
describe ON/OFF spectrum occupancy in spectrum sensing/access proposals. Simi-
larly, Poisson process have been proposed in [95, 99] (2 States), and [96] (3 states) to
model the arrival/departure process of the primary user. Exponentially distributed
duty cycle models were presented based on queuing theory in [95, 96]. Similarly, pro-
posals in [97, 98] suggested a non-exponential service time as a result for multiple
primary users scheduling. In [24] an exponential distribution to model inter-arrival
time of the primary users was proposed to design a secondary user contention algo-
rithm. Joint cognitive radio spectrum sensing and prediction model in [93] proposed
an exponential primary user prediction, and estimated spectrum opportunity wastage
and interference. Other primary user modelling efforts utilised an identical approaches
with i.i.d events, but employed different probability distributions such as log-normal
distribution [69, 101], uniform distribution [102], and binomial distribution [93, 94].

The choices were generally motivated by physical layer assumptions.

2.5 Finite order Markov Models

In this category, various Bayesian based techniques utilise different assumptions about
the observation sample space, the statistical regression, and the underlying stochas-
tic process. The case when the probability of current event x; only depends on the
probability of previous event x; 1 i.e. p(x|x1.4_1) = p(x¢|ai_1) is called Markov prop-
erty [48]. Markov-based construction is attractive due to the desirable convergence
properties of Markov chain based models [39-42]. Markov chain, and partially observ-
able Markov models are commonly used for spectrum occupancy modelling. Markov
processes also include Semi-Markov processes such M-order Markov chain with de-
pendence on m previous events i.e. 14—, or Fzplicit duration Markov chain (a form
of continuous-time Markov chain), where the time spent on each state is not expo-
nentially distributed [48, 52]. The main difference between proposals is the number of

states assumed by different models, and the proposal’s loss function.

Bayesian Markov model General Markov-based model in estimation theory

utilises a Bayesian model framework as[126]:
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plarly'™) = [ plaile)pily')dz

Py p(ey'™)
p(yly'=1)

pluly'™) = [ pluledp(aly'™)de,

P($t|yt) =

The first equation is Chapman-Kolomogrov prediction equation, the second is
Bayes rule update, while the last equation is the normalisation factor [126]. This
model is labelled doubly stochastic as it accounts for measurement error in observ-
ing w141 by defining the observation series yq.;_1, where z1;_1 is defined as the
latent variable series. The latent state model is defined by the non-linear function
[x; = £ (2,1, v¢)], and v; an independent additive noise source. x; is distributed based
on the probability p(z:|x;—1) defined as latent state Markov prior. The observations
are defined as the dependent variable [y, = hy(x;,u;)], where h; is a non-linear func-
tion, and w; is an independent additive noise source (measurement error)[48]. The
observation variable is distributed according to p(y:|z;), defined as the observation
likelihood probability. The conditional posterior probability p(z;|y1..—1) is recursively
calculated from the prior, and likelihood probabilities from an initial state distri-
bution p(zg). The equation set simplifies the probability assignment in the form
p(@elyri-1) = p(we|re—1, y1a—1)p(xi—1|y1.4—1) (Markov property). When implementing
such model, the density p(z;|y1.,_1) is either estimated using the prior/likelihood func-

tion, or using kernel density estimation [64, 126].

Markov chain Process is the simplest Bayesian Markov model. It is assumed to
be fully observable, and finite. Markov chain process is parametrised by transition
probability, and initial state distribution. Each element in the transition matrix is the
probability pi i.e. the probability of being in state j at time ¢ given the system is
currently in state ¢ at time ¢t — 1 [48, 126-128].

Hidden Markov Model HMM is partially observable Markov chains i.e. observ-
ing a Markov chain through a noisy channel [48, 52]. HMM employs two finite sample
sets for latent variables X', and observations ). The additional conditional probability
of a system is at state ¢ (z; = @ ) to emit an observation (y, = j) is referred to as

ei; or the emission probability. Fig-2.4 displays a snapshot of HMM state transition
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(connected lines).

Kalman filter is the optimal solution for linear Gaussian state space Markov based
models [48, 64, 126]. Non-linear predictors are often a sub-optimal variation of Kalman
filter, such as extended Kalman filter, and unscented Kalman filter [48, 63, 64].

Bayesian Particle Filters Particle filter methods utilise Monte-Carlo Markov
chain (MCMC) to approximate the conditional posterior probability assignment
p(z¢|y14-1), or the full posterior probability p(z1.¢|y14—1). They utilise either weighted
samples of a plug-in probability assignment based on prior/likelihood, or a mixture
model based density [126].

In spectrum modelling literature, Poisson Markov chain based proposals in [95, 96]
studied primary user interference and wastage. Two-state[2, 103-106], and three state
discrete-time Markov [96] chain have been proposed to model the primary-secondary
users stochastic behaviour. Similarly, higher-order Markov chains in [107] were used
to detect the primary user traffic pattern. Explicit duration semi-Markov chains with
generalised distribution of duty cycle time modelled primary users’s inter-arrival time
in [108, 109], while continuous time Markov chain modelled primary user behaviour
in [110, 111]. Moreover, hidden Markov model received wide attention in spectrum
occupancy prediction literature [2, 3, 24, 25, 76, 79, 82, 82, 113]. Liu et. al. addressed
the prediction confidence, and the error of a continuous time Markov chain model with
Erlang-2 distribution model for primary user’s activity [112]. K-step ahead prediction
was studied in [81, 114] assuming a non-stationary HMM. Finally, works in [43, 46]
utilised regularised particle filters with Kernel density estimation to model primary

user activity in multi-primary and secondary user cases.
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Fig. 2.4 Statistical prediction using Markov based models

2.6 Finite Order Linear Regression Models

This category is a special case of the general non-linear statistical regression for
p(z¢|x14-1). Linear regression models focus on the linear dependency between the
random variables x;, and x1.;; [48]. Auto-regressive model AR (p = 0), and Moving
Average MA (¢ = 0) are special cases of Auto-Regressive Moving-Average ARMA.
ARMA model (ARM A(p, q)) can written as [48, 125]:

p q
Tp=c+m+ Y Giri+ ) O

i=1 i=1

Where ¢ is a constant that can be replaced with y = E,{z;}. n; is a noise random

variable that represents the uncertainty in sampling. ¢;,6; are the auto-regressive,

and moving average parameters. p,q are the order of the autoregressive, and moving

average components. Auto-Regressive Integrated Moving-Average (ARIMA) process
generalises the ARMA model to ARIM A(p,d, q), and written as [48, 125]:
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(1— i@y)ﬂ — L)z, = (1+ queiy‘)nt

i=1

Where Li(z;) = x;; is the time lag operator, Azy = z; — 2,1 = (1 — L)y is
the difference operator, and Az, = (1 — L)%z, is the generalised difference operator.
Setting the differencing degree d = 0 in ARIMA model will result in ARMA model,
while setting p = ¢ = 0, d = 1 results in a random walk model. ARMA, and ARMIA
assume no specific underlying stochastic process, but provides the regression between

observation samples.

An auto-regressive with Gaussian distributed random variables was used to model
spectrum occupancy in [117-119]. Similarly, moving-average [118], and ARIMA [98]
were proposed for spectrum occupancy status modelling. Random walk model was
proposed in [92] to model spectrum occupancy duty cycle. Finally, an auto-regressive
model of decimal equivalent of a binary series model was proposed for primary user
activity in [120].

2.7 Machine Learning based Techniques

This category introduced in Section-2.3 covers techniques that utilize machine
learning based algorithms for spectrum prediction which is was not covered directly
under the categories described in previous sections. Machine learning, data mining,
and pattern recognition algorithms are based on existing statistical inference models.
Kobayashi et. al [[48], Chapter 21] discusses the statistical aspects of machine
learning. Several classification and prediction techniques are a numerical methods
based on a statistical prediction model. For example, Artificial neural networks, and
HMM are numerical solutions of Bayesian /Markov models (particularly Particle
filer solutions). Similarly, support vector machine are numerical solutions of linear

regression models.

Artificial intelligence, and machine learning in spectrum prediction generally ad-
dress the learning of predictor class parameters. The methods improve likelihood
estimation for spectrum prediction problems with large sample size. For example,
neural network genetic algorithms can be used for Maximum likelihood estimation of

HMM parameters [122]. Neural networks based techniques are presented extensively
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in cognitive radio networks [29, 122-124, 129, 130], with application on spectrum pre-
diction presented in [78, 121]. Support vector machines [72], pattern mining [73, 74],
and Dictionary based prediction [24] were suggested for spectrum prediction and user
activity modelling. The surveys in [28, 29, 129] discuss artificial intelligence, and

machine learning applications for dynamic spectrum access networks.

2.8 Extending Occupancy Prediction Formulation

The action a; in the sequential prediction definition is not limited to the next state
event Z;, or probabilistic representation p;(x;|z1.4_1). A spectrum access based loss
function assignment for the single user’s prediction action a; transforms the prediction
problem to a decision problem. A popular choice for spectrum prediction/access
problems is reinforcement learning based algorithms. Reinforcement learning is a trial
and error learning procedure that awards/punishes the agent based on the outcome
of trial. The agent learns system dynamics, and constructs the action policy through
interaction with environment. In a single agent scenario, a Markov decision policy
based algorithm is commonly adopted [131] (See Fig-2.4). While in the multi-agent

scenario a stochastic game is formulated [132].

In spectrum occupancy modelling, reinforcement learning was proposed to model
dynamic spectrum spectrum access policy. Research proposals in spectrum predic-
tion/access based on reinforcement learning focused on optimising access to vacant
spectrum opportunities [88, 98, 133]. Wang et. al [98] studied a jamming scenario
during spectrum access under a spectrum sharing game. Studies in [134, 135] de-
veloped secondary user access algorithm based on an auction game. In [136, 137]
a partially observable Markov model formulation was developed to model spectrum
sensing/access. A limited number of proposals [136, 138-141] considered utilising both
observation series x1.; and action series a; as inputs to spectrum prediction/access al-

gorithm.

2.9 Spectrum Occupancy Prediction Challenges

The survey in [11] discussed the issue of occupancy modelling validity based on the
type, and amount of traffic pattern. The work presented several scenarios of possible

implementation issues for primary user modelling. This section extends the results
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and address theoretical challenges for SOP model implementation.

