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Abstract

It is well known and surprising that the uncoded transmission of an independent
and identically distributed Gaussian source across an additive white Gaussian
noise channel is optimal: No amount of sophistication in the coding strategy
can ever perform better.

What makes uncoded transmission optimal? In this thesis, it is shown that
the optimality of uncoded transmission can be understood as the perfect match
of four involved measures: the probability distribution of the source, its distor-
tion measure, the conditional probability distribution of the channel, and its
input cost function.

More generally, what makes a source-channel communication system opti-
mal? Inspired by, and in extension of, the results about uncoded transmission,
this can again be understood as the perfect match, now of six quantities: the
above, plus the encoding and the decoding functions. The matching condition
derived in this thesis is explicit and closed-form. This fact is exploited in various
ways, for example to analyze the optimality of source-channel coding systems
of finite block length, and involving feedback.

In the shape of an intermezzo, the potential impact of our findings on the
understanding of biological communication is outlined: owing to its simplicity,
uncoded transmission must be an interesting strategy, e.g., for neural commu-
nication. The matching condition of this thesis shows that, apart from being
simple, uncoded transmission may also be information-theoretically optimal.

Uncoded transmission is also a useful point of view in network information
theory. In this thesis, it is used to determine network source-channel communi-
cation results, including a single-source broadcast scenario, to establish capacity
results for Gaussian relay networks, and to give a new example of the fact that
separate source and channel coding does not lead to optimal performance in
general networks.
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Kurzfassung

Es ist eine wohlbekannte und unverschämte Tatsache, dass die unkodierte
Übertragung einer Gaussischen Quelle über einen Gaussischen Kanal optimal
ist. Dramatischer ausgedrückt: in diesem Beispiel kann auch die durchdacht-
este und komplizierteste Übertragungstechnik nicht besser sein als die schlichte
unkodierte.

Was macht unkodierte Übertragung in diesem Beispiel optimal? Die Nemesis
des Glückfalls ist, nur unter äusserst günstigen Umständen einzutreffen. Was
das genau heisst, wird in dieser Dissertation gezeigt. Vier Masse definieren ein
Kommunikationsproblem, als da wären: die Wahrscheinlichkeitsverteilungen der
Quelle und des Kanals, das Verzerrungsmass und die Kostenfunktion des Kanals.
Wenn diese vier Masse bereits perfekt aufeinander abgestimmt sind, dann ist
jegliche Kodierung überflüssig und nur durch Eitelkeit zu rechtfertigen.

Allgemeiner gefragt, was macht kodierte Übertragung optimal? Auch dies
kann als optimale Abstimmung der betreffenden Masse verstanden werden:
wiederum sind die Quellen- und Kanalparameter im Spiel, daneben aber auch
die Kodierungs- und die Dekodierungsfunktion. In dieser Dissertation wird eine
explizite Formel für die optimale Abstimmung hergeleitet. Dann wird diese
Formel auf verschiedene Probleme angewandt, u.a. auf Kodierungssysteme mit
endlicher Blocklänge und mit Feedback.

In Form eines Intermezzo zeigen wir auf, in welcher Form unsere Resultate
dem Verständnis der Kommunikation in biologischen Systemen förderlich sein
könnten. Am Beispiel der neuronalen Kommunikation illustrieren wir, dass
die unkodierte Übertragung nicht nur wegen ihrer unübertrefflichen Einfachheit
interessant ist, sondern dass sie auch optimal sein könnte, wenn nur die Masse
abgestimmt wären. Und die Evolution hätte die Möglichkeit gehabt, eine solche
Abstimmung herbeizuführen.

Schliesslich wird unkodierte Übertragung in Netzwerken diskutiert. Auch
hier hält sie einige Überraschungen bereit, so zum Beispiel für ein einfaches
Modell eines Broadcast-Netzwerkes, und für ein bestimmtes Netzwerk mit sehr
vielen Helferknoten.
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1.12 The multiple description communication scenario. . . . . . . . . . 33
1.13 The problem considered in Part (i). . . . . . . . . . . . . . . . . 35
1.14 The problem considered in Part (ii). . . . . . . . . . . . . . . . . 35
1.15 The problem considered in Part (iii). . . . . . . . . . . . . . . . . 36

2.1 An optimal communication system . . . . . . . . . . . . . . . . . 40
2.2 The symbol-by-symbol communication system . . . . . . . . . . . 41
2.3 When R(∆) = C(Γ) is not sufficient to guarantee optimality.. . . 44
2.4 Channel input cost function ρ(x) according to Eqn. (2.31). . . . 53
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Introduction

Je planmässiger die Menschen vorgehen, desto wirkungsvoller

vermag sie der Zufall zu treffen.

– FRIEDRICH DÜRRENMATT, 21 Punkte zu den Physikern

Source-Channel Communication

In a telephone conversation or a television broadcast, a signal is to be trans-
mitted across a noisy channel. The goal is by no means to transmit this signal
perfectly, but simply to satisfy the human ear and eye.

The wireless sensors of a sensor network that monitors chemical concentra-
tions can acquire large amounts of data, but their batteries are limited. Typi-
cally, it is impossible for the sensor to transmit all of the acquired information.
Rather, the sensor must attempt to give the best approximation within the
potential of its battery.

Unlike, say, the transmission of executable program files over the internet,
the basic goal in the two scenarios outlined above is neither to find a non-
redundant representation of the data nor to send bits across a channel at the
smallest possible error rate. Rather, in both situations, the key task is to trade
off the power of the transmission (or, more generally, its cost) against the quality
of the data reconstruction.

The determination and characterization of the optimal trade-off between cost
and distortion is one of the fundamental problems of information theory, some-
times called the source-channel communication problem. It can be addressed
from various perspectives; among them, the themes of this thesis.

1



2 Introduction

Themes

• Separation. The optimal trade-off between cost and distortion for a
simple (ergodic) point-to-point link can be achieved by splitting the coding
system into two parts: first, the source is represented in a non-redundant
fashion at the required level of fidelity. Thereafter, this representation
is transmitted across the channel, using a code with a negligible error
probability. This is Shannon’s separation theorem.

The fact that the system can be separated (or modularized) in such a
way without sacrificing optimality is conceptually as well as practically
pleasing: For the source coding stage, no knowledge is required about
the precise channel characteristics, and for the channel code design, the
structure of the source is irrelevant, too. In Chapter 1 of this thesis, we
review Shannon’s separation theorem.

The theme of modularization is revisited in the context of networks. Here,
there is a double temptation of modularization: on the one hand, to mod-
ularize source and channel coding, like in the point-to-point case; on the
other hand, to modularize the individual channels, i.e., to turn the net-
work into a set of point-to-point channels. In Chapter 5, we illustrate that
both kinds of modularization do incur a loss of optimality.

• Optimal Uncoded Transmission. While the separation theorem pro-
vides a very pleasing solution to the source-channel communication prob-
lem, it does not claim it to be unique. In fact, it provides a very expensive
solution since infinite delay and complexity are needed in general. Less
expensive solutions can be found by abandoning the property of modular-
ization, that is, by considering joint source-channel codes. The extreme
case of a joint source-channel code is uncoded (or straight-wire) transmis-
sion: the source output is directly fed into the channel input, and the
channel output is the estimate of the source. It is well known (yet slightly
puzzling) that for certain source/channel pairs, uncoded transmission does
perform optimally: it achieves the same cost-distortion trade-off as the
scheme composed of an optimal source coding stage, followed by an opti-
mal channel code.

This thesis determines the conditions for the optimality of uncoded trans-
mission for the point-to-point case (Chapter 2) and for certain network
communication scenarios (Chapter 5).

• Measure-matching. The point of view on source-channel communica-
tion that is suggested by the separation theorem could be called rate-
matching: the source-channel communication problem is solved by match-
ing the rates of the (otherwise independent) source and channel code de-
signs: for the system to work, the rate of the source code cannot be larger
than the capacity provided by the channel.

In extension of our study of uncoded transmission, we suggest in Chapter
3 a different criterion for optimal systems; we call this measure-matching:
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A source-channel communication system is optimal when/because certain
measures are matched optimally to each other. These measures are: the
source probability distribution, and the corresponding distortion measure;
the channel conditional probability distribution, and the corresponding
input cost function; and the encoding and the decoding functions.

Contributions

1. When is uncoded transmission optimal? Two examples are well
known. In this thesis, we establish general conditions for the optimality of
uncoded transmission in the point-to-point case (Chapter 2) and in certain
network scenarios (Chapter 5).

2. A different approach to source-channel communication. The most
common way to approach the source-channel communication problem
is through Shannon’s separation theorem. We call this approach rate-
matching (as explained in the previous section). In this thesis, we propose
a novel, alternative approach that we call measure-matching. This ap-
proach suggests new results, some of which can be found in Chapter 3.

3. An autonomous theory of joint source-channel coding. Joint
source-channel coding is an area known for its ad-hoc concepts and lack
of appropriate criteria (e.g., complexity); its theory is usually handled by
the separation theorem. In this thesis, we present an autonomous theory
of joint source-channel coding. In an operational sense, our theory is more
general than the separation theorem: it provides explicit statements about
arbitrary coding schemes, not only about separation-based designs.

4. Capacity of large Gaussian relay networks. In this thesis, we de-
termine the capacity of certain large Gaussian relay networks. Our proof
uses uncoded transmission as a tool (Chapter 5). This capacity result can
also be extended to apply to certain common models of wireless networks.

5. Optimal cost-distortion trade-offs in networks, and counterex-
amples to the separation paradigm. The separation theorem does
not extend to networks in general, and the optimal cost-distortion trade-
offs in general networks are not known to date. In this thesis, we derive the
optimal trade-off for two network topologies: for a single-source broadcast
situation (Section 5.2), where only the Gaussian case has been known; and
for a particular Gaussian sensor network situation (Section 5.4.5). Both
cases lead to new examples of the fact that the separation paradigm does
not extend to networks: in both cases, a separate source and channel code
design leads to substantially suboptimal performance.

Outline

Chapter 1 discusses the source-channel communication problem using the sep-
aration theorem. This is motivated by the fact that in the standard literature
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[7, 3, 4], the topic of source-channel communication tends to be treated as a
corollary to the capacity and rate-distortion theorems. The goal of Chapter 1 is
to invert this: the source-channel communication problem is treated as the fun-
damental problem, and one way to attack this fundamental problem is through
the separation theorem, and hence through capacity and rate-distortion. Hence,
most of Chapter 1 is a review. Towards the end, the chapter presents extensions
of the separation theorem to networks, including certain new results.

Two well-known examples seem to suggest that the separation theorem does
not explain all there is to know about the source-channel communication prob-
lem: When a binary uniform source is transmitted across a binary symmetric
channel, uncoded transmission achieves just the same performance as the best
and unboundedly complex coding system, designed e.g. according to the sep-
aration theorem. Similar behavior is observed for a certain scenario involving
a Gaussian source and a Gaussian channel. Are these the only two “lucky”
source-channel pairs? In Chapter 2, we derive conditions for the optimality of
uncoded transmission, and we show that there is an unlimited number of exam-
ples where uncoded transmission is optimal, the condition being that the source
and channel probability distributions, the distortion measure and the input cost
function of the channel are favorably matched.

Chapter 3 discusses the source-channel communication problem using the
measure-matching condition. This condition follows from the new results on
uncoded transmission presented in Chapter 2; the match involves again the
source and channel characteristics, but also the encoding and decoding func-
tions. The measure-matching condition is used to establish a number of results,
including the optimality of source-channel codes of finite block length, and a cer-
tain property of universality featured by source-channel coding systems. The
measure-matching condition is also extended to communication systems with
feedback.

The theory developed in Chapters 1 and 3 can be applied to a number of
scenarios. Chapter 4 is a brief intermezzo with the purpose of illustrating the
interest in results about optimal uncoded transmission: we outline an applica-
tion of our results to neural communication.

Chapter 5 investigates some of the potential of uncoded transmission in
networks. First, in extension of the results developed in Chapters 2 and 3, we
derive results about network source-channel communication, including a single-
source broadcast and a multiple-description scenario. Thereafter, we show that
uncoded transmission is also a useful tool beyond source-channel communica-
tion: we use it to prove capacity results for certain Gaussian relay networks,
including a model of a wireless ad-hoc network. Using similar methods, we also
analyze large Gaussian sensor networks. For sensor networks, the key question
is the trade-off between the power used by the sensors and the quality at which
the sensed signal can be reconstructed. The optimal trade-off is not known
in general, but for a special situation, our results permit to determine it. This
leads to a new example of the fact that the separation paradigm does not extend
to networks.



Chapter 1

The Source-Channel

Communication Problem,

Part I

The fundamental problem of communication is that of reproducing at one point

either exactly or approximately a message selected at another point.

– CLAUDE E. SHANNON, A mathematical theory of communication [98]

This chapter serves a double purpose: First, it sets the stage for subsequent
chapters by quoting the relevant prior art. Second, many textbooks on informa-
tion and coding theory do not explicitly treat the problem of joint source-channel
coding, and if they do, it is simply appended at the end, as a corollary [3, 4].
As a case in point, the commemorative issue of the IEEE Transactions on In-
formation Theory (published in October 1998) does not devote an article to this
problem, either.

There are various ways to tackle the source-channel communication problem.
The most successful and popular approach is Shannon’s separation theorem [98,
Thm. 21]. After quoting Shannon’s definition of the communication problem
(Section 1.1), the separation theorem for the point-to-point case is discussed
in Section 1.2. Section 1.3 outlines briefly the limitations of the separation
theorem. In particular, in the point-to-point case, if the communication system
is non-ergodic, or if its delay and complexity are constrained, the separation
theorem does not generally characterize the best possible performance. For
topologies beyond point-to-point, the separation theorem does not generally
apply, but it may in special cases. In Section 1.4, we discuss how the separation
theorem may be extended. We make this precise for the case of feedback in
Section 1.5, and in Section 1.6, we address genuine network topologies. It is

5
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INFORMATION

SOURCE

SOURCE TRANSMITTER

SIGNAL

SIGNAL RECEIVED

NOISE

RECEIVER DESTINATION

Figure 1.1: Shannon’s “Schematic diagram of a general communication system.”

first illustrated that the source-channel separation paradigm does not lead to
optimal designs in general, i.e., no separation theorem applies. Thereafter,
special topologies are presented for which a separation theorem does apply.

1.1 Shannon’s Communication Problem

Shannon’s communication system is best illustrated by the famous rendering in
Figure 1.1 (taken from [98]). It consists of five parts: an information source, a
transmitter, a channel, a receiver, and a destination. The crucial nature-given
ingredients to Shannon’s communication system are (informally):

• The information source, modeled by a random process. In Shannon’s
concept of communication, a deterministic source does not “produce” any
information.

• The transmission channel, whose key ingredient is a random noise source.
This models for example thermal noise in the electronic components, or
fading effects due to (e.g.) multi-path propagation of the signal.

The task of the communication engineer is to design the boxes labeled trans-
mitter and receiver, given the characteristics of the source and the channel.

1.1.1 Informal statement of the problem

The fundamental problem of communication is informally stated in the quote at
the very beginning of this chapter. In this thesis, we are particularly interested
in the second case: when the message is reproduced approximately; the exact
reconstruction can be seen as a limiting case of the approximate reconstruction.
Informally, the fundamental problem is captured by the following question: At
fixed power budget, what is the highest quality at which the source can be
represented at the destination?
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More generally, “power” means a set of physical constraints on the channel,
including bandwidth and battery charging properties, for example. Similarly,
“quality” should be understood in a wide sense: If the source and/or the des-
tination of information is human, then quality is determined for example by
psycho-acoustic factors and the properties of the human visual system.

The goal is to find the best possible communication system for the given
physical constraints. In this perspective, the complexity of computation as well
as the delay due to such computation remain unconstrained; in other words, it
is always assumed that an infinitely fast computer, with an infinite amount of
memory and which runs at no power, is at hand. The goal is to obtain results
that are valid “forever” within a given model of the physics of the communication
problem, irrespective of the cleverness of the communications engineers and the
advances in computer technology, for example.

1.1.2 Formal statement of the problem

A communication system is specified by six entities, grouped into three pairs:
the source (pS , d), consisting of a probability distribution pS and a distortion
function d; the channel (pY |X , ρ), consisting of a conditional probability dis-
tribution pY |X and a cost function ρ; and the code (F, G), consisting of the
encoder F and the decoder G. The relationship between these six entities can
be schematically rendered as in Figure 1.2. The following paragraphs serve to

Source Channel Destination
S

F
X Y

G
Ŝ

Figure 1.2: The basic communication system.

make this brief summary more precise. For the purpose of this thesis, we are
mostly concerned with discrete and finite alphabets.