2.9.1 Validity and Complexity

Valid spectrum occupancy observation representation is limited by state space
dimensionality. Spectrum samples have temporal, spectral and spatial dependency.
Proposed spectrum occupancy prediction models simplifies the assumptions about
spectral, and spatial dimensions to avoid model complexity. To our knowledge, there
are no multi-dimensional proposals for spectrum occupancy prediction. Moreover,
the validity of any chosen model is generally questionable from dimensionality and
universality perspective, as any assumption about the underlying observation process
may not fit the actual occupancy pattern. Few spectrum measurement campaigns
invalidated several short term prediction assumptions. Thus, validation through
empirical spectrum campaigns is essential for any spectrum predictor design [1, 20].
For example in [142], the popular i.i.d exponential duty cycle assumption is criticised
as a model for short term prediction. A Pareto distribution was proposed for long
term prediction, but short term prediction was deemed application dependent, and

technology specific.

Moreover, common challenges in sequential prediction theory are model over-
fitting, and redundancy loss convergence guarantee. Model over-fitting refers to the
case when a model is too complex, that renders it sensitive to small changes in ob-
servation statistics [35, 36, 54, 58]. Model complexity limits the applicability of the
prediction model. The complexity of a specific class of predictors i.e. class size and
statistical regression affects the predictor convergence guarantee to the desired re-
dundancy loss bound (see redundancy-capacity theorem [31, 33, 35, 36]). Plug-in
approaches simplify predictor design complexity using assumptions about the obser-
vation generating mechanism to achieve optimal predictor design. For example, a set
of finite kth-order Markov models are more practical for predictor design compared
to the set of all arbitrary order Markov models. Moreover, mixture models are more
complex but allow empirical based source estimation. For example, Dirichlet mix-
ture process is often used to generate prior distributions, however tracing convergence
bounds becomes increasingly difficult [31, 35, 65]. Convergence bounds are calculated
only for limited Bayesian mixture class/prior distribution pairs (for example, uniform
prior/Epanchinkov kernel) [143].
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2.9.2 Cooperation and Contention

Cooperative spectrum prediction faces the practical issue of common control channel
design [46]. The amount of data shared between users sets a trade-off between spec-
trum prediction accuracy, and control channel capacity [46]. Common control design
trade-off for cooperative spectrum prediction in a multi-primary user environment
is yet to fully develop in spectrum prediction literature. Analysis of cooperative
prediction using hierarchical Dirichlet processes is an interesting proposal to model

cooperative spectrum prediction, that is not explored in SOP literature [65].

Contention policy proposals for DSA systems are still under development in cur-
rent literature. In single user case, reinforcement learning is suggested in some lit-
erature sources to model the spectrum occupancy [88, 144]. However, the study in
[144] questions reinforcement learning as useful tool to improve spectrum occupancy
modelling of their own spectrum campaign measurements. Multi-user game theory

based approaches are interesting candidates for multi-user spectrum prediction.

2.10 Summary

Based on parametric and non-parametric mixture model framework, this chapter clas-
sifies spectrum occupancy modelling approaches in literature based on predictor class
selection. Predictor class selection categories of memoryless sources, Markov models,
and linear regression models along with machine learning based techniques were de-
tailed based on current SOP literature proposals. SOP cooperative prediction based on
hard, and soft fusion techniques was discussed for multi-user scenarios. Finally, spec-
trum predication theoretical and practical challenges were presented and highlighted
candidate techniques. The contribution of this chapter is accepted for publication
in the European Association for Signal Processing EURASIP journal on wireless

communications and networking [4].



Chapter 3

Local Spectrum Occupancy

Prediction

This chapter presents single user occupancy prediction model based on hidden
Markov model. Local spectrum prediction using hidden Markov model is proposed
and elaborated Section-3.2. Then, we present an analytical approximation of
HMM prediction error performance. The approximation is motivated by works in
[35, 37, 145] on the recursive posterior estimation of finite state Markov machines.
Finally in the case study analysis, the prediction error of one step-ahead (single time
slot) prediction against the channel detection errors, as well as primary user’s state
transition probability is presented to assess the model accuracy. Prediction error is
also investigated against the observation sequence length, to examine the correlation
between prediction accuracy, and the number of samples required to calculate the next
state probability. We further examine the prediction of two step-ahead prediction

assuming an incorrect one step-ahead prediction was made.

The contribution of this chapter is partially published in the conference proceedings
of IEEE International Conference on Signal Processing and Communication Systems
ICSPCS’2015 [2]. The remaining contribution of this chapter is submitted to IEEE
communication letters (Subsection-1.5.2). The contribution proposed a new gener-
alized Beta-Bernoulli approximation of the predictive posterior probability for local
HMM based SOP described in this chapter.

20
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3.1 Background and Related Work

Current SOP literature explores prediction techniques such as Bayesian models
(including HMM) [19, 25, 76, 79, 82], neural networks [21, 44, 85], linear regression
[26, 27], space vector machine [72], and pattern mining [73]. Bayesian-based predic-
tion techniques provide a powerful, and a flexible tool to measure and model RF
environment. Secondary users within the cognitive radio network collect sensing
information, and utilize statistical correlation to infer possible future latent states of

the primary user usage patterns.

Hidden Markov Model HMM lends its name to two defining properties: Markov
property that the current state z; is dependent on past state z;_;, and the state space
is assumed hidden from the observer "r" with only the observation y,, available at
time instant (¢) [52]. Hidden Markov model is the basis of local spectrum prediction
model in this chapter. Subsection-1.4.3 introduced HMM model and paramters. The
next Subsection-3.1.1 provide the related work in spectrum occupancy research using
HMM based models. The remaining Subsection presents the background work for

HMM posterior estimation (HMM prediction performance) presented in Section-3.3.

3.1.1 HMM for spectrum occupancy modelling

HMM has been used to model the channel occupancy in several studies for local
spectrum prediction. The proposal in [82] presented a modified bivariate HMM
to improve sensing performance assuming Gaussian distributed observations. The
results presented dwelling time of k-steps ahead performance comparison against
standard HMM assumptions. In [81, 82] authors studied the performance of dwelling
time prediction for a non-Stationary HMM proposal. Similarly, the work in [29]
presented HMM prediction accuracy for different training algorithms, and used it to
analyse secondary user throughput. The paper in [79] simulated combined HMM, and
frequency hopping performance for secondary user throughput. The efforts in [75, 76]
simulated the prediction error for multiple slots, considering a modified HMM which
accounted for the delay in obtaining observations. While several research papers
simulated these models under different traffic and channel conditions, the HMM
prediction accuracy is not immediately clear. The functional relationship between
HMM prediction error and the state transition, and/or channel error is not intuitively

available in literature.
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Due to the non-stationary nature of state estimation in HMM, the stationary state
distribution is often estimated numerically [37, 145]. The works in [2] defined the
minimum prediction error (ideal sensing scenario) as lower limit for HMM based SOP
performance, and addressed local prediction single user error. The work in [3] extended
the mean prediction error, and presented a binomial approximation as a lower limit
of hard fusion prediction error. However, the analytical expression of the stationary
conditional predictive posterior is counter-intuitive, and hard to obtain in closed form
for arbitrary HMM predictors [35, 146]. Thus, local HMM predictor performance is

not available in a closed analytical form.

3.1.2 HMM posterior probability estimation

Estimation and analysis of the finite Markov Machines FSM (including HMM)
posteriori distribution is not available in a closed form for arbitrary process as-
sumptions. Goldsmith el.[37] studied the capacity of finite state Markov process
with independent inputs. The work proposed an algorithm to recover the capacity
estimation loss due to the conventional methods using the combination of memoryless
channel coding, and interleaving. Earlier work by Mushkin el. [145] focused on the
same question for the spacial case of Gilbert-Elliot Channel. Each pioneer paper
provided a recursive estimation equations of the posteriori probability of channel
state. In FSM literature, the works in [31, 147] addressed the convergence to lower
bound of FSM prediction. The proposals of Arimoto-Blahut based methods [148], and
run-length error statistics[149] presented efficient recursive techniques for FSM lower
bound convergence of arbitrary FSM models. Additionally, recursive formulations of
FSM conditional posterior under various assumptions are presented in works such as
Gilbert-Elliot channel [35, 150], FSM channels with i.i.d inputs [37], and non i.i.d
input [53].

Fundamentally, sequential predictor stochastic probability assignment can be con-
structed as a mixture model without loss of optimality by confining the predictor
distribution selection to a specific class (family of distributions) [4, 35] (Section-2.2).
Thus, HMM stationary posterior can be constructed from the same family of Markov
chain stationary posterior. In Section-3.3, we present an approximation of HMM pre-
diction error performance. The approximation is motivated by works in [35, 37, 145]

on the recursive posterior estimation of finite state Markov machines.
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3.2 Local SOP Model Formulation

In this section, we formulate the local spectrum prediction based on hidden Markov
introduced in Chapter-1. The model describes the primary user activity model
(Subsection-3.2.1), channel propagation characteristics (Subsection-3.2.2), occupancy
detection (Subsection-3.2.3), and local prediction models (Subsection-3.2.4).

In a discrete slotted time system, R secondary users are assumed independently and
identically distributed according to a Poisson point process in Euclidean space R2. The
wireless channel between the primary and secondary users is modelled by generalised
path-loss, log-normal shadowing, and additive white Gaussian noise model [46]. PU
activity is modelled as a fully observable Markov chain, while SU observation model
is a partially observable Markov chain (HMM). Given an observation sequence, HMM
prediction follows the general steps shown in Chapter-1 (Fig.1.4), and described in the
proposed prediction algorithm (Algorithm-1). It worth noting that in the case study
analysis section (3.4), the training phase has been bypassed to solely measure the
accuracy of HMM spectrum prediction apart from any error that might be introduced
by Baum-Welch training algorithm (Subsection-1.4.3) [52].

3.2.1 Primary User Activity Model

Define {z; : t > 1}, € {0,1} as the channel state due to PU activity at time
slot ¢ due to primary user’s activity as irreducible stationary Markov chain. The
transition probability matrix between states ¢, j € [0, 1] i.e. p(z; = j|zo, .., T1—1 = 1) =

p(z¢|x—1 =i is given by [48]:

L—p  p

P:[pm:[ ’ 1“’] (3.1)

Where P is a transition probability matrix for all ¢, and (p, ) represent the probability
of remaining in busy and idle states, respectively. Primary user’s occupancy model

based on two state fully observable Markov chain is parametrised by {v, P}.
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Algorithm 1 Proposed Prediction Algorithm

Begin While (Next Slot Prediction is NOT NULL)
Step-1: HMM Training: Train the model using y,1.4—1 -

Estimate the model parameters (fi, 0, ]Sm(or ]5,1), Jf’f ), using Baum-Welch algorithm
[47] (Subsectionl.4.3).

Step-2: HMM posterior probability calculation: Using Forward-Backward algorithm
(Subsection1.4.3) [52] estimate the posterior joint probability of the primary user

occupancy p(w¢|y,1..—1) using (:a?éa Pma ]Sf)

Step-3: Spectral Occupancy Prediction: calculate the hidden state corresponding
to the observed sequence p(Z, |y, 1.4—1) (Subsectionl.4.3).

Step-4: Spectral Occupancy Decision: Decide the most probable next occupancy
state (&,; against threshold (.

Step-5: Pass Z,; to Dynamic access decision mechanism (Equation-3.12).
add Z,, to state sequence v, 1.,—1, and go to Step-2 for 2-steps ahead prediction

End While

3.2.2 Channel Propagation Model

The power measurement by rth secondary user @, ,,(dB) at time slot ¢ is modelled

using power-distance decay law, and log normal shadowing [45]

1
®,,:(dB) =10 x log;, T /T |s:(7)|?dT + g, (d) + X (3.2)
where s; is the transmitted symbol for channel state x;, and X is Log-normal
distributed random variable with zero mean, and variance o2(dB) [46]. The g,(d) is
a generalized power decay model, given the relative distance d between the primary
and secondary users [151]

gr(d) = 10 x log;( ) (3.3)

1
|l
where « is the path-loss exponent, and d is the distance between primary and

secondary users.
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3.2.3 Occupancy Detection Model

The received signal z,, is detected by a complex baseband equivalent of energy detector
test is used by each SU. The two hypothesis of present, and absent signals for an
observation period of T" or the equivalent of N samples for each time slot ¢. Test
statistics ®,,; for time slot ¢ for a large number fo samples N is assumed to be
Gaussian distributed (Central limit Theorem) [45].

N N
O s ~ N El|2e?] D Vizne?) (3.4)

n=1 n=1
The channel Noise is assumed to be Gaussian distributed with zero mean and variance
o2, and the signal to noise ratio p, = 02, /o2 where 02, = 3", V[|2,,|%]. Hypothesis

testing on the detection statistics yield the the series y,, i.e the occupancy perceived
by each SU. The uncertainty around spectrum sensing performance is quantified by
the probability of correct detection Py(r), and the probability of false alarm, and
Pg(r) can be defined using central limit theorem approximation for large number of

samples N as described in Equation-1.8.

The probability of detection P; = 1 — P, is the probability of observing the
channel correctly as busy, while the probability of false alarm Py is the probability of

observing occupied channel while the primary user is idle.

oy
- 1
2
+~
§ 0.8F .
% 0.6
o 0.
Z04f —SNR dB=-30| A
= —SNR dB=-15
= 02 —SNR dB=-5 | |
Holhe _
2 SNR dB=0
—
Q_‘ O 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Probability of false alarm Py
Fig. 3.1 Energy Detector ROC Curve for different values of p,. (N = 1000)
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Fig. 3.2 Energy Detector ROC Curve for different values of N ( SNR p, dB = -10)

Secondary user’s model is HMM with transition P, Emission E, matrices, and
initial state distribution p(zo). Using constant false alarm based approach (CFAR),
the threshold A is calculated, for a large number of samples /N using inverse Q-function.

Given PU channel activity z1. to the SU spectrum perceived occupancy vy, 1., where:

T1t = T1y ., T, T € [07 ]‘] (35)
Yr 1t = Yr s -Yrt, T € R7y € [0’ 1]

The emission matrix E, of each SU that maps Markov chain based PU channel

activity to the observations y, j.4:

L= Py(r)  Py(r)

LA P re{1,2,., R} (3.6)

3.2.4 Local Spectrum Prediction Model

Consequently, define Z, . as the predicted state sequence by rth SU based on v, 1.4
observations, at time instant ¢, then HMM Bayesian model is a two step process

prediction and Update [126]:

i'7’,1:t = il--itv S [07 1] (37)
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1. Prediction: Chapman-Kolomogrov equation
p(jr,t‘yr,lztfﬁ :/XP(l’t’%fl)p(fr,tq‘?/r,l:tfl)dwtfl (3.8)

2. Update: Bayes rule

p(?/r,t‘xt)P(SUt |yr,1:t71)
P(Yrt|Yr1:0-1)

pr(£‘r,t|yr,1:t) = (39)

To insure the probability is normalized to 1, the normalisation factor is:

pr(yr,t|yr,1:t—l) :/Xp(yr,t|xt)p(xt|yr,1:t—l)dxt

The observation sequence by rth SU is a function of the PU activity, channel
propagation and signal detection model i.e. 1.4 ~ p(yr1:4) = f(¢t, pr|Pa, Py, 1, 6). For
a finite state space HMM, local prediction is utilizes forward backward algorithm to
estimate the joint posterior probability of primary user activity and secondary user’s

observation sequencesp(Z,. 0., Yr1:0-1) [2, 3, 52].

P(Zr0:4, Yr1:t—1) [Hp Tyl w4 1 11 p(ye|2e) (3.10)

The prediction problem can be formulated using the Bayesian notion p(&|y1.41)
as the probability of the next state given a vector of past observations. Using the

Bayesian definition of joint probability relation above:

b xrt‘yrlt Z p $t|It 1 ﬁr,t‘ym;t—l) RS {172}- (3-11)

Trt= =1

The last term in the equation above, represents the predictive posterior probabil-
ity at time instant ¢ given the observation sequence. This probability can be calcu-
lated using the Forward-Backward algorithm described in Sectionl.4 (practically only
the forward probability is required). Finally, local one step-ahead prediction decision
(Equation-3.7) is produced using binary hypothesis testing on test statistics based on
threshold (:

By = (3.12)

0 Available p(Z,4|yr1.0-1) > ¢
1 OCCUpied p(i‘r,tlynl:t—l) < C
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The test statistics p,(Z,¢|y,14-1) (i.e. predictive posterior probability) describes
the confidence in next state prediction given the observation sequences up to current
state. The probability is non-stationary random variable and a function of individ-
ual SU observation series. However, analytical expression of the stationary conditional
predictive posteriori (and hence error probability) is counter-intuitive, and hard to ob-
tain in a closed form for arbitrary FSM models [35, 53]. Alternatively, prediction error
performance can be analysed using numerical approximation of local test statistics to

calculate single user mean prediction error (Subsection-1.4.4) [2, 3].

3.3 Theoretical Analysis

In this section, we present mean prediction error approximation based on the
state posterior probability for the system presented in Section-3.2. The work is
motivated by the pioneer work in [35, 37, 145] on the recursive posterior estimation
performance of finite state Markov machines. The theoretical analysis addresses the
stationary predictive posterior distribution of HMM based SOP. A new generalized
Beta-Bernoulli approximation of the predictive posterior probability for local HMM
based spectrum predictors is proposed. Subsequently for cooperative prediction,
a new generalized Beta-Binomial GBB approximation of HMM decision fusion is
also presented in Chapter-4. The results show that the GBB approximation is no
worse than a loose upper bound of HMM stationary predictive posterior probability.
The approximation effectively captures with high accuracy the minimum and maxi-

mum values of HMM stationary distributions for constant false alarm based predictors.

Ultimately, HMM conditional predictive posterior (and mean perdition error) can
be approximated based on the same distribution family of Markov chain without loss
of optimality due to confining the distribution selection to the same predictor class

MC (See Minimax Universality in [35]). The theoretical analysis results summary:

o Generalized Beta-Bernoulli approximation of the predictive posterior probability

for HMM based spectrum predictors.

o Mean prediction error model, and numerical estimations for local spectrum pre-

diction.

The definition and entropy of mean prediction error are presented in Subsection-

1.4.4. Subsequently, ideal sensing scenario as a baseline performance is presented



3. Hidden Markov Model based Local Prediction 59

in Subsection-3.3.1. Subsection-3.3.2 traces HMM posterior probability in non-ideal
system model described in Section-3.2. Finally, a generalized Beta-Bernoulli approxi-
mation is proposed for mean prediction error in Subsection-3.3.3 based on the recursive

calculations presented in Subsection-3.21.

3.3.1 Ideal Sensing (Markov chain)

In this subsection we address mean prediction error for the special case of ideal sens-
ing or Markov chain model. Under ideal sensing assumption i.e (P = 0,FP; = 1)
HMM collapses to a Fully observable Markov chain. The marginal state probability
in Chapman-Kolomogrov equation after dropping the r subscript (All users receive

the same sequence)™*:

pr(xe) :/Xpr(xt‘xtfl)pr(xtfl)dxtfl (3.13)

Consequently, given the transition probability p(xi|z;_1) of a two state Markov
chain, the stationary distribution of the latent state process p(z;) is a Bernoulli random

variable [38]. The probability mass function is given by:

vy = p(z; = 0) = = Ej) :_'lg —9) (3.14)
(1-0)

vy = p(zy = 1) T -+ (1-0)

which satisfies the condition [38]:

p(z:) = p(zi—1)P (3.15)

where the row vector p(z;) = [v; w9]. The mean prediction error can be
calculated using the entropy rate of the Markov chain defined by the transition

matrix, and it’s stationary distribution.

H(me) > H(we|xi—1)
H(zy|zi—1) = H(Ber(1 —0))v; + H(Ber(1 — p))vy
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Where
H(Ber(z)) = —p(x)logy p(x) — p(1 — x)logy p(1 — x) (3.16)

is the entropy of a Bernoulli distributed random variable, and wv; is the stationary
distribution of state i € [0, 1]. Fig.3.3 shows the prediction error entropy against the
probability to remain in busy/idle states u, 8, for all the values when (u = 6) under
perfect sensing. The result is trivial as prediction error depend on the primary user’s
uncertainty in remaining in busy/idle state manifested by the pair ((1 — u), (1 —6)).
Practically, the result presents two significant limitation for HMM based predictors,
the first being the lower bound on the spectrum prediction error, as the system com-
pletely defined by (u, #). Thus, the secondary user’s best possible performance is com-
pletely dependent on the primary user’s statical distribution, and transition matrix
barring measurement errors. The second outcome, shows that under perfect sensing
cooperative hard combining (Chapter-4) has no impact on improving the prediction
error. This outcome is trivial, as all secondary users will have the exact prediction of
the observable Markov chain.