Definition 1.1 (source) A discrete-time memoryless source (pS , d) is specified
by a probability distribution pS(s) on an alphabet S and a nonnegative function

d : S × Ŝ → R+, (1.1)

called the distortion measure. This implicitly specifies an alphabet Ŝ in which
the source is reconstructed.

When the alphabets are discrete, we call this a discrete memoryless source,
and the probability distribution becomes a probability mass function (pmf).

Definition 1.2 (channel) A discrete-time memoryless channel (pY |X , ρ) is
specified by a conditional probability distribution pY |X(y|x), defined on two dis-
crete alphabets X and Y and a nonnegative function

ρ : X → R+, (1.2)

called the channel input cost function.
When the alphabets are discrete, we call this a discrete memoryless channel.
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Remark 1.1 (memory) Many of the statements quoted in this chapter also
apply or extend to sources and channels with memory, but for the purpose of
this thesis, considerations are limited to memoryless source/channel pairs.

Definition 1.3 (source-channel code of rate κ) A source-channel code
(F, G) of rate κ is specified by an encoding function

F : Sk → Xm, (1.3)

and a decoding function

G : Ym → Ŝk, (1.4)

such that k/m = κ.

This means that even though the source and the channel are memoryless,
the channel input sequence Xm is not a sequence of independent and identically
distributed (iid) random variables in general, which implies that the channel out-
put sequence Y m and the source reconstruction sequence Ŝk are not generally
iid sequences. This makes it necessary to define the distortion and the cost for
sequences, rather than only for single letters as we have done above. This exten-
sion is straightforward: The distortion between sequences is simply the sample
average of the component-wise distortions, and the cost of using a particular
sequence is the sample average of the component-wise costs. If this component-
wise decomposition does not apply, then we do not consider the source (pS , d) or
the channel (pY |X , ρ), respectively, to be memoryless. In line with the standard
literature [1, 3], we use the following notational conventions:

d(sn, ŝn)
def
=

1
n

n∑
i=1

d(si, ŝi), (1.5)

ρ(xn)
def
=

1
n

n∑
i=1

ρ(xi). (1.6)

For a fixed source (pS , d), a fixed channel (pY |X , ρ) and a fixed code (F, G),
we can then easily determine the average incurred distortion,

∆
def
= Ed(Sk, Ŝk), (1.7)

and the average required cost,

Γ
def
= Eρ(Xm), (1.8)

and we define:

Definition 1.4 (cost-distortion pair) For a fixed source (pS , d), a fixed
channel (pY |X , ρ) and a fixed code (F, G), the cost-distortion pair (Γ, ∆) is given
by (1.7) and (1.8), respectively.
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In this thesis, we will write (Γ, ∆) for the cost-distortion pair achieved by
a particular source-channel code (F, G). A general cost-distortion pair (not
necessarily achievable) will be denoted by (P, D).

A key question for the communications engineer is: Is a suggested
source/channel code (F, G) optimal? Or would it be worth investing in the
quest for better codes?

The first step to answering this is to agree on a definition of optimality. In
our view, the most meaningful definition is the one requiring the cost Γ and the
distortion ∆ to be simultaneously optimal. In line with this, for the framework
of this thesis, a communication system is considered optimal only if it lives up
to the following definition.

Definition 1.5 The performance (Γ, ∆) of a communication system is said to
be optimal if

1. ∆ could not be lowered without increasing the cost, and

2. Γ could not be lowered without increasing the distortion,

irrespective of complexity and delay.1

The expression “irrespective of complexity and delay” looks somewhat impre-
cise, but it simply denotes the optimization over all source-channel codes of rate
κ. Similar definitions are the OPTA2 function [1, p. 156], and the LMTR3 [4,
p. 129, middle].

Remark 1.2 We will see later on that the two conditions of Definition 1.5
imply one another in many cases of interest, but not always. The benchmark
for optimality is always Definition 1.5.

Remark 1.3 (optimality is a matter of marginals) Optimality according
to Definition 1.5 is a matter only of the marginal distributions of the chan-
nel inputs p(xj), for j = 1, . . . , m, and of the (joint) marginal distributions of
the source and corresponding reconstruction symbols, p(sj , ŝj), for j = 1, . . . , k.
In other words, any scheme that achieves the right marginals is optimal, irre-
spective of the correlation it introduces among the symbols.

The communication problem according to Definition 1.5 is the trade-off be-
tween cost and distortion: The more cost one can use on the channel, the smaller

1Strictly speaking, according to this definition, many situations have no system with op-

timal performance. This was oberved by Prof. em. James L. Massey on the occasion of the

défense privée of this thesis. While we feel it would be more appropriate to rewrite the thesis

in that spirit, we choose to obey the delay constraints of thesis writing and continue to call

an “optimal communication system” also the limit of the sequence of communication systems

whose performance approaches the optimum (in line with a considerable part of the standard

literature).
2optimum performance theoretically achievable
3limit of the minimum transmission ratio, see [4, p. 5]
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the distortion one can achieve. For a given source (pS , d) and a given channel
(pY |X , ρ), there is an entire set of optimal trade-offs.

One way to visualize this is to consider the cost-distortion curve for the
source/channel pair. This curve gives, for every distortion ∆, the smallest
possible cost Γ, and conversely, for every cost Γ, the smallest possible distortion
∆. A typical example of such a curve is shown in Figure 1.3. It can be shown
that the cost-distortion curve is indeed convex, as suggested by the figure. The
pair (Γ, ∆) in the figure represents a cost-distortion pair which is optimal by the
standards of Definition 1.5; however, the pair (Γ′, ∆′) in the figure, even though
on the curve, is not optimal: the cost could be reduced without changing the
distortion. Hence, even though it carries the right intuition, the cost-distortion
curve is not fully precise as a means of visualizing the optimal cost-distortion
trade-off. We now clarify this issue.

distortion

cost

∆

∆′

Γ Γ′

Figure 1.3: Schematic rendering of the cost-distortion trade-off.

The cost-distortion curve as drawn in Figure 1.3 is the union of the pairs
(P, D) satisfying

D(P ) = lim
n→∞ min

Fn,Gn:Eρ(Xn)≤P
Ed(Sn, Ŝn), (1.9)

with the pairs (P, D) satisfying

P (D) = lim
n→∞ min

Fn,Gn:Ed(Sn,Ŝn)≤D
Eρ(Xn). (1.10)

The pairs (P, D) satisfying (1.9) are precisely the pairs that satisfy the first
condition of Definition 1.5. By analogy, the pairs (P, D) satisfying (1.10) are
the pairs that satisfy the second condition of Definition 1.5. Hence, the optimal
trade-offs are the pairs (P, D) in the intersection of the solutions to (1.9) and
(1.10), rather than the union. This is why the pair (Γ′, ∆′) in Figure 1.3 does
not represent an optimal communication system: it is only a solution to (1.9),
not to (1.10).
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The next step is to solve the optimization problems (1.9) and (1.10). The
crux is that the optimization has to be carried out over all possible coding
schemes; this could be a rather lengthy task. Once the optimization problems
(1.9) and (1.10) are solved, the remaining task is to determine the intersection
of their solution sets. The final result is a condition to check whether or not a
given cost-distortion pair (Γ, ∆) represents an optimal trade-off.

The (very elegant) solution of this problem is due to Shannon [98]. His way
of solving the problem is often called the separation theorem.

1.2 The Separation Theorem

The separation theorem owes much of its reputation to its operational relevance;
here, however, we are interested in its ability to solve the optimization prob-
lems (1.9) and (1.10). The theorem is presented in two parts: Section 1.2.1
establishes a general bound on the performance of any (ergodic point-to-point)
communication system; thereafter, it is shown in Section 1.2.2 that this bound is
tight, i.e., that there exists always a scheme achieving (or at least approaching)
the limit. The combination of these two parts yields the solution both to the
optimization problem (1.9) and to the optimization problem (1.10).

1.2.1 Converse part

We start by giving the definitions of two well-known functions, the rate-
distortion function and the capacity-cost function. They are defined to be the
solutions of the following optimization problems involving the functional I(·; ·),
called the mutual information and defined e.g. in [7, 3].

Definition 1.6 (rate-distortion function) The rate-distortion function of
the source (pS , d) is defined as

R(D) = min
pŜ|S :Ed(S,Ŝ)≤D

I(S; Ŝ). (1.11)

Definition 1.7 (capacity-cost function) The capacity-cost function of the
channel (pY |X , ρ) is defined as

C(P ) = max
pX :Eρ(X)≤P

I(X ; Y ). (1.12)

A special point of the capacity-cost function is the unconstrained capacity
C0:

Definition 1.8 (unconstrained capacity) The unconstrained capacity of
the channel (pY |X , ρ) is the capacity of the channel disregarding input costs,
that is

C0 = max
pX

I(X ; Y ). (1.13)
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Hence, C0 is independent of the choice of ρ; it is solely a property of pY |X .
When ρ(x) < ∞, ∀x ∈ X , an equivalent definition is C0 = limP→∞ C(P ).

It is important to note that the operational meaning of these two functions
is not needed at this point; they are simply a shorthand for the corresponding
optimization problems. In terms of these shorthands, we can express a general
bound on the performance of any communication system in the following way.

Theorem 1.1 (separation theorem, converse part [98, Thm. 21])
Any communication system for a discrete-time memoryless source and a
discrete-time memoryless channel using a source-channel code of rate κ satisfies

κR(∆) ≤ C(Γ), (1.14)

where ∆ is the distortion incurred and Γ the cost used by the communication
system.

One reason why this theorem is called the separation theorem is because it
permits one to separate the optimization problems (1.9) and (1.10) into two
parts, the rate-distortion problem and the capacity-cost problem.

Proof. The proof given in [98, Thm. 21] is kept on a short and intuitive
level. For completeness, we write it out for the case of discrete alphabets.

To make matters precise, we suppose that the code maps k source symbols
onto m channel symbols, where, by assumption, k/m = κ. Then,

kR(∆) = kR(Ed(Sk, Ŝk))

= kR

(
1
k

k∑
i=1

Ed(Si, Ŝi)

)

(a)

≤ k

k∑
i=1

1
k
R(Ed(Si, Ŝi)) (1.15)

=
k∑

i=1

R(Ed(Si, Ŝi))

≤
k∑

i=1

I(Si; Ŝi) (1.16)

=
k∑

i=1

H(Si) −
k∑

i=1

H(Si|Ŝi)

(b)

≤
k∑

i=1

H(Si) −
k∑

i=1

H(Si|Ŝn, Si−1, . . . , S1)

= H(Sk) − H(Sk|Ŝk) (1.17)

= I(Sk; Ŝk) (1.18)
(c)

≤ I(Xm; Y m)
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= H(Y m) − H(Y m|Xm)

=
m∑

i=1

H(Yi|Yi−1, . . . , Y1) −
m∑

i=1

H(Yi|Xn, Yi−1, . . . , Y1)

=
m∑

i=1

H(Yi|Yi−1, . . . , Y1) −
m∑

i=1

H(Yi|Xi) (1.19)

(d)

≤
m∑

i=1

H(Yi) −
m∑

i=1

H(Yi|Xi)

=
m∑

i=1

I(Xi; Yi) (1.20)

≤
m∑

i=1

C(Eρ(Xi)) (1.21)

= m

m∑
i=1

1
m

C(Eρ(Xi))

(e)

≤ mC

(
1
m

m∑
i=1

Eρ(Xi)

)
(1.22)

= mC(Eρ(Xm))

= mC(Γ).

The key arguments needed in the proof are the following:

(a) the convexity of the rate-distortion function,

(b) the fact that additional conditioning cannot increase entropy, see e.g. [7,
Thm. 2.3.2] or [3, Thm. 2.6.5],

(c) the data processing inequality, see e.g. [7, Thm. 4.3.3] or [3, Thm. 2.8.1],

(d) again the fact that additional conditioning cannot increase entropy (or,
more precisely, that removing conditioning cannot decrease entropy), and

(e) the concavity of the capacity-cost function.

Moreover, we have used the fact that the source is memoryless in (1.17), and
the fact that the channel is memoryless in (1.19).

The remaining steps involve minor arguments, including for example the def-
inition of the rate-distortion function in (1.16) and of the capacity-cost function
in (1.21).

The proof of this theorem is implicit in the standard treatments on infor-
mation theory, e.g., [7] and [3]. For continuous alphabets, there is a number
of subtleties. For the rate-distortion side, see [1]. For the capacity side, the
subtleties are explained in detail in [7, Thm.7.2.2]. �

The proof of the converse part of the separation theorem rests on two pillars.
The first pillar is the reduction from a consideration of potentially infinitely long
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codes to single-letter quantities. This is enabled by the fact that additional
conditioning can only decrease entropy, which is directly due to the properties
of the logarithm. The second pillar is the data processing inequality, which is
also directly due to the properties of the logarithm.

For this reason, it is not surprising that researchers have been tempted by
the idea of replacing the logarithm by another function while retaining these
two key features. We discuss one such approach below in Section 1.4.

1.2.2 Direct part

Theorem 1.1 naturally raises the question whether the inequality in (1.14) is
tight: Is there always a communication system, potentially very complex, that
achieves equality in (1.14)?

For a fixed source (pS , d), a fixed channel (pY |X , ρ), and a fixed rate κ of the
source-channel code, we can illustrate (1.14) by plotting the rate-distortion func-
tion next to the capacity-cost function. Figure 1.4 illustrates the two different
possible behaviors. The interesting class of source/channel pairs is illustrated by
the solid lines. For these pairs, there exist cost-distortion pairs (P, D) such that
κR(D) = C(P ). In this section, we outline how Shannon argued that this also
implies that there exists a sequence of encoder/decoder pairs that approaches
equality in (1.14). The second possible behavior for a source/channel pair is
illustrated by the dashed lines in Figure 1.4: For those source/channel pairs,
there do not exist cost-distortion pairs (P, D) such that κR(D) = C(P ). In
other words, for those source/channel pairs, the capacity is always larger than
the source entropy.4

P Pmin DDmin

C κR

Figure 1.4: The capacity-cost function (left) and the rate-distortion function
(right), schematic rendering.

This thesis focuses exclusively on source/channel pairs according to the solid
4Remark: To be more precise, it is not the entropy that is relevant, but the rate corre-

sponding to the minimum distortion, supD R(D). For most interesting distortion measures,

this is indeed the source entropy.



1.2. The Separation Theorem 15

lines in Figure 1.4. Source/channel pairs according to the dashed lines are
degenerate cases in the sense that the trade-off between cost and distortion is
trivial: there is only one optimal operating point, namely (P = Pmin, D =
Dmin).

Shannon’s proof that there exist source-channel codes (F, G) that approach
κR(∆) = C(Γ) as closely as desired (at least for the source/channel pairs ac-
cording to the solid lines in Figure 1.4) is a direct consequence of the operational
meaning of the rate-distortion function and of the capacity-cost function.

Somewhat informally, the operational rate-distortion problem can be stated
as follows: For a given source (pS , d), what is the least number of bits per source
symbol needed to describe the source in such a way that these bits permit to
reconstruct the source at an average distortion of at most D? It has been shown
that this least number of bits is precisely the rate-distortion function R(D). We
quote the following result:

Theorem 1.2 (source coding) It is possible to represent n outputs of the
discrete-time memoryless source with pmf pS by 2nR(D) codewords of length
n, {ŝn

1 , ŝn
2 , . . . , ŝn

2nR(D)}, such that limn→∞ E mini d(Sn, ŝn
i ) ≤ D.

Proof. For a proof of this theorem, see for example [3, Thm. 3.2.1] or [7, Thm.
9.3.1].

By analogy, a somewhat informal statement of the capacity-cost problem is:
For a given channel (pY |X , ρ), what is the maximum number of bits that can be
transmitted reliably when the permissible channel input cost is at most P? Note
that the subtlety is in the word “reliable.” It means that the error probability
tends to zero as the coding complexity and delay become unconstrained. It has
been shown that this maximum number of bits is precisely the capacity-cost
function C(P ). We quote the following result:

Theorem 1.3 (channel coding) For a discrete-time memoryless channel
(pY |X , ρ) with input X and output Y : for any ε > 0 and any R < C(P ), there
exist an n and 2nR codewords of length n, {xn

1 , xn
2 , . . . , xn

2nR}, where the com-
ponents of the i-th codeword satisfy 1

n

∑n
j=1 ρ(xn

i,j) ≤ P , for i = 1, 2, . . . , 2nR,
along with a decoding function g, such that maxi Pr(g(Y n) �= i|Xn = xn

i ) < ε.

Proof. For a proof of this theorem, see for example [7, Thms. 5.6.2, 7.2.1] or [3,
Ch. 8].