1 . 2\

Theoratical
-€>+ Simulated

Prediction Error Entropy H(7,)
o o o o
o ~ o ©

o
o
T

1

x ' 1 —d
0.2 0.4 0.6 0.8

p=10

Fig. 3.3 Prediction Error Entropy

Finally, Bernoulli stationary distribution of Markov chain infers the validity of a
similar approximation for non-ideal sensing case. The next subsection provides theo-
retical analysis of HMM posterior probability, and provide the theoretical background

for Beta-Binomial approximation for mean prediction error in subsection-3.3.3.
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3.3.2 Non-ideal Sensing (HMM)

In this subsection we address the general case of non-ideal sensing i.e. the sys-
tem model described in Section-3.2. The bounds for mean prediction error pre-
sented in Subsection-1.4.4 concluded that mean prediction error required the complete
characterisation of HMM predictive posterior probability. The posterior probability
p(Zrt|y1:e—1) can be calculated recursively, and is defined as non-stationary Markov
chain state information variable [37, 146]. Goldsmith et al.[37] and Kaijser [41] pos-
tulated that under limited assumptions the probability p(z:|y;—1) defined as State

Information Variable is distributed as non-stationary Markov chain:

P(Wris1[thrs) 2 p(rirr = althy, = §) = (3.17)
Z 1[yr,t : f(ﬂ?yr,t) = CY] 'p(yr,t|wr,t = ﬂ)
rtE€X

where 1,4, 1, +41 € (0,1), and is given by

Vrp = P(Trt|Yr:-1) (3.18)

¢T7tD(yr,t)i f(¢T,t7 yr,t)

B _ B 1—5 L= (yr,t:LB)
p(¢r,t+1—o‘¢r=t_5)_{ I6; ra= f(yr =2,0)

[I>

w'r’,t—l-l -

(3.19)

Where P is the transition matrix, D is a matrix where the jth diagonal term is
pr(Yrt = jlz1), and 1 is a unit column vector. The posterior probability is a function

of the signal to noise ratio p,, given HMM transition and emission probabilities i.e.

Yrt Y = f(pTl-Pd? anu? 9)|1/1t71)-

For the system model in Subsection-3.2, the number of states is limited to 2 which
to be substituted in Equation-3.18. Prediction error can be calculated instantaneously,
and the mean limiting prediction error can be computed using Equation-3.21 derived
from Equation-3.18. Equation-3.21 generates posterior probability (state information
variable) samples based on a non-stationary Markov chain. However, the stationary
distribution of non-stationary Markov chain can be approximated with a binomial
process with non-constant success probability.

The next subsection addresses the numerical approximation of local prediction error

based on Beta-Binomial distribution.
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Urali) = [1 =4, 9] i€ {0,1}. (3.20)
Frns ) g{ Pr+ (1= p)(Pn = Pp) + (p+0 = 1)) = Pr)(1 = Pn)/(1 =) gy =0
o P+ (1= ) (P — Pp) + (n+ 0 = 1) (0 = Py) P /9 e = 1

3.3.3 Generalized Beta-Bernoulli approximation of local pre-
diction error
Define [a,b] the minimum and maximum values for v, ;, respectively. The bounds

represent two extreme cases for SU predictive posterior value based on it’s respective

detection performance P, Py, as well as limit the probability space of 1), :

a<t<b (3.21)
a:¢T,t7Pd:1
b:wr,tapd:()

Based on the inference in Subsection-3.3.1, HMM stationary distribution can be
approximated by Bernoulli process parametrized by the instantaneous non-stationary

predictive posterior probability:

Dr(Zrt|thre) ~ Bernoulli(i,.,) (3.22)

Where each secondary user’s prediction Z,; in Eqg-3.12, and ¢ is the detection
threshold. Then, the posterior probability 1), is generalized Beta distribution with
hyper-parameters «, § in a probability space defined by [a,b] (setting a = 0,0 =1
bears the standard Beta distribution [50]):

P(¢rsla, B,a,b) ~ Beta(a, 8,a,b) a, 5 >0 (3.23)

A (wr,t - a)a—l(b B djr,t)B_l
Pl 009 = g0 30— ayero

B(a, ) = /01 1911 — )Pt

Where B(a, 3) is the standard Beta function. The proposed generalised Beta-

Bernoulli approximation selects the stationary distribution from the same family as
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Markov [35], while Beta distribution is the conjugate prior of Bernoulli Distribution
[48]. The proposed prior distribution models the uncertainty in the Bernoulli param-
eter 1, for each user r and time instant ¢. Subsequently, The marginal predictive
posterior distribution of HMM can be created by integrating the posterior probability
Y, over the parameter likelihood L(t,.4|p,, ). The compound predictive posterior

probability is then given by generalized Beta-Bernoulli distribution:

b
ﬁ(xr,t+1’a7 5) = /a ﬁr(l'r,t+1|¢r,t)]5(1/1r,t‘aa B,a, b)dwr,t (3-24)
P(xr 41|, B) ~ Beta — Bernoulli(c, 3)
f(xr,t+1’a> ﬁ)

B((#r441 + @), (1 = Zrea + 8))(b — a)
_ (3.25)
B(a, )
0.5 T T T T T T T
___________ ===+ Single Fusion Simulation
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Fig. 3.4 Beta Bernoulli Approximation of HMM prediction error

Figure-3.4 displays the Beta-Binomial approximation in this subsection, along with
simulated values for mean prediction error in local spectrum prediction. Ideal sensing
error values present the lower bound for performance under all channel conditions e.g.
signal to noise ratio values or P,,, Py values. The case study analysis in Section-3.4
provides an in-depth look at mean prediction error with respect to the model, and

scenario parameters.
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3.4 Case Study Analysis

The contribution of this section is the simulation and local prediction error perfor-
mance analysis. Mean prediction error is presented as a function of state transition,
and channel conditions. Specifically, we model the prediction error of one step-ahead
(single time slot) prediction against the channel detection errors, as well as primary
user’s state transition probability. Prediction error is also investigated against the
observation sequence length, to examine the correlation between prediction accuracy,
and the number of samples required to calculate the next state probability. We further
examine the prediction error of two step-ahead, based on incorrect one step-ahead

prediction.

This case study addresses the two scenarios of ideal sensing, and mnon-ideal
sensing. The first case is considered when P,, = P; = 0, while any arbitrary values of
P,,, Py represents the error introduced by spectrum sensing/detection functions. The
accuracy of spectrum prediction is measured by 7. the prediction error. In general,
asymptotic calculation of the stationary distribution is computationally expensive,
and requires optimized methods such as particle filter state estimation [126]. How-
ever, the ideal sensing prediction error m. when P,, = Py = 0 is calculated based
on u, 0 only. The results for non-ideal sensing are calculated by recursively running
Monte-Carlo simulation, and calculating the arithmetic mean 7, = lim — > " ,(m;)

n—oo n,
(Mean Prediction Error).

Table 3.1 Local Prediction simulation parameters

Variable Definition Value
K Number of Discrete HMM Hidden States 2
L Number of Discrete HMM Observed States 2
P, Probability of Miss-Detection [0,1]
Py Probability of false alarm 0,1]
i Probability to remain in busy State (0,1)
0 Probability to remain in idle State (0,1)

This case study investigates mean prediction error dependency on:

1. Prediction error 7. as a function of N
To measure the correlation between the prediction accuracy on the number of

observation events NV, i.e. to measure to convergence of mean prediction error.
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2. Prediction error 7. as a function of P, and P
To measure the correlation between the prediction accuracy, and the detection

accuracy represented by .

3. Prediction error 7, as a function of u, 60
To measure the correlation between the prediction accuracy and state dwelling

probability represented by A and 6.

4. Prediction error 7. of successive slots.
To measure the prediction error, given an error occurred in predicting the pre-
vious slot. The goal is to identify the accumulated error of successive slots

prediction.

The result shown in Fig.3.5 displays the mean prediction error of a single slot 7,
as a function of the length of observation sequence. The probability to remain in a
busy or an idle state is chosen as p = ¢ = 0.7, and detection Error P,, = Py = 0.1.
The simulation results are averages of different observation sequence lengths. The
non-stationary nature is reflected on oscillating average mean prediction error.
However, as the length N — oo the average prediction error converges to a constant
value. As n — oo,m. = Const, the mean prediction error value is completely
defined by the values of u, 0, P,,, Pr. Thus, the Non-stationary Markov chain of the

probability P(z|y;,—1) converges to a stationary distribution.

In Fig. 3.6, the prediction error 7. in single slot is presented as a function of the
probability to remain in a busy state y when Py = P, = 0.1. The results intuitively
showed that prediction error increases as the transitional probabilities approaches
the equally likely for each state (uniform distribution). Thus, as values of u, 6 are
further away from 0.5, the channel is more predictable and mean prediction error
depends on g, 0 for any fixed pair of Py, P,,. Mean prediction error approaches it’s
maximum value when both or either state transition approaches 0.5. In Fig.3.7
the case where y = 6 represents uniform stationary distribution case of Markov
transition probabilities. The mean prediction error is following a linear function of
1,0 with maximum error at 4 = 6 = 0.5. This also infers that limiting prediction

error distribution is completely defined by the set u, 0, P, P.

Prediction detection Fig-3.9, and prediction false alarm Fig-3.10 display mean

prediction error of a single slot as a function of the detection error probability P,,, Ps
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Fig. 3.6 Single User prediction Error Vs. Channel occupancy probability.

where 4 = 0 = 0.7. It infers that the mean prediction error is an increasing linear
function of P,, when the difference P,, — Py > 0, and decreasing linear function when

P, — Pf <0. When P, Py are grater than or less than 0.5, HMM predictor per-
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Distribution case

formance is symmetrical. Fig.3.8 displays mean prediction error for selected samples
of (P, Pf) when (u =6 = 0.7) i.e. v, = v = 0.5. The mean prediction error(7,)
approaches 0.5 i.e. no information can be deducted from the stochastic source when
the values (P,, + Py = 1). In practice, secondary users have no control over the values
of (u,0) i.e. the primary user’s statistics. Thus, only Fig.3.8 is available to secondary
users, and so the secondary user’s spectrum prediction accuracy can be evaluated
relative to spectrum sensing errors P,,, Py. Finally, Fig.3.9 and Fig.3.10 present the
partial prediction detection and false alarm errors described in Subsection-1.4.4. The
results shows how prediction detection against sensing miss-detection probability are

weighted components of mean prediction error.

The cost of making a incorrect prediction in the first slot prediction on the accuracy
of subsequent slot prediction is shown to be excessively high in both Fig.3.12, and
Fig.3.11. The mean prediction error is plotted against the transition probabilities in
Fig.3.12, and in Fig.3.11 against detection probabilities. The prediction error remains
higher than 0.5, and increase/decrease in proportion to the difference (P,, — P) in
contrast to single slot prediction. If both u, 6 are either below or above 0.5, the mean
prediction error remain excessively high. The results infers that first order HMM mean
prediction error for successive slots is excessively high given the sequential prediction
is based on erroneous value. The inference in these results is that first order HMM

might no be suitable for state duration prediction to predict that state of 7 slots.
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Results Summary The mean prediction error is shown -through simulation- to
converge as N <— oo to a distribution defined completely by the set p, 0, P,,, Pf. How-
ever, mean prediction error remains dependent on p,60 even in P,, = Py = 0 i.e.
perfect sensing which can be relatively unacceptable for many prediction applications.

In other words, even if the Markov chain is ideally observable, the mean prediction
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error remains high as a function of p, 6. Additionally, two step-ahead prediction has
higher error probability in when based on wrong one step-ahead decision of the previ-
ous prediction. Thus, an explicit duration HMM is a more suitable candidate for such

prediction scenarios with a large prediction span.
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3.5 Summary

In this chapter, we proposed a local prediction algorithm based on hidden Markov
model for spectrum occupancy. Then, we presented an analytical approximation of
HMM prediction error performance. The results of analytical approximation show that
the GBB approximation is no worse than a loose upper bound of HMM stationary
predictive posterior probability. The approximation effectively captures with high
accuracy the minimum and maximum values of HMM stationary distributions for
constant false alarm based predictors. Additionally, we presented a case study of
the hidden Markov model based prediction, and simulated the performance bounds
of mean prediction error against the model parameters in terms of channel sensing

errors, and channel occupancy transitions.



Chapter 4

Cooperative Spectrum Prediction
based on Hard Fusion

In this chapter, we address hard fusion based cooperative prediction and the expected
prediction accuracy gain based on the local prediction model presented in Chapter-3.
The chapter provides the analytical approximations of the hard fusion based SOP as
consequence of the approximation presented in Subsection-3.3.3 for local spectrum
prediction. For cooperative prediction, a new generalized Beta-Binomial GBB
approximation of HMM decision fusion is proposed. Performance comparison to
assess the effectiveness of the GBB approximation are presented in terms of mean
prediction error. The results show that the GBB approximation is no worse than a
loose upper bound of HMM stationary predictive posterior probability. The approxi-
mation effectively captures with high accuracy the minimum and maximum values of
HMM stationary distributions for constant false alarm based predictors. This con-

tribution of this chapter is submitted to IEEE communication letters Subsection-1.5.2.

Moreover, the case study analysis contribution of this chapter is published in
the conference proceedings of the IEEE International Conference on Communications
(ICC’2016) workshops [3]. The work in [3] extended the prediction accuracy perfor-
mance analysis of local HMM SOP in [2] to homogeneous hard fusion based coopera-
tive SOP. The results have shown that hard decision fusion considerably improved the
prediction performance compared to local user SOP. Section-4.1 provides background
and related work in cooperative work in cooperative predictio, Section-3.2 describes
the system model for HMM based prediction, while Section-4.3 elaborates on the

generalized Beta-Binomial GBB approximation of majority based cooperative HMM

71
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predictors. Finally, Section-4.4 presents case study analysis of cooperative prediction

based on hard fusion.

4.1 Background and Related Work

Finite State Markov machines (FSM) constitute a major portion of local spectrum
modelling literature. Spectrum prediction in single secondary user environment
has been dubbed local spectrum prediction [43]. Consequently, cooperative spectrum
prediction was proposed to improve the collective accuracy of spectrum occupancy
prediction.  Cooperative fusion of secondary user’s decisions has been studied
extensively to address diverse optimization problems, particularly in DSA spectrum
sensing. A multitude of decision fusion techniques such as hard fusion (HF) and
soft combining were used for temporal and spatial fusion of local node decisions [45].
However, literature on cooperative spectrum prediction is limited. The proposals
presented an incomplete analysis of cooperative prediction accuracy improvement.
In [43] cluster formation, and coalition based game theory were implemented for
multi-primary, multi-secondary user environment. The study presented the total
HF accuracy improvement, but the results lacked fine details of causes of improve-

ment in terms of primary user activity patterns and secondary user’s sensing accuracy.

The work in [115] proposed a cooperative Bayesian non-parametric framework
for primary user (PU) transmission monitoring. The model tracks PU signal
amplitude at each secondary user (SU) node based on non-linear particle filter. The
non-parametric prior of the cooperative PF mixture model is a Beta distribution.
The study presented a quantitative comparison between communication cost and
prediction accuracy for single and cooperative. In SOP literature, the work in [43, 152]
proposed a coalition game for cooperative multi-primary user activity monitoring
based on HMM predictors. However, prediction accuracy results were limited to
prediction performance under multiple PU users scenario. Prediction accuracy gains
from the fusion technique, or robustness for wireless channel shadowing were not
explicitly identifiable. In our previous work presented in chapter-3 [2], we addressed
the issue of prediction error performance of HMM, relative to spectrum sensing
errors and primary user activity patterns, as well as a generalized Beta-Bernoulli

approximation for local prediction error.
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In Section-4.3, we present a generalized Beta-Binomial approximation of coopera-
tive hard fusion error performance. In Section-4.4, we further extend the performance
analysis of local spectrum prediction, and address possible gains from cooperative
spectrum prediction. In particular, we present an analysis of secondary user’s mean
prediction error in terms of primary user’s activity pattern, and spectrum sensing
errors. We utilize Bayesian filtering, and known information theory inequalities, to
express mean prediction error for single secondary user. Then, we extend the analysis
to Hard Fusion based cooperative spectrum prediction to present possible improve-

ments of cooperative spectrum prediction.

4.2 Cooperative Prediction Model Formulation

In this section, we present a hard fusion based cooperative spectrum prediction.
Similar to local prediction in Chapter-3, a DSA time slotted system with one
primary user and R secondary users is assumed. FEach of the R secondary users
opportunistically attempts to utilize spectrum holes on the primary user’s channel.
The secondary users are assumed to be uniformly distributed around the primary
user. The SU’s employ local spectrum sensing on each time slot, for a duration 7.
The primary user occupancy detection is generated as an (ON/OFF) model. The
SU (j € R) has it’s own pair of (P7, PJ{ ) values, that represents it’s channel sensing
error performance for the secondary user. The probabilities (F,,, Py) are defined as
the probability of miss-detection, and probability of false alarm, respectively. The
values depend on the level of signal to noise ratio SNR. (p,) at each secondary user
which is function of distance to the primary user. Following the spectrum sensing, the
primary user ON/OFF pattern is passed to a local HMM predictor. The predictor
estimates the probability of presence/absence of the PU in the one-step ahead time
slot. The predictor models each spectrum sensing outcome as an observation vector
of a partially observable Markov chain. HMM model training/parameter estimation
is performed on-line using Baum-Welch algorithm. Cooperative spectrum prediction
uses hard fusion rule of local spectrum prediction decisions to generate the cooperative
decision. HF strategy employs (m out of R) rule with state posterior probability

based threshold to generate a cooperative spectrum prediction decision (Fig-4.1).

Homogeneous cooperative prediction refers to the case when secondary users have

identical spectrum sensing error performance in terms of (P,,, Pf). While Heteroge-
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neous cooperative prediction refers to the case where secondary users have different
sensing error performance. The latter incorporates additional dependency on cluster-
ing algorithm and functional dependence on the relative accuracy, while the former
depends only on the local spectrum prediction performance. Cooperative spectrum
occupancy prediction adopts two stages of decision on the presence or absence of the
primary user. The first stage is local spectrum prediction by each secondary user, while
the second stage local predictions are fused to generate the cooperative decision to be
adopted by all nodes. Each user’s local prediction decision is labelled z,; € {0,1}.
The hard fusion strategy based on m out of I? the cooperative decision X;.p; at time

instant ¢ can be defined as in (Equation-4.1) [3]:
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(4.1)

. 1 (Busy) €n:>m
T1:Rt =
0 (Idle)  €ne<m

Emt — Z 1[xr,t]
r=1

The three notable rules for m are: m = 1 that represents the logical (OR), while
R
2
(Majority) decision rule. The three rules are compared in case study analysis(Section-

setting m = R implements the logical (AND) rule. Finally setting m = % implements
4.4)in terms of mean prediction error. However, analytical expressions of the Binmoial
approximation for homogeneous cooperative prediction are presented for the majority
rule in Section-4.3. Consequently, the generalised Beta-Binomial approximation in

subsection-4.3.3 also considers majority hard fusion rule.

4.3 Cooperative HF Theoretical Analysis

In this section we examine analytical approximations for hard fusion based spectrum
prediction. The binomial approximation in Subsection-4.3.2 addresses the majority
rule case presented in Section-4.2. The approximation severs as upper bound for hard
fusion prediction error performance. On the other hand, generalized Beta-Binomial
approximation for HF cooperative prediction is presented in Subsection-4.3.3. The
approximation is an extension to local spectrum prediction approximation presented
in Subsection-3.3.3. Local prediction, ideal sensing, and binomial approximation pro-
vide comparison cases to assess the performance of hard fusion GBB approximation
[3]. The scenario models PU spectrum occupancy activity and SU energy detec-

tion/sensing/prediction at an equal distance from the PU transmitter [3].

4.3.1 Cooperative Prediction Error

The mean prediction error in the perfect sensing represents the lower bound given a
specific pair (i, ) [2, 3]. It is trivial to stipulate that under perfect sensing, all users
with identical channel error probabilities will have the same predicted state. Thus,
cooperative prediction under perfect sensing will not improve the prediction error
below it’s lower bound. The most important aspect is that due to the lower bound

set by perfect sensing, cooperative prediction error .. Thus, all values of 7y, T, that
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will result in 7, lower than the bound will be quantized at the bound value in the
equations (4.3), (4.4) ,and (4.5), i.e

Te = H(x|wio1), = Te < H(xe|mi1) (4.2)

Prediction accuracy of local as well as cooperative prediction can be measured by
the mean prediction error (7.) described in Chapter-3 [2, 3]. The cooperative predic-
tion error based on linear approximations of homogeneous cooperative users (Bino-
mial approximation) is presented in the next subsection. Finally, the miss-detection
probability and false alarm probabilities can be calculated as a function of the local

prediction counterparts.

4.3.2 Binomial approximation for cooperative SOP Error

Linear error approximation assumes a Binomial predictive posterior 1, ; of local predic-
tion. Numerical averages of the local prediction error are utilized to approximate coop-
erative prediction error for m out of R secondary users. Using the notion II,, I1,,, IT 7 to
indicate cooperative prediction probability error set, the cooperative error equations

can be calculated in (4.3) for homogeneous cooperative case:

B M—1
Hm = C(]a R)(l - 'ﬁ‘m)]ﬁ'ﬁ_] (4 3)
=0
~ M—1
Iy =1- Y C(j,R)mp(1— 7))
7=0

where C(j, R) is a binomial coefficient. For AND and OR fusion rules, the proba-
bilities reduce to the equations (4.4), and (4.5).