The combination of these two theorems for the source/channel pairs repre-
sented by the solid lines in Figure 1.4 leads to the fact that there exist source-
channel codes (F, G) that approach κR(∆) = C(Γ) as closely as desired: The
source is described with C(Γ)/κ − ε bits per source symbol. The resulting bits
can be transmitted without error across the channel (by Theorem 1.3); at the
same time, they permit to reconstruct the source at distortion ∆ (by Theorem
1.2). This leads to the following statement.

Theorem 1.4 (separation theorem, approachability) For any discrete-
time memoryless source/channel pair (pS , d) and (pY |X , ρ), and any ε > 0,
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there exists a source-channel code (F, G) of rate κ using average cost Γ and
incurring average distortion ∆ such that either 1. or 2. is satisfied:

1. κR(∆) = C(Γ) − ε

2. ∆ = Dmin + ε and Γ = Pmin + ε.

Proof. A proof is given in [98, Thm. 21]; the theorem is an immediate
consequence of the combination of Theorem 1.2 with Theorem 1.3. �

The combination of Theorems 1.1 and 1.4 permits one to solve both the op-
timization problem (1.9) and the optimization problem (1.10). This is discussed
in the next section.

1.2.3 Optimal source-channel communication systems

Consider a source/channel pair (pS , d) and (pY |X , ρ) for which there exists values
of P and D such that κR(D) = C(P ). For this situation, Theorem 1.1 shows
that any source-channel code (F, G) of rate κ must satisfy κR(∆) ≤ C(Γ), and
Theorem 1.4 shows that there exists a code (F, G) that satisfies κR(∆) = C(Γ).
This suggests the condition that a communication system is optimal if and only
if it satisfies κR(∆) = C(Γ).

Figure 1.5 illustrates that this is almost true, subject only to a minor tech-
nical condition: Both (Γ1, ∆) and (Γ2, ∆) satisfy κR(∆) = C(Γ), but it is clear
that (Γ1, ∆) is not an optimal cost-distortion trade-off: The cost can be re-
duced without changing the distortion. In summary, the following necessary
and sufficient condition can be given.

P Γ1 Γ2 D∆

C κR

Figure 1.5: The capacity-cost function (left) and the rate-distortion function
(right), schematic rendering.

Theorem 1.5 (separation theorem) For a discrete-time memoryless
source/channel pair (pS , d) and (pY |X , ρ) for which there exist values of P and
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D such that κR(D) = C(P ), a cost-distortion trade-off (Γ, ∆) is optimal if and
only if

(i) κR(∆) = C(Γ), and

(ii) ∆ cannot be lowered without increasing R(∆) nor can Γ be lowered without
decreasing C(Γ).

The following simpler (but less explicit) version of Theorem 1.5 will also be
of interest later on. For this reason, we state it explicitly:

Corollary 1.6 For a discrete-time memoryless source/channel pair (pS , d) and
(pY |X , ρ) for which there exist values of P and D such that κR(D) = C(P ), a
cost-distortion trade-off (Γ, ∆) is achievable if and only if

κR(∆) ≤ C(Γ). (1.23)

Remark 1.4 For source/channel pairs for which there do not exist values of
P and D such that κR(D) = C(P ), a code is optimal if and only if it satisfies
Case 2 of Theorem 1.4. As pointed out earlier, these degenerate source/channel
pairs will not be studied any further in this thesis.

Remark 1.5 Condition (i) of Theorem 1.5 characterizes the union of the solu-
tions to the optimization problems (1.9) and (1.10). More precisely, by the aid
of Theorem 1.5, the solution to the optimization problem (1.9) is found to be

D = R−1

(
C(P )

κ

)
, (1.24)

where R−1(·) denotes the inverse of the rate-distortion function. By analogy,
the solution to the optimization problem (1.10) is found to be

P = C−1(κR(D)), (1.25)

where C−1(·) denotes the inverse of the capacity-cost function.
In the simplest case when the cost-distortion pair (P, D) is such that

(P, C(P )) is a point in the strictly concave region of the capacity-cost function,
and (D, κR(D)) is in the strictly convex region of the rate-distortion function,
both (1.24) and (1.25) boil down to the condition κR(D) = C(P ).

In other words, conditions (1.24) and (1.25) are necessary conditions for
the optimality of the cost-distortion pair (P, D); they describe the union of the
solutions to (1.9) and (1.10). Condition (ii) then filters out their intersection.

Remark 1.6 (optimality and marginals) In Remark 1.3, we pointed out
that optimality is a matter only of the right marginals. This follows directly from
the definition of optimality. The separation theorem permits one to strengthen
this insight: in an optimal system, the marginals of the channel inputs p(xj),
for j = 1, . . . , m, must all achieve the same Γj, and the (joint) marginal dis-
tributions of the source and corresponding reconstruction symbols, p(sj , ŝj), for
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j = 1, . . . , k, must all achieve the same ∆j. This follows directly from the con-
dition for equality in (1.15) and (1.22), respectively. In many cases, this implies
that the marginals themselves must all be the same.

Proof. By Theorem 1.1, any source-channel code (F, G) of rate κ satisfies

κR(∆) ≤ C(Γ). (1.26)

Suppose that a certain source-channel code (F, G) satisfies

κR(∆) = C(Γ) − ε. (1.27)

But then, by Theorem 1.4, there is a better source-channel code (F ′, G′),
namely one that satisfies κR(∆) = C(Γ) − ε′, with ε′ < ε. Hence, the optimal
cost-distortion pair (Γ, ∆) satisfies κR(∆) = C(Γ). However, this is not
sufficient as it may occur that ∆ can be reduced without increasing R(∆).
This is prevented by condition (ii). The same comment applies to C(Γ).
Hence, for source/channel pair (pS , d) and (pY |X , ρ) that admit cost-distortion
pairs (P, D) satisfying κR(D) = C(P ), (i) and (ii) together are necessary and
sufficient conditions for optimality. �

Figure 1.5 illustrates Condition (ii) of Theorem 1.5 schematically. The fol-
lowing is a concrete example of a source/channel pair where the issue of Condi-
tion (ii) occurs.

Example 1.1 (κR(∆) = C(Γ) is not always sufficient) Let all involved al-
phabets be S = X = Y = Ŝ = {0, 1, . . . , L − 1}, where L is an even integer.
The channel conditional pmf is the noisy typewriter channel as in [3, p. 185],
that is, pY |X(k|k) = 1/2 and pY |X((k + 1) mod L|k) = 1/2, for all k. The un-
constrained capacity (Definition 1.8) of this channel is found to be C0 = log2

L
2 .

Let the encoder and decoder be the identity function. For the source pmf, define
podd(s) to be the uniform pmf over the odd inputs, and peven(s) the uniform pmf
over the even inputs. Let the source pmf be a convex combination of these two,
i.e. pλ(s) = λpodd(s) + (1 − λ)peven(s), where 0 ≤ λ ≤ 1. Notice that pλ(s)
achieves capacity on the unconstrained noisy typewriter channel for any λ.

Define the following distortion measure:

d(s, ŝ) =
{

0, ŝ = s or ŝ = (s + 1) mod L

1, otherwise.
(1.28)

Certainly, ∆ = Ed(S, Ŝ) = 0. Moreover, we find that for any λ,

R(∆ = 0) = log2

L

2
. (1.29)

Let the input cost function be

ρ(x) =
{

1, x even,

0, x odd.
(1.30)
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Suppose now that the source has λ = 1/2. Is the overall communication system
optimal in that case? For λ = 1/2, we compute Γ = L

2 , and hence

C(Γ) = C0 = log2

L

2
. (1.31)

Evidently, the condition R(∆) = C(Γ) is satisfied. However, this is not an op-
timal communication system. Consider for example the source with parameter
λ = 1. We compute Γ′ = 0 < Γ, but clearly, C(Γ) = C(Γ′). Hence, Condition
(ii) of Theorem 1.5 is violated: It is indeed possible in this case to lower Γ with-
out changing C(Γ). Practically, this means that for the source with parameter
λ = 1/2, there exists a coded communication system that achieves the same
distortion but requires lower cost.

As a last remark, let us point out that the fact that the distortion and the
cost Γ′ are zero is not crucial for this example.

In summary, let us emphasize that the key contents of Theorem 1.5 is the
condition κR(∆) = C(Γ). Condition (ii) concerns cases of limited interest
for the purpose of this thesis. We will discuss that condition, and hence the
problem illustrated by Example 1.1, in more detail in Section 2.2.2. Another
case of limited interest is Case 2. of Theorem 1.4. As pointed out in Remark
1.4, this issue will not be studied any further in this thesis.

1.2.4 The double role of the separation theorem

So far, we have discussed the optimal cost-distortion trade-off for a given
source/channel pair. More precisely, the goal was to determine the intersec-
tion of the solutions to the optimization problem (1.9) and the optimization
problem (1.10).

Shannon solved this by the separation theorem, which splits the problem
into two subproblems, the rate-distortion and the capacity-cost problem. This
is the first role of the separation theorem.

The second role of the separation theorem is its practical significance.
Loosely speaking, it states that an optimal communication system can be imple-
mented by cascading an optimal source coding system with an optimal channel
coding system. These two component coding systems can be designed inde-
pendently of one another: the design of the channel code does not involve any
knowledge of the source properties, nor does the design of the source code re-
quire knowledge about the channel. Hence, from a practical point of view, the
separation theorem is a very powerful tool: it permits one to build optimal
communication systems in a modular fashion. Source coding techniques can be
devised for sources of practical interest, irrespective of the channel to be used.
Similarly, channel coding systems, once developed, serve equally well for the
transmission of all kinds of sources.

Conceptually, the separation theorem leads thus to a double perspective
onto the source-channel communication problem which can be described as fol-
lows: on the channel side, the goal is to eliminate all the randomness by the
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aid of suitable coding, and turn the channel into what is sometimes called an
“error-free bit-pipe”. On the source side, the set of possible source outputs
is partitioned into disjoint regions in an optimal fashion. The source-channel
communication problem is turned into the problem of rate-matching: the rate
of the source code is matched to the rate of the channel code. In Chapter 3, we
revisit the source-channel communication problem, investigating an alternative
point of view.

1.3 The Separation Theorem, Revisited

Clearly, it is tempting to apply the strategy of separating source from channel
coding to any communication system, even to those for which it has not been
established that it leads to optimal performance. In the sequel, we will use the
term separation-based design precisely to denote the design strategy of splitting
the coding system into two steps in such a way that the first step (the source
coding) handles all the distortion, while the second step (the channel coding)
provides a noise-free channel. In contrast to this, the term separation theorem
continues to mean exclusively Theorem 1.5 above: that in certain situations,
the separation-based design does lead to optimal performance.

In point-to-point communication, there are two key challenges to the
separation-based approach: First, as soon as delay and complexity are con-
strained, it does not lead to optimal designs anymore, and second, the sepa-
ration theorem does not apply to non-ergodic sources and channels in general.
A third key challenge concerns communication networks: even for quite simple
network topologies, the separation-based approach may lead to a considerably
suboptimal performance. This will be discussed in Section 1.6 below.

A more subtle limitation of the separation principle is that it invariably leads
to a deterministic end-to-end mapping, i.e., the same realization sn of a source
output sequence leads (with high probability) to the same realization ŝn at the
destination. This is not required for optimality according to Definition 1.5.5 As
a matter of fact, Chapters 2 and 3 focus on systems that are optimal according
to Definition 1.5, yet are not asymptotically deterministic in the above sense.

1.3.1 Delay and complexity

In the proof of the achievability, one has to allow for codes of arbitrary length.
No practical system can be expected to be as generous as that. In other words,
as soon as constraints on the coding complexity and on the delay are imposed,
the separation theorem strictu sensu is no longer applicable. As a matter of
fact, it is easy to devise catastrophic examples: when the channel code is of
finite length, it cannot prevent all errors. However, depending on the source
code, one single error on the channel may have a catastrophic effect on the
source reconstruction. To prevent this, it is necessary to design the channel

5This is further elaborated in [87].
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code taking into account the properties of the source, and vice versa. This is
called a joint source/channel code.

A vast literature concerns somewhat ad-hoc, but often imaginative joint
source-channel coding schemes. Recent research efforts concern unequal error
protection, including [14]. Another effort investigates so-called index assign-
ment methods, by which one means that the indices of the source codebook
are cleverly assigned to the channel codewords. An early example of an index
assignment method is the Gray code: codewords representing adjacent integers
differ by only one binary digit. For recent overviews, we refer to [69]; for more
elaborate source-channel scenarios, see e.g. [84]. It is, however, beyond the
scope of this thesis to give a comprehensive guide to joint source-channel coding
techniques.

On the theoretical side, the key challenge of joint source-channel coding is
to address the trade-off between the performance of the system and the re-
quired coding complexity and delay. However, it seems very difficult to obtain
meaningful answers.

1.3.2 Non-ergodic systems

The second important challenge to the general relevance of the separation prin-
ciple arises in the context of non-ergodic systems, which is of great practical
interest in some applications. Vembu, Verdú and Steinberg [105] constructed
an insightful (yet slightly contrived) example of the fact that the separation
principle does not extend to general non-ergodic situations. We give a simpli-
fied and shortened version of their example:

Example 1.2 (non-ergodic source/channel pair [105]) The source
switches between a Bernoulli(1/2) source (state 1) and a deterministic source
(state 2), and the channel between a perfect binary channel (state 1) and a
binary symmetric channel of transition probability 1/2 (state 2). The switching
is synchronous, i.e., either both are in state 1, or both are in state 2. Clearly,
irrespective of the switching schedule, the source can be transmitted perfectly
across the channel without any further coding.

The trick of [105] is to devise a switching schedule that makes the capacity of
the channel smaller than the entropy of the source; in other words, the separation
principle would lead one to guess that error-free transmission is impossible.

The particular switching schedule of [105] is deterministic: switching occurs
right before times 2i, i = 1, 2, 3, . . . . It is not hard to verify that the entropy rate
of the source under this switching schedule becomes 2/3, while the guaranteed
capacity of the channel is only 1/3 (see [108]).

Note that this example also underlines the wide validity of the separation
theorem: Counterexamples have to be constructed carefully (or so it seems).
An extension of [105] can be found in [24].
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1.4 Other Separation Theorems

In Shannon’s original paper [98], the separation theorem is presented in the
section entitled “The rate for a source relative to a fidelity criterion” (as Theo-
rem 21), and the converse to the separation theorem is proved by the following
argument:

“...follows immediately from the definition of R1 and previous results.”
R1 is precisely the rate-distortion function, and the “immediately” refers to the
fact that had it been possible to send the source through a channel of C < R1

and still achieve a fidelity D, then this would contradict the definition of R1.
While this may not be entirely rigorous, it immediately suggests the discov-

ery of other separation theorems: wherever a rate-distortion theorem has been
established, corresponding separation theorems can be formulated. Candidates
are therefore the Wyner-Ziv rate-distortion function, and the multiple descrip-
tion problem (for the Gaussian source and mean-square error). These cases will
be discussed in Section 1.6.

But Shannon’s insight also works in the other direction: had it been possible
to send the source of R(D) > C through a channel of capacity C and still achieve
a fidelity D, then this would, by the same token, contradict the definition of
C. Hence, for any capacity result, corresponding separation theorems can be
formulated. A prime example is the memoryless channel with feedback. This
will be discussed in Section 1.5

Before stating these generalizations, we point to an extension of the separa-
tion theorem that is of a quite different flavor.

Other functionals satisfying a data processing inequality

The key ingredient that makes the separation theorem work is the data pro-
cessing inequality. It has been noted by Ziv and Zakai in [117] that mutual
information is not the only functional that satisfies such an inequality. As the
block length of the involved codes tends to infinity, the separation theorem
following from the mutual information functional is tight (it is both an upper
bound and achievable). Hence, in that case, replacing mutual information by
another functional cannot give better bounds. However, for codes of finite block
length, the separation theorem is not tight. More precisely, it predicts an un-
achievable cost-distortion trade-off. In that case, replacing mutual information
by a different functional may actually lead to better bounds on the achievable
performance. In [117], Ziv and Zakai give an example of a source/channel pair
and an alternative functional which results in a tighter bound on the achievable
cost-distortion trade-off.

1.5 The Separation Theorem with Feedback

In this section, we consider the situation where the encoder has perfect (causal)
feedback: at time n, it knows the received symbols Yn−1, Yn−2, . . . . This is
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illustrated in Figure 1.6. To recall that the encoder has feedback available, we
denote it by F ◦. The definition of the channel (Definition 1.2) is a somewhat

Source Channel Destination
S

F ◦ X Y
G

Ŝ

Figure 1.6: The basic communication system with feedback.

subtle task in the presence of feedback. For example, Definition 1.2 is an inde-
fensible definition of a discrete-time memoryless channel when feedback is used.
Rather, the definition has to be extended by the following condition (see [74]):
a channel is called memoryless if it satisfies

p(yi|xi, yi−1) = pY |X(yi|xi). (1.32)

For the case of a discrete-time memoryless source/channel pair, the separation
theorem applies.

Theorem 1.7 For a discrete-time memoryless source (pS , d) and a discrete-
time memoryless channel (pY |X , ρ) (where memoryless is taken in the sense of
Equation (1.32)), whether or not feedback is used, a cost-distortion pair (Γ, ∆)
is achievable for a source-channel coding rate κ if and only if it satisfies

κR(∆) ≤ C(Γ). (1.33)

Remark 1.7 This separation theorem seems to extend also to systems with
memory: For sources with memory, it can be established along the lines of the
proof given below. For channels with memory, the argument is somewhat subtler
because no simple characterization of their feedback capacity is known. The
discussion in this thesis is limited to the memoryless case.

Proof. The converse follows from a rather simple modification of the proof that
feedback cannot increase the capacity of a discrete-time memoryless channel,
see e.g. [7, p.520] or [3, p.214].

Another way to prove the converse part of this theorem is by the aid of the
elegant concept of directed information [74]. We restrict our version of the proof
to the case of discrete alphabets. Massey defines the directed information in [74]
as follows:

I(Xm → Y m)
def
=

m∑
i=1

I(X i; Yi|Y i−1). (1.34)

We refer the reader to [74, 66] for excellent treatments of directed information.
For the purpose of our proof, we only need two properties of the functional
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(1.34). The first property is the inequality6

I(Xm → Y m) ≤
m∑

i=1

I(Xi; Yi), (1.35)

with equality if and only if Y1, Y2, . . . , Ym are independent [74]. The second
property is that for the scenario of Figure 3.3,

I(Sk; Y m) ≤ I(Xm → Y m), (1.36)

which is also proved in [74].
For any source-channel communication system using a block feedback en-

coder of rate κ,

kR(∆)
(a)

≤ I(Sk; Ŝk)
(b)

≤ I(Sk; Y m)
(c)

≤ I(Xm → Y m)
(d)

≤
m∑

i=1

I(Xi; Yi)

(e)

≤ mC(Γ), (1.37)

where (a) follows by the same arguments as Equation(1.18), (b) is the data
processing inequality, see e.g. [7, Thm. 4.3.3] or [3, Thm. 2.8.1], (c) and (d) are
the properties of directed information mentioned above and are proved in [74],
and (e) holds by the same arguments as from Equation (1.20) onwards.

The achievability is immediate since feedback does not decrease the capac-
ity: simply ignore the feedback and use Theorem 1.4. �

Remark 1.8 There is one subtle difference between the separation theorems
with and without feedback: in the latter case, the separation theorem says that
for any system

kR(∆) ≤ I(Sk; Ŝk) ≤ I(Xm; Y m) ≤ mC(Γ), (1.38)

and hence, an optimal system satisfies this with equality throughout (except for
certain degenerate cases), i.e., a necessary condition for an optimal coding sys-
tem is

I(Sk; Ŝk) = I(Xm; Y m). (1.39)

With feedback, this is not a necessary condition; it may happen that

I(Xm; Y m) > mC(Γ). (1.40)
6See Remark 1.8 for an explanation that, in the feedback case, the inequality I(Xm; Y m) ≤

∑m
i=1 I(Xi; Yi) does not hold.
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To illustrate this by a very simple example, take the binary symmetric channel of
capacity zero. Suppose that the feedback scheme is Xi = Yi−1, for i = 2, 3, . . . .
Then, using, first, the chain rule of mutual information, and then, its definition,

I(X1, X2; Y1, Y2) = I(X2; Y1) + A = H(Y1) + A, (1.41)

where A ≥ 0 by the non-negativity of mutual information. This is certainly
larger than zero.

This argument shows that I(Xm; Y m) is not a quantity of interest in feedback
systems; a system may be optimal even though it satisfies

I(Sk; Ŝk) < I(Xm; Y m). (1.42)

These observations are of importance to the discussion in Section 3.5 below.

1.6 The Separation Theorem in Communication

Networks

1.6.1 General network situations

The separation-based design can also be extended to networks. In this section,
it is briefly discussed how this can be done, and then shown (by well-known
counterexamples) that this does not generally lead to optimal communication
systems. This is the third and probably most fundamental challenge to the
paradigm of separation.

To illustrate this point, we prefer to consider the simple network topology
shown in Figure 1.7, rather than to attack the most general case. There are
two channel inputs, X1 and X2, with their input constraints Eρ1(X1) ≤ P1

and Eρ2(X2) ≤ P2, respectively. There are three sources and two destinations.
Each destination wishes to reconstruct two of the sources, as shown in the
figure. The first destination reconstructs S1 at distortion D1 = Ed1(S1, Ŝ1)
and S3 at distortion D31 = Ed31(S3, Ŝ31). The second destination reconstructs
S2 at distortion D2 = Ed2(S2, Ŝ2) and S3 at distortion D32 = Ed32(S3, Ŝ32).
Finally, there are two encoders and two decoders available, with inputs and
outputs as drawn in the figure. The basic question is again: What are optimal
cost-distortion tuples (P1, P2, D1, D2, D31, D32)?

By analogy to the point-to-point problem, a network performs optimally if
and only if all elements of the cost-distortion tuple (P1, P2, D1, D2, D31, D32) are
simultaneously minimal. Hence, the goal is to formulate optimization problems
like (1.9) and (1.10), and again to study the intersection of their solution sets.
The individual optimization problems in the spirit of (1.9) will be of the form

D1(D2, D31, D32, P1, P2) = min
F12,F3,G1,G23

Ed1(S1, Ŝ1), (1.43)

where the minimization is taken over all codes F12, F3, G1, G23 such that the
other distortions are at most D2, D31, D32 and the costs are at most P1, P2.
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Src 1

Src 2

Src 3

Des 1

Des 2

Chan

S1

S2

S3

Ŝ1, Ŝ31

Ŝ2, Ŝ32

X1

X2

Y1

Y2

F12

F3

G13

G23

Figure 1.7: Simple example of a source-channel network.

Remark 1.9 (optimality and marginals) In Remark 1.3, we pointed out
that in the point-to-point case, optimality is a matter only of the right marginals.
This follows directly from the definition of optimality. Clearly, for the same rea-
son, this remark also applies to networks.— Remark 1.6 then showed that all
the marginals have to be (essentially) identical for optimal performance. This
followed from the separation theorem. Since there is no separation theorem for
the network case, we cannot readily infer that the property of identical marginals
also applies to networks.

The notions of capacity and rate-distortion have been extended to the
network case. For a channel network with K desired connections of rates
R1, R2, . . . , RK , respectively, the set of achievable rate tuples is generally called
the capacity region of the network [4, p. 271]. We denote it by

C(P1, P2, . . . , PK), (1.44)

where P1, P2, . . . , PK denote the respective input constraints. Similarly, for a
network of sources with M desired reconstructions, the set of achievable rate
tuples is generally called the rate(-distortion) region of the source network. We
denote it by

R(D1, D2, . . . , DM ), (1.45)

where D1, D2, . . . , DM denote the requested distortions for each of the recon-
structions.

By complete analogy to the point-to-point case, the rate-distortion and the
capacity results can be combined to yield the following statement:

Theorem 1.8 If

R(D1, D2, . . . , DM ) ∩ C(P1, P2, . . . , PK) �= ∅, (1.46)

then (D1, D2, . . . , DM , P1, P2, . . . , PK) is achievable.
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Figure 1.8: It is generally suboptimal to implement a network communication
system in this fashion, i.e., by making the channel asymptotically error-free.

Proof. The proof follows directly from the operational meaning of the rate-
distortion and capacity region. �

The converse to Theorem 1.8 is not true: even if rate-distortion region and
capacity region do not intersect, a cost-distortion tuple may be achievable. In
other words, it is not true that an optimal system can be implemented as sug-
gested by Figure 1.8. We illustrate this by two examples. The first example
concerns a multi-access situation and is taken from [3, p. 449].

Example 1.3 (multi-access with correlated sources [3]) Two (corre-
lated) binary sources X1 and X2 are to be transmitted over a multiple access
channel. The channel takes binary inputs, and its output is the (real) sum of
the inputs. It can be shown that its capacity region is contained in the triangle
0 ≤ R1 + R2 ≤ 1.5. Let the sources have the following joint distribution:
(X1 = 1, X2 = 0) never occurs; the other three events are equally likely. To
encode this source in a lossless way, a total rate of R1 + R2 = log2 3 = 1.585
bits is required at least. Assuming the separation principle applies, we conclude
that it is not possible to transmit this source over the above channel without
error. However, if we let the channel inputs be the two sources without further
encoding, then their sum uniquely determines both X1 and X2.

It is relatively easy to locate the problem with the separation paradigm in
this example: The capacity region for the multi-access channel was computed
supposing independent sources. Clearly, if the sources can be dependent, the ca-
pacity region is generally larger. This is precisely what happens in this example.
If, in the definition of the capacity region, we allow for arbitrarily dependent
channel inputs, then the separation theorem applies again, and the problem
pointed out by the above example does not arise. This is not at all surpris-
ing: allowing for arbitrarily dependent sources turns the problem effectively
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into a point-to-point problem. Yet, the gist of this example is subtler than
one might think at this point of the discussion: the two channel inputs cannot
be arbitrarily dependent since they have to be separate. Slepian-Wolf coding
turns the originally dependent sources into two new sources that are indepen-
dent. For the source coding problem, this is optimal. However, for the joint
source/channel coding problem, removing the dependence is not optimal: the
dependence might be fit to the channel (as it is the case in this example), and
once it is removed, it cannot be brought in again. A similar example, featuring
a Gaussian multiple-access channel, is given below in Section 5.4.6.

While the above example is interesting, it may not convince the reader of
the shortcomings of the separation paradigm in a network context. To this
end, we consider a second well-known example involving the transmission of
one Gaussian source to many users. As we will see, it is harder to locate the
breakdown of the separation paradigm in this case.

Example 1.4 (Gaussian single-source broadcast) An iid Gaussian source
S of mean zero and variance P is to be transmitted across a Gaussian two-user
broadcast channel with power constraint P and with noise variances σ2

1 < σ2
2 .

Denote the capacities of the two underlying point-to-point channels by C1 =
1/2 log2(1 + P/σ2

1) and C2 = 1/2 log2(1 + P/σ2
2). We want D2 = DN (C2).

What is the smallest achievable D1?

First, suppose we use a separation-based design. In order to satisfy the
constraint on D2, we have to use a capacity-achieving code of rate C2 to send
to user 2 (the worse user). Can we superimpose another code for user 1? The
answer is no: any superposition would be noise for user 2, and hence compromise
D2. Since the broadcast channel at hand is degraded, user 1 can also decode the
codewords destined for user 2, hence the smallest D1 that can be achieved with
this scheme is D1 = D2 = DN (C2).

However, it is quickly verified7 for this example that simply sending S with-
out further coding achieves the distortions D∗

1 = DN (C1) and D∗
2 = DN (C2).

In other words, the cost-distortion tuple (P, D∗
1 , D∗

2) does not satisfy the rela-
tionship (1.46), yet it is achievable. Further details for this setup are given in
Example 5.1 of Chapter 5.

The failure of the separation theorem in this example is considerably more
intricate than in Example 1.3. In Section 5.2 of Chapter 5, we provide an
explanation in terms of the concepts that are introduced in Chapters 2 and 3 of
this thesis.

While these two examples clearly show that the separation-based design does
not lead to an optimal system in general network scenarios, the following sections
concern special networks where separation does lead to optimal systems.

7See also Example 2.2 below.
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1.6.2 Independent sources on the multi-access channel

The simplest extension of the separation theorem to a network context is the
case of independent sources, transmitted across a set of independent point-to-
point channels. In extension of this, we now consider independent sources,
transmitted across a multiple-access channel.

The rate-distortion region for independent sources is known; it follows di-
rectly from the rate-distortion functions of the sources. Following Shannon’s
insight, this leads to potentially multiple separation theorems, including the
setup of Figure 1.9. For this setup, the separation theorem says that an optimal

Source 1

Source 2

Channel Destination

S1

S2

Ŝ1, Ŝ2

X1

X2

Y

F1

F2

G

Figure 1.9: Independent sources on the multi-access channel.

communication strategy can be implemented by compressing each source sepa-
rately and transmitting the resulted codewords across the multi-access channel,
using a multi-access code that achieves (approaches) the boundary of the ca-
pacity region of the multi-access channel. This is certainly not an unexpected
fact.

More precisely, for given costs P1 and P2 at the respective inputs of the
multi-access channel, a capacity region

C(P1, P2) (1.47)

can be determined, see e.g. [3, Thm. 14.3.1]. Moreover, for given distortions
D1 and D2, the rate region is given by

R(D1, D2) = {(R1, R2) : R1 ≥ RS1(D1), R2 ≥ RS2(D2)}, (1.48)

where RSi denotes the rate-distortion function of source i. To emphasize that
this rate region is essentially a single-terminal object (it is rectangular), we
use the notation R(D1, D2), reserving the script notation R(·) for true multi-
terminal regions.

Theorem 1.9 (independent sources on the MAC) For independent
discrete-time memoryless sources on the discrete-time memoryless MAC, a
cost-distortion trade-off (P1, P2), (D1, D2) is achievable if and only if8

R(D1, D2) ∩ C(P1, P2) �= ∅. (1.49)

8Here, we also assume that the sources and the channel are such that there exist values of

(P1, P2), (D1, D2) that satisfy Condition (1.49).
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Proof. The achievability follows immediately from the operational meaning of
the rate-distortion function and of the capacity region. For the converse, suppose
that a certain code (F1, F2, G) achieves (P1, P2), (D1, D2). By the point-to-point
separation theorem,

nRS1(D1)
(a)

≤ I(Sn
1 ; Y n)

(b)

≤ I(Sn
1 ; Y n|Xn

2 )
(c)

≤ I(Xn
1 ; Y n|Xn

2 ),

where (a) follows immediately from the proof of Theorem 1.1, (b) holds because
S1 and X2 are independent and (c) is the data processing inequality. For the
sum rate bound, note that for any source-channel code of block length n,

nRS1(D1) + nRS2(D2)
(a)

≤ I(Sn
1 ; Ŝn

1 ) + I(Sn
2 ; Ŝn

2 )
(b)

≤ I(Sn
1 , Sn

2 ; Ŝn
1 , Ŝn

2 )
(c)

≤ I(Xn
1 , Xn

2 ; Y n),

where (a) follows from the definition of the rate-distortion function (and is
analogous to the proof of Theorem 1.1), (b) holds because S1 and S2 are
independent, and (c) is the data processing inequality. By assumption, X1 and
X2 satisfy the cost constraints, and since they are generated independently
from independent random variables S1 and S2, they can at most have a
dependency of the time-sharing kind (see e.g. [3, p.397]). Hence, by the
definition of the capacity region, the expressions I(Xn

1 ; Y n|Xn
2 ), I(Xn

2 ; Y n|Xn
1 ),

and I(Xn
1 , Xn

2 ; Y n) describe a point inside the capacity region C(P1, P2) of the
multi-access channel. �

1.6.3 The Wyner-Ziv separation theorem

In this section, we study the communication scenario depicted in Figure 1.10.
The double boxes mark the source, the channel and the destination. Filling the
single boxes is the task of the communications engineer.

Source
Channel

Destination

S
Ŝ

X Y

Z

F
G

Figure 1.10: The Wyner-Ziv communication scenario.

In the spirit of the separation paradigm, we hope to implement an optimal
system as follows: For the channel, we use a capacity-achieving code, thus
turning it into an essentially error-free bit pipe of C bits per channel use. Then,
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we encode the source at C bits per source sample, knowing that the decoder
will have side information Z available. This special rate-distortion problem has
been studied by Wyner and Ziv, and the solution is known as the Wyner-Ziv
rate-distortion function that we denote as RWZ

S|Z (D), see e.g. [3, Section 14.9].
Such a separation theorem can indeed by proved for the communication

scenario of Figure 1.10. It is given in the following theorem.