[1,(OR) = ()" (4.4)
{(OR) =1~ (1 —m;)"
I, (AND) =1 — (1 — 7,,)" (4.5)
My (AND) = (7f)
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Under OR rule, cooperative prediction miss-detection error (II,,) improves; while
cooperative prediction false alarm (II 7) degrades. On the other hand, AND fusion
rule improves cooperative prediction false alarm (ﬁf), while degrading cooperative
prediction miss-detection error(Il,,). The total (II,) is identical for both AND/OR
fusion rules. The approximation (quantized by ideal sensing minimum error) serves
as a lower bound for cooperative prediction error, and a benchmark for the general-
ized Beta-Binomial approximation in subsection-3.3.3. The approximation assumes
the binomial assumptions hold when HMM predictive posterior probability values are
stationary v,; = 1. However, as previously presented on Beta-Bernoulli approxima-
tion in Chapter-3, HMM predictive posterior probability values are non-stationary as
presented in Chapter-3. Thus, the generalized Beta-binomial approximation captures

time-varying nature of HMM predictive posterior probability values (Subsection-4.3.3).

4.3.3 Generalized Beta-Binomial approximation of coopera-

tive Prediction Error

Given the local spectrum predictive posterior probability ., is approximated by
generalized Beta-Bernoulli distribution in Subsection-3.3.3, the approximation for

Zi.pt, pr = p for m out of R homogeneous users is a Beta-Binomial distributed:

D(x1re+1) = f(K|R, a, B) ~ Binomial(R, ;1)
(b—a)(N+1) Bk+a,N—Fk+p)
S T(k+1DD(N —k—1) B(a, )

Where I'(t) is the standard Gamma function. The Beta binomial distribution
describes the probability of a majority secondary assess the channel busy (or idle) [49,
50]. Hyper-parameters of the Beta-Bernoulli process «, 8 are numerically estimated
using maximum likelihood estimation, or the method of moments for Beta distribution
based on ;. The samples of 1,; can be generated using the recursive equation-3.21
for R homogeneous SU’s. Using the method of moments, The values of a/, 5 can be
calculated as (Fig-4.2):
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Where t,.; = E(1,,) is mean value of the posterior probability random variable,
and o7, , = E((¢r, — r)?) is the variance. Finally, if the limiting distribution exists
tliglo P(xr4+1) then the subscript ¢ is dropped e.g. ¢, 2 Yy, t — 00. Fig-4.2 presents
GBB approximation hyper-parameters «, 8 as a function of signal to noise ratio p,.
Detection accuracy probabilities (Pf(r), Py(r)) equivalent of signal noise ratio for
CFAR SU detection are also presented in Fig-4.2.
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Fig. 4.2 GBB Hyper-parameters

Moreover, GBB Beta-prior is a loose upper bound approximation for the posterior
probability ., while binomial approximation is a lower limit for —10 > p, > —20

(Fig-4.3). Beta prior hyper-parameters in GBB approximation captures test statistics
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Fig. 4.3 GBB approximation of hard fusion mean prediction error

non-stationary state information variable underestimated by the Binomial approxima-
tion. The proposed GBB theoretical approximation matches the simulated example
with high accuracy for p, > —10 dB or P; > 0.9, Py = 0.1. The approximation holds

for arbitrary number of users with majority hard fusion rule (Fig-4.4).

Finally, GBB approximation is effective for all values of transition probabilities
when g = 6 for any number of users (Fig-4.5). Both Binomial and GBB approxima-
tions match maximum prediction error when p, < —20 dB or P; = 0.2, Py = 0.1 for
any arbitrary number of users (Fig-4.3). The next Section provides case study analysis
of HF fusion for AND/OR/Majority rules simulation.
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4.4 Case study analysis

The case study contribution of this chapter published in the conference proceedings
of the IEEE International Conference on Communications (ICC’2016) workshops
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[3]. The work in [3] extended the prediction accuracy performance analysis of local
HMM SOP in [2] to homogeneous hard fusion based cooperative SOP. The results
have previously shown that hard decision fusion considerably improved the prediction
performance compared to local user SOP. The simulation results are presented against

the Binomial approximation in Subsection-4.3.2.
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Fig. 4.6 Cooperative Prediction Error for Hard Combining, for 3/5/15 Users, for Ma-
jority Rule

Fig.4.6 and Fig.4.7 display mean cooperative prediction error (II.) for Majority,
and AND/OR rules respectively. The model values are set at (u = 6 = 0.7), and
only values of (P,, = Py) are displayed. Similarly, in Fig.4.6 for majority rule fusion,
the cooperative prediction error improves as the number of users increase. For
different pairs of P,,, Py in both figures, we confirm the lower limit of perfect sensing
for cooperative prediction error II,. Cooperative prediction error II, improves for
Majority) /| degrades (AND/OR) for channel error case P,,, Py > 0, where the level
of improvement is a function of the number of users. Similarly, Fig-4.8, and Fig-4.9
present the partial prediction error (in Subsection-4.3.1) values for 3/5/15 users when
P,, = Pf. Fig-4.8 present the prediction miss-detection error, while Fig-4.9 present
prediction false alarm error. Mean prediction error in Fig.4.6 is weighted sum (of

stationary distribution) of these partial prediction error. Prediction miss-detection
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Fig. 4.7 Cooperative Prediction Error, Hard Combining for 3/5/15 Users for OR/AND
Rules

and false alarm are only presented for majority rule. The partial prediction error

values complement the results in Fig-4.6.

Fig-4.10 for prediction false alarm, and Fig-4.11 prediction miss-detection,
present the same scenario for AND/OR/Majority rules for 15 users only. The figure
displays binomial analytical limits where we can distinguish the lower/upper limit
characteristics of the approximation. The figures complement Fig.4.7 since mean

prediction error in Fig.4.7 is a weighted sum of of the partial prediction errors.

Finally, Fig-4.12 for prediction miss-detection, and Fig-4.13 for prediction false
alarm present different detection false alarm Py settings for 15 Majority rule cooper-
ative users. The figures are the generalized case of partial error Fig-4.8, and Fig-4.9,
respectively. The figures highlights how the maximum prediction error shifts as val-
ues of P,,, P varies, where the curves are shifted version with the maximum error is
achieved when Py = 1 — P, . In Chapter-3, Section-3.4 case study analysis (Fig.3.8,
and Fig-3.9), we highlighted the observation where the mean prediction error(7.) ap-
proaches the maximum 0.5 i.e. no information can be deducted from the stochastic

source when the values (P,, + Py =1 or Py = P).
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Results Summary In conclusion, the choice of the threshold for the m out of R
in hard fusion is a function of the threshold adopted by each secondary user. The
lowest cooperative prediction error is obtained when hard fusion is identical to the
local prediction threshold. Thus, % = ( reflects the condition for the highest level

of improvement in prediction accuracy. For example, in Fig.4.6 the majority rule
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and ¢ = 0.5 provides the lowest cooperative prediction error II., while the choice
of ¥ = 0.5 for both AND/OR rules caused degradation in 7.. Secondly, the choice
of the hard fusion threshold can be adjusted to optimize partial prediction errors
i.e. cooperative prediction miss-detection 7,,, or cooperative prediction false alarm
7s. When the design requirements dictates weighted significance of either errors,
different threshold for cooperative hard fusion may provide better performance. The
performance of cooperative prediction error w, of homogeneous secondary users, is
traceable and identical. However, in the heterogeneous case, it has dependency of the
choice of the clustering mechanism. Thus, the impact of cooperative hard fusion is
dependent upon the variance of the spectrum sensing error probabilities (P, Pf, r €

1,..R).

4.5 Summary

This chapter presented a new generalized Beta-Bernoulli approximation of the pre-
dictive posterior probability for local HMM based SOP. For cooperative prediction,
a new generalized Beta-Binomial GBB approximation of HMM decision fusion is
consequently proposed. The effectiveness of GBB approximation is assessed in terms
of mean prediction error. The proposed GBB approximation is no worse than a loose

upper bound for HMM stationary posterior distribution.

Additionally, we presented an investigative analysis of the hidden Markov model
based prediction, and simulated the performance of mean prediction error against the
model parameters in terms of channel sensing errors, and channel occupancy tran-
sitions. We presented Hard fusion based cooperative spectrum prediction, and the
potential for better accuracy compared to local spectrum prediction. Future research

will investigate soft fusion cooperative spectrum prediction.



Chapter 5

Cooperative Soft Fusion for HMM
based Spectrum Occupancy

Prediction

In this chapter, soft decision based fusion for cooperative SOP is presented based
on the local prediction model presented in Chapter-3. In this chapter, we propose
different test statistics based on the prediction probabilities, signal to noise ratio, and
detection probabilities. Additionally, well known data fusion methods for soft test
statistics such as the maximal ratio, equal gain, and selection combining are utilized
for case study analysis for soft fusion based cooperative prediction. Finally, The soft
fusion based techniques are benchmarked based on hard fusion performance presented
in Chapter-4.

The case study analysis of soft fusion based SOP performance is analysed in terms
of the mean prediction error [2, 3]. Furthermore, soft fusion techniques are presented
are compared to local spectrum prediction, and hard fusion cooperative prediction to
assess the possible gains of soft fusion based prediction [2, 3]. The results show soft
fusion is superior, and more robust compared to hard fusion in terms of prediction accu-
racy. Section-5.2 describes single SU local prediction model, while Section-5.3 presents
cooperative soft fusion prediction techniques. Performance analysis, and concluding

=

remarks are presented in Section-5.4, and Section-5.5, respectively. The contribution

of this chapter is submitted to IEEE communication letters.

87
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5.1 Introduction

Statistical spectrum occupancy prediction (SOP) in dynamic spectrum access (DSA)
systems re-utilises the information obtained by spectrum sensing to predict the un-
derlying spectrum occupancy patterns [8, 45]. Sensing scheduling, channel selection,
and proactive hand-off can be optimised using spectrum prediction decisions. SOP
models are commonly based on Poisson processes, linear regression, neural networks,
and space vector machines [11]. The surveys in [4, 10, 11] provide the taxonomy and

framework of SOP techniques.

Finite state Markov machines (FSM) constitute a major portion of local spectrum
modelling literature. FSM based single user local predictors estimate the probability
of available time slot at one step-ahead in time [3]. Subsequently, cooperative multi-
user scenarios utilise local prediction probability at the secondary user (SU) nodes
as fusion test statistics. Cooperative prediction exploits the shared test statistics to
improve collective prediction accuracy. However, literature on cooperative spectrum
prediction is limited, and only a few address cooperative SOP based on soft fusion
(SF). The work in [115] proposed a cooperative Bayesian non-parametric framework
for primary user (PU) transmission monitoring. The model tracks PU signal am-
plitude at each SU node based on non-linear particle filter. The study presented a
quantitative comparison between communication cost, and prediction accuracy for sin-
gle and cooperative tracking scenarios. In SOP literature, the work in [43] proposed a
coalition game for cooperative multi-primary user activity monitoring based on HMM
predictors. However, prediction accuracy results were limited to cumulative prediction
error for multiple PU scenarios. Prediction accuracy gains from the fusion technique,
or robustness to wireless channel conditions were not explicitly identifiable.

he work in [3] extended the prediction accuracy performance analysis of local HMM
SOP in [2] to homogeneous hard fusion based cooperative SOP. The results have shown
that hard decision fusion considerably improved the prediction performance compared
to local user SOP. To the authors knowledge, soft fusion of HMM prediction is not
addressed in SOP literature. In this letter, soft decision based fusion for cooperative
SOP is addressed, and new proposed SF techniques are presented. SF based SOP
performance is analysed in terms of the mean prediction error performance. Further-
more, SF techniques are presented and compared to local spectrum prediction, and

hard fusion cooperative prediction [2, 3]. The results show SF is superior, and more
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robust compared to hard fusion in terms of prediction accuracy. Section-5.2 describes
single SU local prediction model, while Section-5.3 presents cooperative SF prediction

techniques. Performance analysis is then presented in Section-5.4.

5.2 System Model

Soft fusion based prediction assumes a discrete slotted time system with R number
of SU nodes distributed in space. Spectrum sensing collects spectrum occupancy
information at each time slot. The PU spectrum occupancy at time instant ¢ is
given by x; modeled as a first order Markov chain, and the SU observation of the
spectrum used by the PU is defined as y;. Thus, the stochastic model that describes
the spectrum occupancy/observation of SU/PU is given by a Hidden Markov Model
(HMM). Accordingly, at time instant (¢ — 1), using an observation series y;., 1, each
SU estimates the probability of the presence or absence of a PU for time slot ¢, and
based on this probability when a binary decision is made for the presence/absence
of the PU, we refer to this as local SOP. The local observations at (¢t — 1) on the
other hand, and any related test statistics, generated by each SU can be shared with
a fusion center (FC) to cooperatively predict the PU occupancy, which we refer to
as cooperative SOP. When information other than local binary decisions for SOP are
shared with the FC then we refer to it as soft decision fusion based cooperative SOP,
which is the topic of the work presented here. Local and cooperative prediction system

model is presented in Fig-5.1.

5.2.1 Primary user activity model

Define x; € {0,1} as the PU channel occupancy state at time slot ¢t. Then, z; is
modelled as an irreducible stationary Markov chain, where z; = 1 and x; = 0 represent
an busy and available channel, respectively. First order Markov chain assumes the
current state z; depends only on the previous state z; ;. The transition probability

matrix p(z|z,_1 = 1) for the two state Markov chain is given by:

P:[pz’j]zllflu 1;B] (5'1)

where, (u, 3) represent the probability of remaining in busy and idle states, respec-

tively. Given an initial condition z(, the PU’s occupancy can be fully characterized
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Fig. 5.1 Local and Cooperative Spectrum Prediction Model

by {p(zo), P}.
5.2.2 Occupancy Observation Model with Spectrum Sensing

The SU observation of the PU’s spectrum occupancy reflects the wireless channel
characteristics, and depends on the performance of spectrum sensing procedure. The
observation errors due to spectrum sensing are assumed due to log-normal shadowing,
and white Gaussian noise. The performance of the energy detector sensing is quantified
by the probability of detection Py(r), and false alarm Py (r) for the v SU node, where
r € {1,...,R}. The detection and false alarm probabilities are approximated using

the central limit theorem for a large number of samples NV as:[51]

)\—\/Nai(l—i—pT))
VN2 (1+pr)
A— NO')

P ~Q (2

where, A is the detection threshold, o2 is the noise power, and p, is the signal to
noise ratio (SNR) at the 7" SU node which is Gaussian distributed in dB scale with a
standard deviation (Shadowing parameter) of o4(dB). Each SU is assumed to utilize
a constant false alarm probability (CFAR) strategy [45] for deciding on A. HMM

process is characterized by the transition, and emission probability matrices, P and

Pd(r)%Q<

(5.2)
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E,, respectively, where the emission matrix E, for the r** SU is given by:

L= Py(r)  Py(r)
1—Pd(7”) Pd(T')

r =

(5.3)

5.2.3 Local spectrum prediction model

Given the emission matrix probabilities, the SU calculates the probability of
free/occupied p(Z,+|yr1:4—1) in a two-step recursive process of Prediction (Equation-
5.4), and Update (Equation-5.5) [126], where the update equation is used to predict

the subsequent state of the occupancy x;,; as the process continues iteratively.

Plardlyraa) = [ plala0)p(Enelynii)doi (5.4)

A p(yrt|xrt>p(j:rt|yr lzt—l)
P\ZTri|Yra:t) = : : : ’ 5.5
( t’y ! t) p(yr,t|yr,1:t—1> ( )

where, p(yr,t|yr,1:t—1> :/XP(yr,t’%)p(@ﬂyr,l;t—ﬂd%

The computations above require the estimates of P and E,, that is model parameter
estimations. At each SU node E, is obtained by computing Py(r) and Py(r) using (5.2)
by knowing all the related parameters, and the Baum-Welch training [? ] is used to
iteratively calculate P. The test statistic p(Z,+|yr1..—1) defined as the predictive poste-
rior probability is a function of individual SU observation series and thus an analytical
expression is hard to obtain in a closed form for arbitrary HMM models. Therefore,
numerical recursive calculation based on expectation-maximization algorithms is used
[53]. Finally, the local SOP is made by performing a binary decision using a detection
threshold ¢, given by,

(5.6)

. ) 0 Free P(Zrt|Yr1i—1) > C
r,t . A
1 Occupied p(Z4|yr1:0-1) < ¢

To evaluate the local prediction performance, single user mean prediction error
can be calculated from the predictive posterior probability [2, 3]. Empirically, under
the two state HMM model prediction error is a Bernoulli random variable F; = %, ©

xy, By € [0,1]. Then, m; and 7, are the instantaneous prediction error at time instant



5. Cooperative Soft Fusion for HMM based Spectrum Occupancy Prediction 92

t, and the mean prediction error respectively [2, 3].

T = P(Et = 1)
Te = tlgglo E(m) = lim — Z(m) (5.7)
The cooperative mixture model can be approximated based on 1, g, .

R
pw(fl:Rt|y1:R,1:t> = Zwr(er) X wr,t,er (58)

r=1

However, theoretical approximation is intuitive to calculate for all fusion rules. For
equal gain soft fusion, the mean value E(,;) can be utilised to calculate the error,
while the maximum value serves as an indicator for selection combining. Theoretical
approximation of soft fusion error is beyond the scope of this work. Instead simulation
bassed case study analysis is presented in Section-5.4. Proposed techniques along with

those in literature are presented in Section-5.3.

5.3 Soft cooperative Prediction Techniques for

Spectrum Occupancy

In this section, we present the proposed cooperative prediction methods based on
SF of local prediction probabilities. The local test statistics p(Z;¢|yr14-1) for CFAR
SU is characterized by p, and Py(r) [2, 3]. In order to fuse the test statistics for
cooperative prediction, three known strategies are considered: (i) maximal-ratio, (ii)
equal-gain, and (iii) selection combining methods. It is worth noting that, though
the SF' strategies are known in literature, the SF test statistics and the concept of

soft-cooperative prediction are identified as novel in this work.

5.3.1 Maximal-Ratio Based Soft Fusion

Given a non-negative normalised weighting function w(f,) over all the R local test

statistics p(Z,+|yr1.4-1), the cooperative SF based prediction probability using maximal



5. Cooperative Soft Fusion for HMM based Spectrum Occupancy Prediction 93

ratio combining (MRC) is defined as follows:

R
pw(fﬁlzR,t|y1:R,1:t—1) - Z wr(er)pr(xr,t|yr,1:t—17 07") (59)
r=1
0,
w(0,) =

where 6, is the test statistic 6, at the 7" SU node. We propose four techniques
based on MRC using three different functional models for the parameter 6, as given

below:

« Method MRC-1: Based on test statistics 6, = p(Z,¢|y1..—1) The observation
sequence by rth SU is a function of the PU activity, channel propagation and
signal detection model i.e. .10 ~ p(yr1) = f(t, pr|Pa, Py, pt,6,). Thus, the
predictive posterior probability measure the confidence of each secondary user
that the spectrum opportunity is available/occupied (Section-3.2). Accordingly,
the technique to exploit diversity in secondary user’s prediction decision, without

additional side information exchanged with fusion centre.

« Method MRC-2: Based on the probability of detection 6, = P;(r) The proba-
bility of successful detection is a function of signal detection model (Subsection-
1.4.2). Accordingly, the technique to reflect the heterogeneous uncertainty in
prediction decision as a function of detection accuracy. However compared the
MRC-1, it ignores the uncertainty in the prediction decision induced by the
observation series, and HMM model parameters. Practically, each SU would

transmit the value along with fusion test statistics to the soft fusion centre.

« Method MRC-3: Based on the log of probability of detectiond, = log(Py(r))
This technique is a log transformed version of MRC-2 above, and is aimed to add
robustness to the soft fusion decision. The log transformation is used to reduce
skewness in the probability of detection values. the skewness is introduced by the
wireless channel impairments and spatial distribution could result in P; values

with high leverage and influence on the cooperative decision.

e Method MRC-4: Based on signal to noise ratio 6, = p,
This diversity combining techniques adjust the gain from each secondary user

proportional to the signal, and inversely proportional to the channel noise. The
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well known soft fusion technique [45] is the baseline of maximal ratio combining
methods MRC-1,MRC-2, and MRC-3.

The variations in the weighting functions given is expected influence the performance
of the cooperative mean prediction error as further analysed in the simulation section.
At an equal distance from the PU, SNR values p, are identical for all SU’s. Then,

MRC approach is expected to perform similar to equal gain approach described below.

5.3.2 Equal-Gain Based Soft Fusion

Equal gain (EG) combining assumes all secondary users have an equal "weight" i.e.
w, = —. The fusion strategy ignores the heterogeneous nature of SU’s detection and
prediction performance. However, it does not require the additional computational

operations compared to MRC.

i

R
R Zpr('rr,t|yr,1:t71> (510)

r=1

pw(th,t’yl:R,l:tq) =

5.3.3 Selection Combining Based Soft Fusion

In the selection combining (SC) based approach the best test statistic from set In the
selection combining (SC) based approach the test statistic with the maximum SNR
out of all the SU nodes is selected to perform the prediction at the fusion centre, as

given below.

pw(j\jlzR,t‘ylsR,l:tfl) = Inp%xp(ijr,t|yr,1:tfla pr) (511)

Note here that the shadowing in the wireless channel will have a significant influence
in the fusion process for SC. At an equal distance from the primary user, signal to
noise ratio values p, are identical for all SU’s. Then, soft fusion weighting function

(wg, ) is similar to equal case approach.