Theorem 1.10 (Wyner-Ziv separation theorem) For the Wyner-Ziv
communication scenario with a discrete-time memoryless Wyner-Ziv source
and a discrete-time memoryless channel, the cost-distortion pair (P, D) is
achievable if and only if9

RWZ
S|Z (D) ≤ C(P ). (1.50)

Proof. Achievability is a straight consequence of the operational meaning of the
Wyner-Ziv rate-distortion function, see [3, p. 438]. For the converse, we can
write out as follows:

nRWZ
S|Z (D) = n min

W :∃g s.t. Ed(S,g(W,Z))≤D
(I(S; W ) − I(Z; W ))

(a)
= min

W n:∃g s.t. Ed(Sn,g(W n,Zn))≤D
(I(Sn; Wn) − I(Zn; Wn))

(b)

≤ I(Sn; Y n) − I(Zn; Y n)

≤ I(Sn; Y n)
(c)

≤ I(Xn; Y n)

≤ nC(P ),

where (a) follows from the proof of the Wyner-Ziv rate-distortion function (see
e.g. [3, Section 14.9]), (b) follows because by assumption, Y n is such that there
exists a decoding function g yielding Ed(Sn, g(Y n, Zn)) ≤ D, hence it is in the
set over which the minimization is performed, and (c) is the data processing
theorem. �

The Wyner-Ziv rate-distortion function has been determined for discrete
memoryless sources in [113], and extended to sources with continuous alphabets
in [112]. Unlike in the scenario of Slepian and Wolf [100], there is usually a rate
loss due to the fact that the side information is not known at the encoder [113,
115], but in the special case where the source and the side information are jointly
Gaussian, there is none: the Wyner-Ziv rate-distortion function coincides with
the conditional rate-distortion function (defined e.g. in [48]). In extension of
this fact, the Wyner-Ziv rate-distortion function has also been determined for
Gaussian vector sources [37, 81].

9Here, we also assume that the source and the channel are such that there exist values of

(P, D) that satisfy Condition(1.50).
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A more general version of the simple Wyner-Ziv separation theorem above
was derived by Merhav and Shamai [75]: they consider the case of the Wyner-
Ziv source and the Gel’fand-Pinsker channel.10

Another extension of the simple Wyner-Ziv separation theorem has been
presented by Shamai, Verdú and Zamir in [96, 97]. Their scenario is illustrated
Figure 1.11. There are two channels, channel A and channel D. Channel A

is the “analog” channel, i.e., its input alphabet S′ is the same as the source
alphabet S. Channel A has capacity CA.

The practical motivation for the study of Figure 1.11 is as follows: Channel
A, together with the encoder F ′, models an existing system (e.g., analog tele-
vision). Channel D are additional resources, available to preferred customers.
In particular, the encoder F ′ is fixed to be the identity map (i.e., uncoded
transmission), and the question is: when is it possible to cater to the preferred
customers at the same quality as if F ′ could be designed freely? Notice that the
analog system by itself (the non-preferred customer’s system) is not required to
perform optimally. Denoting the conditional rate-distortion function (defined
e.g. in [48]) by RS|Z(D), the answer can be stated as follows:

Source

Channel D

Channel A

Destination
S

S′

Ŝ

X Y

Z

F

F ′
G

Figure 1.11: The communication scenario studied by Shamai, Verdú and Zamir
in [97].

Theorem 1.11 (Shamai, Verdú, Zamir) There exists an optimal code
(F, G) in the communication scenario of Figure 1.11 that permits F ′ to be the
identity mapping (i.e., uncoded transmission) if and only if the following three
conditions are satisfied:

(i) I(S; Z) = CA

(ii) RS|Z(D) = RWZ
S|Z (D)

(iii) RS(D) = RS|Z(D) + I(S; Z),

where all involved quantities are calculated for the case where F ′ in Figure 1.11
is the identity mapping.

For a proof, the reader is referred to the original paper [97]. Theorem 1.11
is a separation theorem in the sense that it determines the performance of the
optimal communication system for the setup of Figure 1.11 in terms of rate-
distortion and capacity-cost functions.

10After establishing their separation theorem, Merhav and Shamai discuss uncoded trans-

mission for the same scenario, using an approach that was inspired by the results presented

in Chapters 2 and 3 of this thesis.
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1.6.4 The multiple-description separation theorem

Another rate-distortion problem which has been solved (at least in one special
case) is the multiple-description problem. This leads to the consideration of
the communication scenario in Figure 1.12. There is one source, S, and one
encoder F , emitting two codewords. One is sent through Channel 1, the other
through Channel 2. There are three destinations interested in reconstructing S.
Destination 0 observes both channel outputs, destination 1 only the output of
Channel 1 and destination 2 only the output of Channel 2. For given costs P1

and P2 on the two channels, respectively, what is the set of achievable distortions
D0, D1 and D2?

S

Ŝ1

Ŝ0

Ŝ2

X1

X2

Y1

Y2

F

G1

G0

G2

Source Destination 0

Destination 1

Destination 2

Channel 1

Channel 2

Figure 1.12: The multiple description communication scenario.

The corresponding source coding problem is the multiple-description source
coding problem. The Gaussian case has been solved by Ozarow in [80].11 The
rate-distortion region R(MD)(D0, D1, D2) is given by [8]

R1 ≥ R(D1) (1.51)

R2 ≥ R(D2) (1.52)

R1 + R2 ≥ R(D0) + γR(D0, D1, D2), (1.53)

where γR = 0 for D1 + D2 − D0 ≥ 1, and

γR =
1
2

log2

(1 − D0)2

(1 − D0)2 −
(√

(1 − D1)(1 − D2) −
√

(D1 − D0)(D2 − D0)
)2

(1.54)

for D1 + D2 − D0 < 1.
The capacity region for two independent parallel channel is trivial,

C(P1, P2) = {(R1, R2) : 0 ≤ R1 ≤ C1(P1), 0 ≤ R2 ≤ C2(P2)}. (1.55)

Theorem 1.12 For the multiple description communication system with an
iid Gaussian source and mean-squared error distortion, and two independent

11Recent advances in multiple description coding [106, 83] have provided new achievable

rate points, but no converses.
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discrete-time memoryless channels, the cost-distortion tuple (P1, P2, D0, D1, D2)
is achievable if and only if

R(MD)(D0, D1, D2) ∩ C(P1, P2) �= ∅. (1.56)

Proof. We follow along the lines of Ozarow [80]. If the source-channel code
(F, G0, G1, G2) achieves the cost-distortion tuple (P1, P2, D0, D1, D2), then, by
the point-to-point separation theorem (more precisely, by Theorem 1.1),

R(D1) ≤ C1(P1)

R(D2) ≤ C2(P2).

Moreover,

n(R(D0) + γR(D0, D1, D2))
(a)

≤ I(Sn; Ŝn
0 )

(b)

≤ I(Sn; Y n
1 , Y n

2 )
(c)

≤ I(Sn; Y n
1 ) + I(Sn; Y n

2 )
(b)

≤ I(Xn
1 ; Y n

1 ) + I(Xn
2 ; Y n

2 )
(d)

≤ C1(P1) + C2(P2).

where (a) holds by the definition of the multiple-description rate-distortion re-
gion, (b) is the data processing inequality, (c) is due to the fact that Y1 and Y2

are conditionally independent given S, as follows:

I(Sn; Y n
1 , Y n

2 ) = I(Sn; Y n
1 ) + I(Sn; Y n

2 |Y n
1 ).

The last term can be developed

I(Sn, Y n
1 ; Y n

2 ) = I(Sn; Y n
2 ) + I(Y n

1 ; Y n
2 |Sn)

= I(Y n
1 ; Y n

2 ) + I(Sn; Y n
2 |Y n

1 ),

and since I(Y n
1 ; Y n

2 |Sn) = 0, it follows that

I(Sn; Y n
2 |Y n

1 ) = I(Sn; Y n
2 ) − I(Y n

1 ; Y n
2 ) ≤ I(Sn; Y n

2 ).

Inequality (d) holds by the definition of capacity. �

1.7 Problems

Problem 1.1 Consider two binary sources S1 and S2. S1 is simply a Bernoulli-
1/2 process, and S2 can be defined as S2 = S1 + E, where E is Bernoulli-
p. The two sources should be compressed independently of one another. S1 is
compressed using R1 bits, S2 is compressed using R2 bits.

(i) The goal of a common decoder is to reconstruct S1 and S2 without error,
as illustrated in Figure 1.13. Determine the achievable rate region.
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Source 1

Source 2

Destination

S1

S2

Ŝ1, Ŝ2

F1

F2

G

Rate R1

Rate R2

Figure 1.13: The problem considered in Part (i).

Source 1

Source 2

Destination

S1

S2

Ê

F1

F2

G

Rate R1

Rate R2

Figure 1.14: The problem considered in Part (ii).

(ii) The goal of a common decoder is to reconstruct E without error, as il-
lustrated in Figure 1.14. Show that the rates R1 = R2 = hb(p)12 are
sufficient. (This result is due to Körner and Marton [62].)

(iii) Consider the transmission of the sources S1 and S2 across the additive
modulo-2 multiple-access channel,

Y = X1 ⊕ X2, (1.57)

where ⊕ denotes modulo-2 addition. The goal of a common decoder is
again to reconstruct E without error, like in Part (ii). The situation is
illustrated in Figure 1.15.

(a) Suppose that a separation-based design is used: S1 and S2 are en-
coded using the optimal scheme of Part (ii). The resulting codewords
are transmitted using a capacity-achieving code for the above multi-
access channel. Show that it is not always possible for the decoder to
reconstruct E.

(b) Show that the strategy in Part (a) is suboptimal, in line with Example
1.3. Hint: Indicate a better strategy for “large” p, i.e., 0.11 < p <

0.5. Recall the title of this thesis.

Solution 1.1 For (i), the Slepian-Wolf region is easily determined (see e.g. [3,
Thm. 14.4.1]) in terms of hb(p):

R1 ≥ H(S1|S2) = hb(p)

R2 ≥ H(S2|S1) = hb(p)

R1 + R2 ≥ H(S1, S2) = 1 + hb(p),
12Here, hb(·) denotes the binary entropy function, i.e., hb(p) = −p log2 p−(1−p) log2(1−p)
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Source 1

Source 2

Destination

S1

S2

Ê

F1

F2

G

X1

X2

Y

Figure 1.15: The problem considered in Part (iii).

For (ii), the idea is for both S1 and S2 to encode only the “residual” with
respect to the other. More precisely, encoder F1 uses the Slepian-Wolf coding
technique as if the decoder knew S2, see [100], and encoder F2 does the same
as if the decoder knew S1. It is shown in [62] that the resulting two codewords
enable the decoder to perfectly reconstruct E.

For (iii), the maximum sum rate on the binary modulo-2 MAC is 1. Coding
according to (ii) requires a sum rate of 2hb(p). For large p, this is larger than
1, hence the separation approach of Part (a) will not work. However, for Part
(b), straight uncoded transmission obviously always works.



Chapter 2

To Code, Or Not To Code?

The ergodic point-to-point source-channel communication problem can be
solved by the separation theorem. As reviewed in Chapter 1, it gives the so-
lution to the theoretical side of the source-channel communication problem: it
permits one to determine the optimal cost-distortion trade-offs.

Moreover, the separation theorem also provides a solution to the practical
side of the source-channel communication problem, at least in an asymptotic
sense: as the encoding and the decoding are allowed to incur unbounded delay
and complexity, optimal source-channel communication schemes can be imple-
mented in a two-stage fashion: optimal source compression followed by optimal
channel coding. This has split the research community into two camps, those
who examine source compression and those who investigate channel coding.

But the separation theorem does not claim to be the only solution to the
source-channel communication problem. In fact, it is a very expensive solution,
owing to its disregard of delay and complexity issues. In sharp contrast to this,
it is well known that in certain examples, uncoded transmission achieves optimal
cost-distortion trade-offs. The behavior observed in these examples cannot be
explained from the perspective of the separation theorem: uncoded transmission
is a joint source-channel “coding” scheme.

In this chapter, we first review the two well-known examples of such behavior
(Section 2.1). In Section 2.2, we develop a theory that explains the optimality
of uncoded transmission and extends the well-known examples. In Section 2.3,
we illustrate our findings by examples, but also by a number of lemmata whose
proof is enabled or simplified by the results of Section 2.2.1

1The contents of this chapter is (up to editorial changes) identical with [43]. Sections 2.1

and 2.2.4 have been added, and Section 2.3 has been extended.

37
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2.1 Two Inspiring Examples

The first example involves a binary source/channel pair. It appears e.g. in [9,
Sec. 11.8], or [10, p. 117].

Example 2.1 (Binary/Hamming) In this example, the source is defined by
the binary uniform random variable S, and the distortion measure

d(s, ŝ) =
{

0, if s = ŝ,

1, otherwise.
(2.1)

This is usually called Hamming distortion. The channel is the binary symmet-
ric channel, i.e., it has binary input X and binary output Y , and conditional
probability mass function

p(y|x) =
{

1 − ε, if y = x,

ε, otherwise.
(2.2)

We assume that ε < 1/2. Suppose the channel is used once per source symbol.
The goal is to determine the smallest achievable average distortion Dmin. In
this example, maxD R(D) = H(S) = 1 ≥ C, which implies that there are values
of D such that R(D) = C (the channel is unconstrained in this example, hence
there is no cost P involved). This means that Theorem 1.5 applies. Hence, the
minimum distortion Dmin satisfies

R(Dmin) = C. (2.3)

For the binary symmetric channel, C = 1 − hb(ε),2 and for the binary uniform
source with Hamming distortion, R(D) = 1 − hb(D). Hence,

Dmin = ε. (2.4)

Suppose now that the source symbol S is directly used as the channel input
X, and that the channel output Y is the source estimate Ŝ. This “uncoded”
transmission scheme achieves the following average distortion:

∆ = Ed(S, Ŝ)

= 1 · Prob(S �= Ŝ) + 0 · Prob(S = Ŝ)

= ε.

Hence, uncoded transmission is optimal in this example.

This example illustrates the fact that an optimal cost-distortion trade-off
may be achievable by a very simple coding scheme. More precisely, note that
the optimal scheme designed according to the separation theorem requires as a
component a capacity-achieving code for the binary symmetric channel. Such a
code requires infinite delay, which follows immediately from Theorem 1.4: For

2Here, hb(·) denotes the binary entropy function, i.e., hb(p) = −p log2 p−(1−p) log2(1−p)
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the system to work, the error probability on the channel must be vanishingly
small. For this to happen on the binary symmetric channel, infinite delay is
necessary.

Apart from the delay (and complexity) issues, there are two other key dif-
ferences between the two communication schemes: First, note that the uncoded
communication system does not implement a deterministic end-to-end mapping
(see also Section 1.3). Second, the uncoded communication system is less flexi-
ble than the one designed according to the separation principle (see also Section
1.2.4). This point is further discussed in [73].

The second well-known example where uncoded transmission is optimal in-
volves the iid Gaussian source and the additive white Gaussian noise channel
[47].

Example 2.2 (Gaussian/MSE) Consider a discrete-time source whose out-
puts are independent and identically distributed (iid) Gaussian random variables
S with zero mean and variance σ2

S . The distortion measure is the mean-square
error,

d(s, ŝ) = (s − ŝ)2. (2.5)

The channel is the standard additive white Gaussian noise (AWGN) channel
with real-valued input X and real-valued output Y , i.e.,

Y = X + Z, (2.6)

where Z is white Gaussian noise of variance σ2. The channel input is power
constrained: EX2 ≤ P . Suppose that the channel is used once per source symbol.
The rate-distortion function for the Gaussian source and mean-square error is
known to be

R(D) =

{
1
2 log2

σ2
S

D , if D < σ2
S ,

0, otherwise.
(2.7)

The capacity of the AWGN channel is

C(P ) =
1
2

log2

(
1 +

P

σ2

)
. (2.8)

Since maxD R(D) ≥ C(P ), there are values of P and D such that R(D) =
C(P ), and hence, Theorem 1.5 applies: an optimal power-distortion pair (P, D)
satisfies

R(D) = C(P ). (2.9)

Hence, the smallest achievable distortion is found to be

Dmin =
σ2

Sσ2

P + σ2
. (2.10)
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Next, we consider the performance of a particular joint source-channel coding
strategy. The encoder is defined by the symbol-by-symbol mapping

X =

√
P

σ2
S

S, (2.11)

and the decoder by the symbol-by-symbol mapping

Ŝ =

√
σ2

S

P

P

P + σ2
Y. (2.12)

The resulting system is illustrated in Figure 2.1. The distortion can be computed
simply by evaluating the expectation:

∆ = E|S − Ŝ|2

=
(

1 − P

P + σ2

)2

E|S|2 +
σ2

S

P

(
P

P + σ2

)2

E|Z|2

=
σ2

Sσ4

(P + σ2)2
+

σ2
Sσ2P

(P + σ2)2

=
σ2

Sσ2

P + σ2
.

That is, the nearly uncoded transmission strategy defined by Equations (2.11)
and (2.12) performs optimally.

Source Destination
S ŜX Y

Z

√
P
σ2

S

√
σ2

S

P
P

P+σ2

Figure 2.1: An optimal coding scheme for the transmission of an iid Gaussian
source across an AWGN channel.

This Gaussian example appears in many places; it is often credited to Goblick
[47]. It has been extended and reconsidered many times, including [32, 47, 76].

2.2 Single-letter Codes that Perform Optimally

It is well known that there are instances of source/channel pairs for which single-
letter codes achieve the best possible performance. This result is particularly
surprising since such codes are extremely easy to implement and operate at zero
delay. In this section, we derive necessary and sufficient conditions under which
single-letter codes are optimal. In line with Definition 1.3, we define:

Definition 2.1 (single-letter source-channel code) A single-letter source-
channel code (f, g) is specified by an encoding function f(·) : S → X and a
decoding function g(·) : Y → Ŝ.
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Note that for single-letter codes, κ = 1. Theorem 1.5 contains two condi-
tions that together are necessary and sufficient to establish the optimality of
any communication system, including those that use single-letter codes. These
conditions will now be examined in detail. In Section 2.2.1, we elaborate on the
first condition, i.e., R(∆) = C(Γ). The second condition is somewhat subtler;
it will be discussed in Section 2.2.2. In Section 2.2.3, the results are combined
to yield a general criterion for the optimality of single-letter codes.

Source Channel Destination
S ŜX Y

f g

Figure 2.2: The symbol-by-symbol communication system: f : S → X , g : Y →
Ŝ.

2.2.1 Condition (i) of Theorem 1.5

Optimal communication systems satisfy the conditions of the separation theo-
rem, Theorem 1.5. In this section, we examine condition (i) of Theorem 1.5 for
the special case when the code is a single-letter code. Since a single-letter code
has κ = 1, that condition becomes R(∆) = C(Γ). As a first step, we reformulate
this condition more explicitly as follows:

Lemma 2.1 For a discrete-time memoryless source/channel pair (pS , d) and
(pY |X , ρ) and a single-letter code (f, g) as in Figure 2.2, R(∆) = C(Γ) holds if
and only if the following three conditions are simultaneously satisfied:

(i) the distribution pX of X = f(S) achieves capacity on the channel (pY |X , ρ)
at input cost Γ = Eρ(X), i.e., I(X ; Y ) = C(Γ),

(ii) the conditional distribution pŜ|S of Ŝ = g(Y ) given S achieves the rate-

distortion function of the source (pS , d) at distortion ∆ = Ed(S, Ŝ), i.e.
I(S; Ŝ) = R(∆), and

(iii) f(·) and g(·) are such that I(S; Ŝ) = I(X ; Y ), i.e., f(·) and g(·) are
“information lossless.”

Proof. For any source-channel communication system that employs a single-
letter code,

R(∆) = min
qŜ|S:Ed(S,Ŝ)≤∆

I(S; Ŝ)
(a)

≤ I(S; Ŝ)
(b)

≤ I(X ; Y )

(c)

≤ max
qX :Eρ(X)≤Γ

I(X ; Y ) = C(Γ), (2.13)

where (b) is the data processing inequality. Equality holds in (a) if and only if
pŜ|S achieves the rate-distortion function of the source, and in (c) if and only
if pX achieves the capacity-cost function of the channel. Thus, R(∆) = C(Γ)
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is satisfied if and only if all three conditions in Lemma 2.1 are satisfied, which
completes the proof. �

Remark 2.1 (test channel) The conditional distribution achieving the rate-
distortion function is sometimes called the “test channel”, see e.g. [3, p. 345].
In this terminology, uncoded transmission is optimal if the actual channel is
precisely the test channel for the source,3 and the cost function for the channel
is chosen appropriately.

There are various ways to verify whether the requirements of Lemma 2.1
are satisfied. Some of them lead to problems that notoriously do not admit
analytical solutions. For example, we could compute the capacity-cost function
C(·) of the channel (pY |X , ρ) and evaluate it at Γ. This is known to be a
problem that does not have a closed-form solution for all but a small set of
channels. Similarly, one could compute the rate-distortion function R(·) of the
source (pS , d) and evaluate it at ∆. Again, closed-form solutions are known only
for a handful of special cases. Hence, following this approach, we have to resort
to numerical methods via the Arimoto-Blahut algorithm.

More precisely, fix the channel conditional distribution to be pY |X . For a
given cost function ρ, there is no general closed-form expression for the channel
input distribution that achieves capacity. The key idea of the following lemma
is to turn this game around: for any distribution qX over the channel input
alphabet X , there exists a closed-form solution for the input cost function ρ

such that the distribution qX achieves capacity.

Lemma 2.2 For fixed discrete source distribution pS, single-letter encoder f

and discrete channel conditional distribution pY |X with unconstrained capacity
C0 (see Definition 1.8):

(i) If I(X ; Y ) < C0, the first condition of Lemma 2.1 is satisfied if and only
if the input cost function satisfies,

ρ(x)
{

= c1D(pY |X(·|x)||pY (·)) + ρ0, if p(x) > 0,

≥ c1D(pY |X(·|x)||pY (·)) + ρ0, otherwise,
(2.14)

where c1 > 0 and ρ0 are constants, and D(·||·) denotes the Kullback-Leibler
distance between two distributions.

(ii) If I(X ; Y ) = C0, the first condition of Lemma 2.1 is satisfied for any
function ρ(x).

Proof. See Appendix 2.A.
This lemma appears in a different shape as Problem 2 (without explicit

proof) in [4, p. 147]; it can also be seen as an extension of Theorem 4.5.1
3Prof. em. James L. Massey remarked this on the occasion of the défense privée of this

thesis and told the author that this insight had been part of the lectures of Claude E. Shannon.
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of [7] to the case of constrained channel inputs. To gain insight, let qX be
the channel input distribution induced by some source distribution through the
encoder f . For any cost function ρ, one finds an expected cost and a set of
admissible input distributions leading to the same (or smaller) average cost.
The input distribution qX lies in that set, but it does not necessarily maximize
mutual information. The key is now to find the cost function, and thus the
set of admissible input distributions, in such a way that the input distribution
qX maximizes mutual information within the set. In the special case where
the input distribution qX achieves C0, it clearly maximizes mutual information
among distributions in any set, regardless of ρ. Hence, in that case, the choice
of the cost function ρ is unrestricted.

Lemma 2.2 gives an explicit formula to select the input cost function ρ for
given channel conditional and input distributions. By analogy, the next lemma
gives a similar condition for the distortion measure.

Lemma 2.3 For fixed discrete source distribution pS, discrete channel condi-
tional distribution pY |X and single-letter code (f, g):

(i) If 0 < I(S; Ŝ), the second condition of Lemma 2.1 is satisfied if and only
if the distortion measure satisfies

d(s, ŝ) = −c2 log2 p(s|ŝ) + d0(s), (2.15)

where c2 > 0 and d0(·) is an arbitrary function.

(ii) If I(S; Ŝ) = 0, the second condition of Lemma 2.1 is satisfied for any
function d(s, ŝ).

Proof. See Appendix 2.A.
This lemma should be understood by complete analogy to Lemma 2.2; it

appears in a different shape as Problem 3 (without explicit proof) in [4, p. 147].
That is, let qŜ|S be the conditional distribution induced by some channel condi-
tional distribution through the encoder f and the decoder g. For any distortion
measure d, an average distortion ∆ = EqŜ|S d(S, Ŝ) can be computed, which
implies a set of alternative conditional distributions that also yield distortion
∆. The key is to find d in such a way that the chosen qŜ|S minimizes I(S; Ŝ)
among all conditional distributions in the set.

Apparently, there is a slight asymmetry between Lemmata 2.2 and 2.3: In
the former, when p(x) = 0, ρ(x) satisfies a less stringent condition. In the
latter, a similar behavior occurs: when p(s, ŝ) = 0, the condition can be relaxed
to d(s, ŝ) ≥ −c2 log2 p(s|ŝ)+d0(s). However, since the right hand side is infinity
in that case, requiring equality is equivalent.

In summary, our discussion of the requirement R(∆) = C(Γ) produced a set
of explicitly verifiable conditions that together ensure R(∆) = C(Γ). However,
to obtain an explicit criterion that can establish the optimality of a single-letter
code, it still remains to scrutinize the condition (ii) of Theorem 1.5. This is the
goal of the next section.
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2.2.2 Condition (ii) of Theorem 1.5

Theorem 1.5 contains two simultaneous requirements to ensure the optimality of
a communication system that employs single-letter codes. The first requirement,
R(∆) = C(Γ), was studied and developed in detail in Section 2.2.1; in this
section, we examine the second condition, namely, when is it impossible to
lower ∆ without changing R(∆) and when it is impossible to lower Γ without
changing C(Γ). This permits us to give a general criterion to establish the
optimality of any communication system that uses single-letter codes.

The crux of the problem is illustrated in Figure 2.3. It shows simultaneously
the capacity-cost function of the channel (left) and the rate-distortion function
of the source (right). Problematic cases may occur only if either R(·) or C(·)
are horizontal, i.e. when they have reached their asymptotic values R(D → ∞)
and C(P → ∞). This happens only when the mutual information is zero or C0

(the unconstrained capacity of the channel, see Definition 1.8). For example,
both the cost-distortion pair (Γ1, ∆) and the cost-distortion pair (Γ2, ∆) satisfy
the condition R(∆) = C(Γ); however, only the pair (Γ2, ∆) corresponds to an
optimal transmission strategy. By analogy, an example can be given involving
two different distortions. A concrete example of a system where the condition
R(∆) = C(Γ) is not sufficient is given as Example 1.1 above.

P Γ1 Γ2 D∆

C κR

Figure 2.3: When R(∆) = C(Γ) is not sufficient to guarantee optimality..

Continuing in this line of thought, we obtain the following proposition.

Proposition 2.4 Suppose that the transmission of the discrete-time memory-
less source (pS , d) across the discrete-time memoryless channel (pY |X , ρ) using
the single-letter code (f, g) satisfies R(∆) = C(Γ). Then,

(i) Γ cannot be lowered without changing C(Γ) if and only if one of the fol-
lowing two conditions is satisfied:

(a) I(X ; Y ) < C0, or
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(b) I(X ; Y ) = C0 and among the distributions that achieve C0, pX is one
with lowest cost. In particular, the last condition is trivially satisfied
whenever pX is the unique channel input distribution achieving C0.

(ii) ∆ cannot be lowered without changing R(∆) if and only if one of the
following two conditions is satisfied:

(a) I(S; Ŝ) > 0, or

(b) I(S; Ŝ) = 0 and among the conditional distributions for which
I(S; Ŝ) = 0, pŜ|S is one with lowest distortion. In particular, the
last condition is trivially satisfied if pŜ|S is the unique conditional

distribution achieving I(S; Ŝ) = 0.

Proof. Part (i): To see that condition (a) is sufficient, define
Γmax = min{P : C(P ) = C0}. For every Γ < Γmax, the value C(Γ)
uniquely specifies Γ. This follows from the fact that C(·) is convex and
nondecreasing. From Lemma 2.1, R(∆) = C(Γ) implies C(Γ) = I(X ; Y ).
Hence, I(X ; Y ) < C0 implies C(Γ) < C0, which in turn implies that it is not
possible to change Γ without changing C(Γ). To see that condition (b) is
sufficient, note that if among the achievers of C0, pX belongs to the ones with
lowest cost, then it is indeed impossible to lower Γ without changing C(Γ). In
particular, if pX is the only achiever of C0, then there cannot be another pX

that achieves the same rate, namely C0, but with smaller cost, simply because
there is no other pX that achieves C0.
It remains to show that if neither (a) nor (b) is satisfied, then Γ can indeed be
lowered. In that case, I(X ; Y ) = C0 (it cannot be larger than C0). Moreover,
there must be multiple achievers of C0, and pX is not one minimizing Γ. In
other words, Γ can indeed be lowered without changing C(Γ) = C0.
The proof of part (ii) of the proposition goes along the same lines. To see
that condition (a) is sufficient, define ∆max = min{D : R(D) = 0}. For every
∆ < ∆max, the value R(∆) uniquely specifies ∆. This follows from the fact
that R(·) is convex and non-increasing. From Lemma 2.1, R(∆) = C(Γ) implies
R(∆) = I(S; Ŝ). Hence, 0 < I(S; Ŝ) implies 0 < R(∆), which in turn implies
that it is not possible to change ∆ without changing R(∆). For condition (b),
note that if among the achievers of zero mutual information, pŜ|S is one with
lowest distortion, then it is indeed impossible to lower ∆ without changing
R(∆). In particular, if pŜ|S is the unique conditional distribution achieving
zero mutual information, then there cannot be another conditional distribution
achieving the same rate (zero) but with smaller distortion, simply because by
assumption, there is no other conditional distribution achieving zero mutual
information.
It remains to show that if neither (a) nor (b) is satisfied, then ∆ can indeed
be lowered. In that case, I(S; Ŝ) = 0 (it cannot be smaller than 0). Moreover,
there must be multiple achievers of zero mutual information, and pŜ|S does not
minimize the distortion among them. In other words, ∆ can indeed be lowered
without changing R(∆) = 0. �
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Remark 2.2 In the most general case of Proposition 2.4, it is necessary to
specify the cost function and the distortion measure before the conditions can
be verified. Let us point out, however, that, in many cases of practical interest,
this is not necessary. In particular, if I(X ; Y ) < C0, or if I(X ; Y ) = C0 but pX

is the unique distribution that achieves C0, then Part (i) is satisfied irrespective
of the choice of the cost function. By analogy, if 0 < I(S; Ŝ), or if I(S; Ŝ) = 0
but pŜ|S is the unique conditional distribution for which I(S; Ŝ) = 0, then Part
(ii) is satisfied irrespective of the choice of the distortion measure.

In summary, our discussion of Condition (ii) of Theorem 1.5 supplied a set
of explicitly verifiable criteria. The main result of this chapter is obtained by
combining this with the results of Section 2.2.1.

2.2.3 To code, or not to code?

The main result of this chapter is a simple criterion to check whether a given
single-letter code performs optimally for a given source/channel pair. Theorem
1.5 showed that, on the one hand, the system has to satisfy R(∆) = C(Γ). The
choice of the cost function ρ as in Lemma 2.2 ensures that the channel input
distribution achieves capacity. Similarly, the choice of the distortion measure
according to Lemma 2.3 ensures that the conditional distribution of Ŝ given S

achieves the rate-distortion function of the source. Together with the condition
that I(S; Ŝ) = I(X ; Y ), this ensures that R(∆) = C(Γ). But Theorem 1.5
required on the other hand that Γ cannot be lowered without changing C(Γ),
and that ∆ cannot be lowered without changing R(∆). Recall that this is not
ensured by Lemmata 2.2 and 2.3. Rather, it was discussed in Section 2.2.2 and
led to Proposition 2.4. It is now a simple matter to combine the insight gained
in the latter proposition with the statements from Lemmata 2.2 and 2.3. This
leads to a quite simple criterion to establish the optimality of a large class of
communication systems that employ single-letter codes:

Theorem 2.5 Consider a discrete memoryless source (pS , d) and a discrete
memoryless channel (pY |X , ρ) for which there exists values of P and D such
that R(D) = C(P ). For the transmission using a single-letter code (f, g), the
following statements hold:

(o) If I(S; Ŝ) �= I(X ; Y ), then the system does not perform optimally.

(i) If 0 < I(S; Ŝ) = I(X ; Y ) < C0, the system is optimal if and only if ρ(x)
and d(s, ŝ) satisfy Lemmata 2.2 and 2.3, respectively.

(ii) If 0 < I(S; Ŝ) = I(X ; Y ) = C0, the system is optimal if and only if d(s, ŝ)
satisfies Lemma 2.3, and ρ(x) is such that Eρ(X) ≤ Ep̃X ρ(X) for all other
achievers p̃X of C0. In particular, the last condition is trivially satisfied
if pX is the unique channel input distribution achieving C0.
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(iii) If 0 = I(S; Ŝ) = I(X ; Y ) < C0, the system is optimal if and only if ρ(x)
satisfies Lemma 2.2, and d(s, ŝ) is such that Ed(S, Ŝ) ≤ Ep̃Ŝ|S d(S, Ŝ) for

all other achievers p̃Ŝ|S of I(S; Ŝ) = 0. In particular, the last condition
is trivially satisfied if pŜ|S is the unique conditional distribution for which

I(S; Ŝ) = 0.