5.4 Performance analysis

Prediction accuracy of local and cooperative prediction can be quantified by the
mean prediction error (7.) [2, 3], where E; = 1.5 @ x; in (5.7) for the cooperative
prediction case. The error performance of soft cooperative SOP is compared against
the local prediction (Z,.), and also against ideal sensing (Pp(r) = 1, Pp(r) = 0)

cases. Moreover, hard fusion (HF) based cooperative SOP [3] is also compared
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to SF techniques to highlight the improvement in the SF approach. This analysis
consider the homogeneous users scenario where all users are at equal distance from
the primary user [3], noting that the treatment of random SU positions requires
the inclusion of stochastic geometry based modelling for accurately studying the
prediction performance and is not in the scope of this paper. The values of the
test statistics p(Z,¢|y,14-1, pr) are stochastic in nature based on the system model
described in Sec-II. Table-5.1 presents the parameter values for local SOP model used
in the simulations, where we assume ¢, Py(r) and o2 are the same for all the SUs. In
which case our performance analysis reflects the improvement considering the use the

spatial diversity for SOP.

Table 5.1 Simulation Parameters

Variable ‘ Definition ‘ Value

1, B Transition matrix parameters | 0.7,0.7

¢ decision threshold 0.5

o2 -95 dBW
R Number of Users 5, 15

Py Probability of false alarm 0.1

‘ Simulation Runs per sample ‘ 40, 000

Fig-5.2 presents the mean prediction error curves for all the techniques described
in this work and are compared with other techniques. The performance curves for
the MRC and EG techniques overlay as seen in Fig-5.2 due to the homogeneous
simulation environment. Minimum prediction error for local prediction error is
achieved under high detection accuracy (at p, > —10 dB or P; > 0.9, Py = 0.1). For
lower signal to noise ratio values, HMM local prediction error performance degrades
as a function of signal to noise ratio p.. Consequently, cooperative prediction is
expected to enable predictors to reduce prediction error, and maintain minimum
error at worse channel conditions (p,) compared to local prediction. It was previously
shown that hard fusion of local prediction decision converges faster toward minimum
error at lower detection accuracy values compared to local prediction (Fig-5.3)[3]. HF
prediction error binomial approximation, as well as simulated cooperative prediction
error are presented in [3]. The binomial approximation error is lower bounded by a

minimum prediction error defined under ideal sensing conditions [2]. Comparatively,
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Fig. 5.2 Comparing the soft fusion mean prediction error for 15 SUs

SF techniques maintain minimum prediction error at even lower signal to noise
ratio values. Moreover, SF decreases the maximum prediction error as a function
of the number of cooperative users a feat not achieved by HF prediction (Fig-5.2
and Fig-5.3). Additionally, mean prediction error for SF techniques (EG/MRC)
reduce more rapidly as a function of the number of cooperative user compared to HF
techniques (Fig-5.3).

SF techniques add robustness to cooperative prediction error performance under
log-normal shadow fading (Fig-5.4). Firstly, SC error performance is more robust
compared to single user case as the fusion centre prioritizes the best user in terms of
pr. Secondly, SF techniques (EG and MRC) are more robust compared to HF tech-
niques under poor channel condition p, < —15 dB. Finally, SF techniques (EG and
MRC) are robust for different values of false alarm i.e. for different settings of CFAR
detection strategy (Fig-5.5). In contrast, hard fusion performance degrades under
the same settings toward local prediction values. In Summary, SF techniques provide
faster convergence toward minimum prediction error as a function of the number
of cooperative users. Robustness under shadowing, and detection performance are

superior to hard fusion techniques in terms of prediction accuracy.
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Minimum prediction error for local prediction error is achieved under high
detection accuracy (at p, > —10 dB or P; > 0.9, Py = 0.1). For lower signal to
noise ratio values, HMM local prediction prediction error performance diverge from
the minimum prediction error as a function of signal to noise ratio p,.. Cooperative
prediction is expected to enable predictors to reduce maximum prediction error, and
maintain minimum error at worse channel conditions (p,) compared to local HMM
prediction. It was previously shown that hard fusion of local prediction decision
converges toward minimum error at lower detection accuracy values (Fig-5.3). HF
prediction error Binomial approximation, as well as simulated error cooperative
prediction are presented in our work [3]. The binomial approximation error is lower
bounded by minimum prediction error defined under ideal sensing conditions [2].
Comparatively, soft fusion techniques maintain minimum prediction error at even
lower signal to noise ratio values. Moreover, soft fusion decreases the maximum
prediction error as a function of the number of cooperative users a feat not achieved
by HF prediction (Fig-5.2 and Fig-5.3). Additionally, mean prediction error for soft
fusion techniques (EG/MRC) reduce more rapidly as a function of the number of

cooperative user compared to HF techniques (Fig-5.3).

Soft fusion techniques add robustness to cooperative prediction error performance
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under log-normal shadow fading (Fig-5.4). Firstly, SC error performance is more
robust compared to single user performance since the fusion centre prioritize the best
user in terms of p,.. Secondly, soft fusion techniques (EG and MRC) are more robust
compare to HF techniques under poor channel condition p, < —15dB.Finally, soft
fusion techniques (EG and MRC) are robust for different values of false alarm i.e.
for different settings of CFAR detection strategy (Fig-?7). In contrast, hard fusion

performance degrades under the same settings toward local prediction values.

Results Summary Soft fusion techniques provide faster convergence toward min-
imum prediction error as a function of the number of cooperative users. Robustness
under shadowing, and detection performance are superior to hard fusion techniques
diversity gains in terms of prediction accuracy. Finally, alternative maximal ratio com-
bining based techniques conceptually requires less common control channel capacity

with identical performance to legacy techniques.

5.5 Summary

This chapter demonstrated soft fusion based techniques to improve prediction error,
by using spatial diversity, compared to single user error performance. Soft fusion tech-
niques are robust under shadowing, and for different false alarm probability settings.
Soft fusion is superior to hard fusion techniques in terms of robustness and prediction
accuracy. Future work includes heterogeneous cooperative scenario, and secondary

user clustering techniques with the use of stochastic geometry tool for analysis.



Chapter 6

Conclusion and Future Work

In this thesis, the primary focus is the key enabler for cognitive radios which is
spectrum prediction that plays an important role in optimizing cognitive cycle and
improving the spectral efficiency. In particular, this research is devoted to explore
Bayesian based techniques (mainly HMM) analytically, and through Monte-Carlo
simulations. Understanding performance bounds of HMM based spectrum prediction
allows us to understand the performance limitations, which is one of the key
contributions in the thesis. Throughout our research work, case study analysis is
presented to evaluate the performance of the proposed approaches. All the work in
this research has been peer reviewed and published, or submitted for publication. In
summary, the findings of this thesis focuses on two major folds; firstly, single user
(local) occupancy prediction where prediction model selection and performance are
addressed. Secondly, cooperative spectrum prediction performance of is studied for
both decision (hard), as well as data (soft) fusion. The main contributions of our

work are presented in Chapter-2 - Chapter-5.

In the first contribution, a survey in current models proposed in literature as well
as a consolidated framework based on sequential prediction theory are presented. It
is identified that Prediction model selection is not instantly clear in SOP literature
based on an in-depth review of sequential prediction. The review places techniques
adopted in literature into categories based on their theoretical predictor classes. This
classification approach highlights candidate prediction techniques suitable for SOP
scenarios not extensively covered in current literature. We extended mixture model
formulation to cooperative spectrum occupancy prediction using decision (Hard),

and data (Soft) fusion techniques. Finally, theoretical and practical challenges of
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sequential spectrum occupancy prediction implementation are elaborated.

In the second contribution, analytical approximation of HMM based local occu-
pancy prediction as well as using Monte-Carlo simulation techniques are presented
and compared. In a case study analysis, the prediction error of one step-ahead
(single time slot) prediction is presented against the channel detection errors, as well
as primary user’s state transition probability. Prediction error is also investigated
against the observation sequence length to examine the temporal dependency between
prediction accuracy, and the observation length. Consequently, a new recursive
equation to estimate HMM prediction performance si proposed as a function of
channel detection errors based on HMM posterior probability distribution. Finally, a
new generalized Beta-Bernoulli approximation of the predictive posterior probability
for local HMM based SOP is presented which provides a tractable expression of
prediction performance. The approximation captured HMM prediction error with

high accuracy.

The third contribution of our work put forth performance analysis of cooperative
hard fusion based spectrum prediction. We further extended the performance
analysis of local spectrum prediction using Monte-Carlo simulation techniques to
hard fusion cooperative prediction. The contribution presented an analysis of
secondary user’s mean prediction error in terms of primary user’s activity pattern,
and spectrum sensing errors. We utilized Bayesian filtering, and known information
theory inequalities, to express cooperative prediction error bounds. Finally, a new
generalized Beta-Binomial approximation of the predictive posterior probability for
cooperative hard fusion based SOP is presented which provides a tractable expression

of prediction performance.

Finally, the fourth contribution addressed soft decision based fusion for coopera-
tive SOP. Soft fusion techniques are compared to local spectrum prediction, as well
as benchmarked against hard fusion techniques. In particular, soft fusion superiority
in terms of robustness as well as prediction accuracy is identified. Accordingly,
an alternative soft fusion techniques is proposed based on local prediction model
parameters. The alternative techniques conceptually attempt to avoid common
control channel requirements, while providing identical performance to known soft

fusion techniques.
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Remarkably, the case study analysis confirmed that the statistical approximation
is able to predict the performance of local and hard fusion cooperative prediction
accurately, capturing all the essential aspects of signal detection performance, tempo-
ral dependency of primary user activity as well as the finite nature of the network.
It is worth noting that the scope of this work was limited to a single PU activity
patterns, as well as identical channel conditions for secondary users (homogeneous
users). A possible extension would be to a consider heterogeneous SU cooperative
prediction to develop novel algorithms or analytical framework for such scenario. Ad-
ditionally, our analytical approximation for hard fusion error is based on equally likely
stationary distribution of PU activity, it will be an interesting future direction to anal-
yse the performance of spectrum prediction under different PU stationary distribution
assumptions. Finally, another possible future avenue is to derive an analytical approx-
imation for soft fusion spectrum prediction. The direction would incorporate different
prior assumptions i.e. clustering assumption of cooperative spectrum prediction. It
will also be interesting to investigate spectrum prediction with reinforcement learning
where spectrum access decisions are incorporated in spectrum prediction along with

sensing results e.g. Markov decision process.
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