(iv) If C0 = 0, then the system is optimal if and only if Eρ(X) ≤ Ep̃X ρ(X)
for all channel input distributions p̃X , and Ed(S, Ŝ) ≤ Ep̃Ŝ|Sd(S, Ŝ) for
all conditional distributions p̃Ŝ|S.

Proof. Part (o). From the data processing inequality (see e.g. [7, Thm.
4.3.3] or [3, Thm. 2.8.1]), I(S; Ŝ) �= I(X ; Y ) implies I(S; Ŝ) < I(X ; Y ). More-
over, I(S; Ŝ) < I(X ; Y ) implies R(∆) < C(Γ) (see also the proof of Lemma
2.1). But then, by Theorem 1.5, the system does not perform optimally.
Part (i). If 0 < I(S; Ŝ) and I(X ; Y ) < C0, the system is optimal if and only if
R(∆) = C(Γ) (Theorem 1.5 with Proposition 2.4). We have shown that this is
equivalent to requiring the three conditions of Lemma 2.1 to be satisfied. The
third of these conditions, I(S; Ŝ) = I(X ; Y ), is satisfied by assumption. As
long as 0 < I(S; Ŝ) and I(X ; Y ) < C0, Lemmata 2.2 and 2.3 establish that the
first two are satisfied if and only if ρ and d are chosen according to Formulae
(2.14) and (2.15), respectively.
Part (ii). If I(X ; Y ) = C0, the system is optimal if and only if R(∆) = C(Γ)
and among the achievers of C0, pX belongs to the ones with lowest cost
(Theorem 1.5 with Proposition 2.4). The condition R(∆) = C(Γ) is satisfied if
and only if the three conditions of Lemma 2.1 are satisfied. The third of these
conditions, I(S; Ŝ) = I(X ; Y ), is satisfied by assumption. When 0 < I(S; Ŝ)
but I(X ; Y ) = C0, Lemmata 2.2 and 2.3 establish that the first two are satisfied
if and only if d is chosen according to Formula (2.15).
Part (iii). If 0 = I(S; Ŝ), the system optimal if and only if R(∆) = C(Γ)
and among the conditional distributions for which I(S; Ŝ) = 0, pŜ|S belongs
to the ones with lowest distortion (Theorem 1.5 with Proposition 2.4). The
condition R(∆) = C(Γ) is satisfied if and only if the three conditions of Lemma
2.1 are satisfied. The third of these conditions, I(S; Ŝ) = I(X ; Y ), is satisfied
by assumption. When I(X ; Y ) < C0 but I(S; Ŝ) = 0, Lemmata 2.2 and 2.3
establish that the first two are satisfied if and only if ρ is chosen according to
Formula (2.14).
Part (iv) has been added for completeness only. It should be clear that if
C0 = 0, then automatically all the mutual information conditions are satisfied
since all mutual informations must be zero. All that has to be checked is that
the cost and the distortion are minimal. Obviously, this case is of limited
interest. �
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2.2.4 Extension to continuous alphabets

While Theorem 2.5 was proved for discrete alphabets only, some results of this
chapter apply also to continuous alphabets. In this section, we establish one
consequence of this fact.

More precisely, we now consider discrete-time memoryless sources and chan-
nels as defined in Definitions 1.1 and 1.2, respectively For those, we can establish
the following theorem:

Theorem 2.6 Consider a discrete-time memoryless source (pS , d) and a
discrete-time memoryless channel (pY |X , ρ) for which there exist values of P

and D such that R(D) = C(P ). Suppose that the single-letter source-channel
code (f, g) is such that 0 < I(S; Ŝ) = I(X ; Y ) < C0. If the source, the channel
and the code satisfy

ρ(x)
{

= c1D(pY |X(·|x)||pY (·)) + ρ0 if p(x) > 0
≥ c1D(pY |X(·|x)||pY (·)) + ρ0 otherwise.

(2.16)

d(s, ŝ) = −c2 log2 p(s|ŝ) + d0(s), (2.17)

then they constitute an optimal communication system.

Proof. The proof of Lemma 2.2 shows that even for continuous alphabets, if
ρ(x) is chosen according to (2.16), then the underlying channel input density
p(x) achieves capacity. Moreover, the proof of Lemma 2.3 shows that even for
continuous alphabets, if d(s, ŝ) is chosen according to (2.17), then the under-
lying distribution p(ŝ|s) achieves the rate-distortion function. Furthermore, by
assumption, the code (f, g) is such that I(S; Ŝ) = I(X ; Y ). Hence, by Lemma
2.1, the communication system satisfies R(∆) = C(Γ). Hence, Condition
(i) of Theorem 1.5, i.e., R(∆) = C(Γ), is satisfied. Since by assumption,
0 < I(S; Ŝ) = I(X ; Y ) < C0, Proposition 2.4 ensures that Condition (ii) is also
satisfied, hence the communication system performs optimally. �

Note that in contrast to Theorem 2.5, Equations (2.16) and (2.17) of The-
orem 2.6 are not necessary conditions — there may generally be other choices
of ρ and d for which the system also performs optimally. A stronger statement
could be made by constraining the considered class of probability distributions,
and further technical conditions. Alternatively, the methods described in [28]
may be helpful. This, however, is beyond the scope of this thesis.

2.3 Illustrations of Theorems 2.5 and 2.6

To illustrate Theorem 2.5, pick any probability measures for the source and the
channel, and determine the cost function and distortion measure according to
Lemmata 2.2 and 2.3, respectively. For the well-known example of a binary
uniform source across a binary symmetric channel, this is done as follows.
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Example 2.3 (binary) Consider again Example 2.1. For that example, it
turned out that uncoded transmission is an optimal source-channel commu-
nication strategy. Let us establish the same fact using Theorem 2.5. Since
I(X ; Y ) = C0, this example falls in case (ii). The distortion measure require-
ment is evaluated to be

p(s|ŝ) =
pY |X(ŝ|s)pS(s)

pY (ŝ)
= pY |X(ŝ|s) =

{
1 − ε, if ŝ = s,

ε, otherwise.
(2.18)

Taking d0(s) = log2(1−ε)

log2
1−ε

ε

and c2 = 1
log2

1−ε
ε

in Lemma 2.3 reveals that one of the
distortion measures that satisfy the requirement in Theorem 2.5 is the Hamming
distance, confirming again that for the setup of Example 2.1, uncoded transmis-
sion is an optimal strategy.

As shown in this example, Theorem 2.5 can be applied directly by fixing the
probability measures and the single-letter code, and determining the cost func-
tion and distortion measures according to the formulae. But the conditions of
Theorem 2.5 are also useful if, e.g., the channel conditional probability distribu-
tion and the cost function are specified, and the source probability distribution
and the distortion measure have to be determined accordingly, as illustrated by
the following example [87]:

Example 2.4 In this example, the alphabets are binary sequences of length n,
denoted by bold symbols x. Let the channel conditional distribution be any per-
mutation of the length-n sequence, i.e.,

p(y|x) =

⎧⎪⎨
⎪⎩
(

n

w(x)

)−1

, if w(x) = w(y),

0, otherwise,
(2.19)

where w(x) denotes the Hamming weight (number of 1s) in the sequence x.
Moreover, let the cost function be

ρ(x) = a1w(x) + a0. (2.20)

This can be seen as a simple model of neural communication [87]. By Lemma
2.2, the capacity-achieving input distribution satisfies

a1w(x) + a0 = c1D
(
pY|X(·|x)||pY(y)

)
. (2.21)

In [87], this condition is used to determine the capacity-achieving input distri-
bution. The probability that w(x) = k is found to be

q(k) =
bn

bn+1 − 1
(b − 1)b−k, (2.22)

for k ∈ {0, 1, . . . , n}. In [87], the distortion measure according to Lemma 2.3 is
also determined.
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Example 2.4 considered a simple model of neural communication. This also
illustrates the point that in certain applications, the source and the channel
can be selected in a favorable fashion: For the case of neural communication,
evolution had the opportunity to do so. This point is discussed in Chapter 4.

Beyond such a direct application, Theorem 2.5 is also useful in certain proofs.
Example 2.3 suggests the question of the uniqueness of the solution: Suppose
that all involved alphabets are binary, the distortion measure is Hamming, and
the channel input cost function a constant. Then, is Example 2.3 the unique
instance of optimal uncoded transmission? Using Theorem 2.5, one can establish
the following Lemma:

Lemma 2.7 (binary) Let S = X = Y = Ŝ = {0, 1}, ρ(x) = const., and
d(s, ŝ) = 1 if s �= ŝ, and d(s, ŝ) = 0 otherwise (Hamming distortion). Suppose
that the channel has nonzero capacity. Then, there exists a single-letter code
with optimal performance if and only if the source probability mass function
(pmf) pS is uniform and the channel conditional pmf pY |X is symmetric.

Proof. The proof is given in Appendix 2.A.
If the alphabets are not binary, the following similar result can be estab-

lished:

Lemma 2.8 (L-ary uniform) Let S,X ,Y and Ŝ be L-ary, ρ(x) = const., for
all x, d(s, ŝ) = 1 if s �= ŝ, and d(s, ŝ) = 0 otherwise (Hamming distortion), and
pS be uniform. Moreover, let the channel have nonzero capacity C0. Then, there
exists a single-letter code with optimal performance if and only if the channel
conditional pmf is pY |X(y|x) = const., for y �= x (or a permutation thereof).

Proof. The proof is given in Appendix 2.A.
There is a nice intuition going along with the last result: Suppose that

the channel is symmetric ([3, p. 190]) and that the probabilities of erroneous
transition are {ε1, . . . , εL−1} for every channel input. The distortion achieved
by uncoded transmission is simply the sum of these probabilities. However,
the distortion achieved by coded transmission depends on the capacity of the
channel. Therefore, if uncoded transmission should have a chance to be optimal,
we have to minimize the capacity of the channel subject to a fixed sum

∑L−1
i=1 εi.

But this is equivalent to maximizing the entropy of the “noise” Z = Y − X

subject to a fixed probability pZ(z = 0). Clearly, this maximum occurs when
all the εi are equal.

As shown in Theorem 2.6, our results also apply to continuous alphabets,
albeit in a weaker form. We illustrate this by the well-known Gaussian example,
followed by a Laplacian example that was constructed from the theory developed
in this chapter.

Example 2.5 (Gaussian) Consider again Example 2.2. For that example, it
is well known that (almost) uncoded transmission as described by Equations
(2.11) and (2.12) is an optimal communication strategy. Let us establish the
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same fact using Theorem 2.6. It is clear that I(X ; Y ) = I(S; Ŝ) since both the
encoder (2.11) and the decoder (2.12) are bijective maps. Moreover, since C0

is infinite for the AWGN channel, Theorem 2.6 can be applied. For the cost
function, we first determine

D(pY |X(·|x)||pY (·))
= D ( pZ (· − x) || pY (·))
= −h (pZ (· − x)) −

∫
pZ (y − x) log2 pY (y)dy. (2.23)

Since the entropy of a Gaussian is independent of its mean, the first term is a
constant, say a. Hence,

D(pY |X(·|x)||pY (·))

= a −
∫

1√
2πσ

e−
(y−x)2

2σ2

(
log2

1√
2π(α2σ2

S + σ2)
− y2

2(α2σ2
S + σ2)

)
dy

= a1 + a2

∫
1√
2πσ

e−
(y−x)2

2σ2 y2dy = a1 + a2(σ2 + x2) = b1x
2 + b2, (2.24)

where the ai and bi are appropriate constants. Since the formula of Theorem 2.6
only specifies ρ(x) up to an affine transform, their precise value is irrelevant.
For example, by choosing (in Theorem 2.6) c1 = 1/b1 and ρ0 = −b2/b1, Eqn.
(2.16) reads ρ(x) = x2.

For the distortion measure, we have to determine p(s|ŝ). For notational
convenience, denote the encoder given in Equation (2.11) by x = αs, and the
decoder given in Equation (2.12) by ŝ = βy. With this, p(ŝ|s) can be expressed
as

p(ŝ|s) =
1
β

pY |X (ŝ/β |αs) =
1√

2πσβ
e
− 1

2σ2β2 (ŝ−αβs)2
. (2.25)

The marginal of Ŝ can be determined by recalling that Y is Gaussian with vari-
ance P + σ2. Hence, Ŝ is Gaussian with variance β2(P + σ2). Plugging in, we
find

log2

p(ŝ|s)
p(ŝ)

= log2

β
√

P + σ2

σ
e
− 1

2σ2β2 (ŝ−αβs)2+ 1
2β2(P+σ2)

ŝ2

, (2.26)

which gives (by defining c2 and d0(s) in Theorem 2.6 appropriately)

d(s, ŝ) = c2

(
ŝ − αβ(P + σ2)

P
s

)2

+ d0(s). (2.27)

It is quickly verified that inserting the definitions of α and β yields the standard
mean-square error distortion. Hence, Theorem 2.6 allows to conclude that the
suggested communications scheme performs optimally.

As a side note, suppose that the coefficients α and β are chosen differently,
which means that the single-letter code is “mismatched.” Then, the above deriva-
tion shows that the code performs optimally with respect to a “weighted” MSE
distortion, with weighting as given by the last equation.
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By analogy to Lemma 2.7, it is tempting to claim that whenever the alpha-
bets are continuous, the cost function is the square, and the distortion is the
mean-square error, then the source and channel distributions must be Gaussian.
It is beyond the scope of this thesis to establish this result, but note that cer-
tain other results point in this direction. For example, in [88], it is shown that
for mean-square error distortion, the rate-distortion-achieving distribution is a
probability density function if and only if the source is a mixture of Gaussians.
Another clue comes from the Darmois-Skitovič Theorem (see e.g. [5]).

The last example of this section serves to illustrate that our results are not
limited to binary and Gaussian examples.

Example 2.6 (Laplacian) This example studies the transmission of a Lapla-
cian source across an additive white Laplacian noise (AWLN) channel, defined
as follows:

pS(s) =
α0

2
e−α0|s| (2.28)

pY |X(y|x) =
α

2
e−α|y−x|. (2.29)

We also use Z = Y −X to denote the additive noise. Hence, Z is Laplacian with
parameter α. Assume that α0 < α (which implies ES2 > EZ2). Note that with
trivial changes, the derivations can be altered for the case α0 ≥ α. Moreover, let
the encoding and the decoding function be simply the identity (in other words,
consider uncoded transmission). The corresponding output distribution pY (y) is
found to be

pY (y) =
α0α

2
αe−α0|y| − α0e

−α|y|

α2 − α2
0

. (2.30)

Since the channel is an independent additive noise channel, the formula in The-
orem 2.2 can be rewritten as

ρ(x) = −
∫

z

pZ(z) log2 pY (x + z)dz. (2.31)

A numerical approximation to this is illustrated in Fig. 2.4 for a particular
choice of the parameters: α0 = 3 and α = 9, hence the signal-to-noise ratio in
the example is α2/α2

0 = 9. Note that ρ(x) as in Eqn. (2.31) is negative for
some values of x. For the figure, we have added a suitable constant. The figure
reveals that ρ(x) is similar to the magnitude function (at least for our choice of
the parameters). The next step is to compute the distortion measure that makes
the system optimal. According to Theorem 2.3, we need to determine

− log2 p(s|ŝ) = − log2

pY |X(ŝ|s)pS(s)
pY (ŝ)

= − log2

α2 − α2
0

2
e−α|ŝ−s|−α0|s|

αe−α0|ŝ| − α0e−α|ŝ| . (2.32)
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Figure 2.4: Channel input cost function ρ(x) according to Eqn. (2.31).

However, this function is negative for some (s, ŝ). To make it nonnegative, we
add, for each s, an appropriate constant, namely the log2 of

max
ŝ

p(s|ŝ) =
α2 − α2

0

2
e−α0|s| max

ŝ

e−α|ŝ−s|

αe−α0|ŝ| − α0e−α|ŝ|

=
α2 − α2

0

2
1

α − α0e−(α−α0)|s| .

Substituting, we obtain

d(s, ŝ) = |ŝ − s| + 1
α

log2

αe−α0|ŝ| − α0e
−α|ŝ|

αe−α0|s| − α0e−α|s| . (2.33)

This is illustrated in Fig. 2.5 for the above choice of the parameters (α0 = 3 and
α = 9).4 To conclude this example, let us point out that there is no straight-
forward answer to the question whether this distortion measure is practically
meaningful. To judge that, physical objectives have to be taken into considera-
tion.

2.4 Summary and Conclusions

To code, or not to code: that is the question. Undoubtedly, “not to code” is very
appealing when it leads to an optimal cost-distortion trade-off, since it involves

4Note that the figure does not exactly depict Eqn. (2.33); rather, additive and multiplica-

tive constants have been selected to get a clearer picture.
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Figure 2.5: Distortion measure d(s, ŝ) according to Eqn. (2.33) for fixed ŝ.

the smallest possible delay and complexity. For uncoded transmission, optimal-
ity was shown to be a matter of matching four quantities: the source proba-
bility distribution and the corresponding distortion measure, and the channel
conditional probability distribution and the corresponding cost function. Since
these are all measures of some kind, we call our main result, Theorem 2.5, the
measure-matching conditions.

One attractive feature of the conditions given in Theorem 2.5 is that they
are explicit for fixed source and channel (conditional) distributions: We provide
closed-form formulae for the channel input cost function ρ and the distortion
measure d such that no loss in transmission quality is incurred with respect to
the best possible communication scheme, irrespective of delay and complexity.
More explicitly, it achieves the same cost-distortion trade-off as the best source
compression followed by the best channel code. We also show that it is always
possible to select ρ and d in such a way. In other words, there are infinitely many
examples where uncoded transmission is an optimal communication strategy,
just like in the examples of Section 2.1. We showed that in many cases, these
formulae are also necessary conditions in the sense that if ρ and d are not chosen
according to them, then the overall system performs suboptimally.

In the next chapter, we extend the measure-matching conditions of Theorem
2.5 to arbitrary source-channel codes. This leads to a different perspective on
the general source-channel communication problem.
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Appendix 2.A Proofs

Proof of Lemma 2.2. This lemma appears as Problem 2 in [4, p. 147], and its
proof is a consequence of [4, Thm. 3.4]. In the following, we prove the sufficiency
of the formula for ρ(x) using a slightly different approach. Note that our proof
also applies to continuous alphabets.

Let pY |X be fixed. For any distribution pX on X , define

I ′pX
(x) = D(pY |X(·|x)||pY ), (2.34)

where pY (y) = EpY |X(y|X) is the marginal distribution of Y when X is dis-
tributed according to pX .

It is quickly verified that with this definition, IpX (X ; Y ) = 〈pX , I ′pX
〉,

where 〈f, g〉 denotes the standard inner product, i.e. for discrete alphabets,
〈f, g〉 =

∑
x f(x)g(x) and for continuous alphabets, 〈f, g〉 =

∫
f(x)g(x)dx.

With this notation, we may write D(pY |X(·|x)||pY ) = 〈pY |X , log2
pY |X
pY

〉y, where
the subscript emphasizes that the inner product is taken in the variable y. The
following auxiliary lemma is crucial for the proof:

Lemma: For any pX and p̃X , Ip̃X (X ; Y ) − IpX (X ; Y ) ≤ 〈p̃X − pX , I ′pX
〉.

To see this, note first that since IpX (X ; Y ) = 〈pX , I ′pX
〉, we equivalently

prove the inequality 〈p̃X , I ′pX
〉 − Ip̃X (X ; Y ) ≥ 0, for any pX , p̃X .

〈p̃X , I ′pX
〉 − Ip̃X (X ; Y ) = 〈p̃X , I ′pX

〉 − 〈p̃X , I ′p̃X
〉

= 〈p̃X , I ′pX
− I ′p̃X

〉
= 〈p̃X , D(pY |X ||pY ) − D(pY |X ||p̃Y )〉
= 〈p̃X , 〈pY |X , log2

p̃Y

pY
〉y〉x

(a)
= 〈〈p̃X , pY |X〉x, log2

p̃Y

pY
〉y

= 〈p̃Y , log2

p̃Y

pY
〉y

= D(p̃Y ||pY ) ≥ 0, (2.35)

where (a) is a change of summation (or integration) order and the inequality
follows from the fact that the Kullback-Leibler distance is nonnegative. Lemma
2.2 can then be proved as follows.
(⇐.) (Sufficiency of the formula.) Fix a distribution pX over the channel input
alphabet. Let ρ be arbitrary and let p̃X be any channel input distribution such
that

Ep̃X ρ(X) ≤ EpX ρ(X). (2.36)

For any λ ≥ 0,

IpX (X ; Y ) − Ip̃X (X ; Y ) ≥ 〈pX − p̃X , I ′pX
〉

≥ 〈pX − p̃X , I ′pX
− λρ〉, (2.37)
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where the first inequality is the last lemma, and the second follows by assump-
tion on p̃X . If λρ(x) = I ′pX

(x)+c for all x with p(x) > 0, then the last expression
is zero, proving that IpX (X ; Y ) indeed maximizes mutual information.

When IpX (X ; Y ) = C0, then the input distribution pX maximizes I(X ; Y )
regardless of ρ(x) and trivially fulfills the expected cost constraint. �

Proof of Lemma 2.3. This lemma appears as Problem 3 in [4, p. 147], and
its proof is a consequence of [4, Thm. 3.7]. In the following, we prove the
sufficiency of the formula for d(s, ŝ) using a slightly different approach. Note
that our proof also applies to continuous alphabets.

To simplify the notation, we will use the symbol W in place of pŜ|S in the
proof. Define

I ′W (s, ŝ) = log2

W (ŝ|s)
pŜ(ŝ)

, (2.38)

where pŜ is the marginal distribution of Ŝ.
In particular, note that with this definition, IW (S; Ŝ) = 〈pSW, I ′W 〉,

where with slight abuse of notation, we have used 〈pSW, I ′W 〉 to mean∫ ∫
pS(s)W (ŝ|s)I ′W (s, ŝ)dsdŝ. In the proof, we use the following auxiliary

lemma:
Lemma: For any W and W̃ , IW̃ (S; Ŝ) − IW (S; Ŝ) ≥ 〈pSW̃ − pSW, I ′W 〉.
Using the fact that IW (S; Ŝ) = 〈pSW, I ′W 〉, we consider

IW̃ (S; Ŝ) − 〈pSW̃ , I ′W 〉 = 〈pSW̃ , log2

W̃

p̃Ŝ

〉 − 〈pSW̃ , log2

W

pŜ

〉

= 〈pSW̃ , log2

Ṽ

pS
〉 − 〈pSW̃ , log2

V

pS
〉

= 〈pŜṼ , log2

Ṽ

V
〉 = 〈pŜ , D(Ṽ ||V )〉

≥ 0, (2.39)

where we have used V to denote the conditional distribution of S given Ŝ under
W , i.e. V (s|ŝ) = W (ŝ|s)p(s)/p(ŝ), and correspondingly Ṽ to denote the same
distribution, but under W̃ , i.e. Ṽ (s|ŝ) = W̃ (ŝ|s)p(s)/p̃(ŝ). D(Ṽ ||V ) denotes
the Kullback-Leibler distance between Ṽ and V in the variable s, hence it is
a function of ŝ. The last inner product is thus one-dimensional in the variable
ŝ. The inequality follows from the fact that the Kullback-Leibler distance is
nonnegative.
With this, we are ready to prove Lemma 2.3.
(⇐.) (Sufficiency of the formula.) Let d be arbitrary, let W̃ be an arbitrary
conditional distribution such that

EpSW̃ d(S, Ŝ) ≤ EpSW d(S, Ŝ). (2.40)

For any λ > 0,

IW̃ (S; Ŝ) − IW (S; Ŝ) ≥ 〈pSW̃ − pSW, I ′W (s, ŝ)〉
≥ 〈pSW̃ − pSW, I ′W + λd〉, (2.41)
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where the first inequality is the last lemma, and the second follows by assump-
tion on W̃ . If λd(s, ŝ) = −I ′W (s, ŝ) + d̃0(s) for all pairs (s, ŝ) with p(s, ŝ) > 0,
then the last expression is zero, proving that IW (S; Ŝ) indeed minimizes mutual
information. Setting d̃0(s) = − log2 p(s) + λd0(s) gives the claimed formula
(2.15).

When IW (S; Ŝ) = 0, then trivially W achieves the minimum mutual
information I(S; Ŝ) over all W̃ that satisfy EW̃ d(S, Ŝ) ≤ EW d(S, Ŝ), regardless
of d. �

Proof of Lemma 2.7. Assume that X = S and Ŝ = Y . This is without loss of
generality, since the only two alternatives are (i) that the encoder permutes the
source symbols, which is equivalent to swapping the channel transition proba-
bilities (by the symmetry of the problem), and (ii) that the encoder maps both
source symbols onto one channel input symbol, which is always suboptimal ex-
cept when the channel has capacity zero. We will use the following notation:
ε = pY |X(1|0), δ = pY |X(0|1), pX(x = 0) = π̄ and pX(x = 1) = π. For the
system to be optimal, since the channel is left unconstrained, it is necessary
that I(X ; Y ) = C0. Therefore, Case (ii) of Theorem 2.5 applies. Hence, it is
necessary that d(s, ŝ) be chosen according to Eqn. (2.15); i.e., we require that
− log2 p(s|ŝ) = − log2 p(x|y) be equivalent to the Hamming distortion. This is
the same as requiring that pX|Y (0|1) = pX|Y (1|0). Expressing p(x|y) as a func-
tion of ε, δ, π̄ and π, the latter implies that π =

√
(ε(1 − ε))/(δ(1 − δ))π̄. Since

moreover, π + π̄ = 1, we find

π =
1

1 +
√

(δ(1 − δ))/(ε(1 − ε))
. (2.42)

We show that for channel of nonzero capacity, this is the capacity-achieving
distribution if and only if ε = δ, which completes the proof. The derivative

d

dπ
I(X ; Y ) = (ε + δ − 1) log2

1 − ((1 − π)(1 − ε) + πδ)
(1 − π)(1 − ε) + πδ

+ Hb(ε) − Hb(δ)

vanishes at the capacity-achieving input distribution. Plugging in π from above
yields

2
Hb(δ)−Hb(ε)

1−δ−ε =
(1 − ε)

√
δ(1 − δ) + δ

√
ε(1 − ε)

ε
√

δ(1 − δ) + (1 − δ)
√

ε(1 − ε)
. (2.43)

Clearly, equality holds if ε = δ (and thus π̄ = π), but also if ε = 1 − δ. In the
latter case, the channel has zero capacity. To see that there are no more values
of ε and δ for which equality holds, fix (for instance) δ and consider the curves
defined by the right side and the left side of Eqn. (2.43), respectively. The left
side is convex and decreasing in ε. For 0 ≤ ε ≤ 1 − δ, the right side is also
convex and decreasing. Hence, at most 2 intersections can occur in this interval,
and we already know them both. By continuing in this fashion, or by up-
per and lower bounds, one can establish that there are no more intersections. �
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Proof of Lemma 2.8. Pick an arbitrary channel conditional distribution pY |X
for which there exists a single-letter code (f, g) that makes the overall system
optimal. From Lemma 2.1, this implies that I(X ; Y ) = C(Γ). Since the channel
is unconstrained here, C(Γ) = C0. Therefore, Case (ii) of Theorem 2.5 applies.
That is, to perform optimally, the distortion measure must be chosen as a scaled
and shifted version of − log2 p(s|ŝ). But since by assumption, the distortion
measure must be the Hamming distance, we must have that − log2 p(s|ŝ) =
c2(1 − δ(s − ŝ)) + d0(s), where δ(·) denotes the Kronecker delta function (i.e.
it is one if the argument is zero, and zero otherwise). Equivalently, p(s|ŝ) must
satisfy

p(s|ŝ) =
{

2−d0(s), s = ŝ,

2−c2−d0(s), s �= ŝ.
(2.44)

The L simultaneous equations
∑

s p(s|ŝ) = 1 imply a full-rank linear system
of equations in the variables 2−d0(s), from which it immediately follows that
d0(s) = const. But this means that p(s|ŝ) must satisfy

p(s|ŝ) =

{
α, s = ŝ,
1−α
L−1 , s �= ŝ.

(2.45)

By assumption, p(s) is uniform, which implies that p(ŝ) is also uniform. But
since all alphabets are of the same size, the condition that I(S; Ŝ) = I(X ; Y )
implies that p(x) and p(y) are also uniform, and that p(x|y) is a permutation of

p(x|y) =

{
α, y = x,
1−α
L−1 , y �= x.

(2.46)

But this implies that the channel p(y|x) has to be symmetric with p(y|x) = α

for y = x, and p(y|x) = (1−α)/(L− 1) for y �= x, or a permutation thereof. �



Chapter 3

The Source-Channel

Communication Problem,

Part II

Source-channel communication is the problem of matching a source to a channel
in an optimal fashion. One way to achieve an optimal match is described by
the separation theorem (Theorem 1.5): If the rate of the source code is matched
to the rate of the channel code, then the source-channel communication system
performs optimally. This could be termed the rate-matching condition.

The purpose of the present chapter is to revisit optimal source-channel com-
munication from the perspective of matched measures: In extension of the results
of Chapter 2, we argue in Section 3.1 that an optimal source-channel commu-
nication system can also be characterized by the fact that the source and the
channel probability distributions, the channel input cost function, and the dis-
tortion measure are matched in the optimal fashion. Since these are all measures
of some kind, we call the resulting criterion for optimality the measure-matching
condition.

While rate-matching makes operational sense only for systems with separate
source and channel coding, the measure-matching condition makes sense for
arbitrary “transducers” between the source output and the channel input, and
between the channel output and the destination input, respectively.

The rest of the chapter illustrates and exploits the measure-matching condi-
tions. In Section 3.2, we establish the fact that for a class of discrete memoryless
source/channel pairs, the optimal match is obtained by a source-channel code
either of block length one, or of block length infinity. Section 3.3 makes the
connection between the separation theorem and measure-matching explicit. In
Section 3.4, we introduce a notion of universality for source-channel codes, and
we prove elementary facts about it. This notion is also of interest in our study
of network source-channel communication (in particular, in Section 5.2). In
Section 3.5, we establish a statement about optimal source-channel communi-
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cation with feedback, and we give a new example of an optimal system that
uses a very simple feedback code. Section 3.6 gives further connections to other
results, most notably “bits through queues.”1

3.1 Measure-matching

3.1.1 Block source-channel codes

In Section 2.2, we developed results for single-letter codes. It is clear that any
source-channel code can be seen as a single-letter code in appropriately extended
alphabets, at least as long as all alphabets are assumed to be discrete. For con-
tinuous alphabets, a similar extension is possible. Hence, the results of Section
2.2 can be applied directly to arbitrary source-channel codes, leading to a gen-
eral criterion to establish the optimality of any source-channel communication
system.

More precisely, suppose that a source-channel code (F, G) is used, with F :
Sk → Xm and G : Ym → Ŝk. To address this situation, k source symbols are
merged into one new symbol, or symbol vector, denoted by sk ∈ Sk. The source
distribution is given by

p(sk) = p(s1, s2, . . . , sk), (3.1)

and the source is reconstructed in the alphabet Ŝk, with respect to a distortion
measure

d(k)(sk, ŝk) = d(k)((s1, s2, . . . , sk), (ŝ1, ŝ2, . . . ŝk)). (3.2)

Hence, the source may have block memory of length k, but this memory is
synchronized with the code (F, G): subsequent input blocks to the encoder are
independent and identically distributed.2 An interesting special case of such a
source is the memoryless source. In that case, the source distribution and the
distortion measure simplify to

p(sk) =
k∏

j=1

p(sj), (3.3)

d(k)(sk, ŝk) =
k∑

i=1

d(si, ŝi). (3.4)

The channel can also be seen in a vector perspective: It takes as inputs
blocks of length m, namely the output blocks of the encoder, and its outputs
are again blocks of length m. Hence, the conditional distribution is generally

p(ym|xm) = p(y1, y2, . . . , ym|x1, x2, . . . , xm), (3.5)
1Sections 3.1, 3.2 and 3.4 appear in [43].
2This is less restrictive than it seems: suppose e.g. that the source has block memory of

length k′; then, the theory can be applied to blocks of length kk′.
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and the cost at the channel input is also defined on blocks of length m, i.e.,

ρ(m)(xm) = ρ(m)(x1, x2, . . . , xm). (3.6)

Hence, this model again naturally accommodates block memory, as long as it
is synchronized with the encoder (see also the comment above). An interesting
special case of such a channel is the memoryless channel. In that case, the
channel conditional distribution and the input cost function simplify to

p(ym|xm) =
m∏

j=1

p(yj |xj), (3.7)

ρ(m)(xm) =
m∑

i=1

ρ(xi). (3.8)

Clearly, the system considered in the extended alphabet (or vector) perspec-
tive is again a single-letter code. Lemma 2.1 applies unchanged; we quote it for
future reference.

Lemma 3.1 For a discrete-time memoryless vector source/channel pair
(pSk , d(k)) and (pY m|Xm , ρ(m)) and a single-letter (i.e., single-vector) code
(F, G), R(k)(∆) = C(m)(Γ) holds if and only if the following three conditions
are simultaneously satisfied:

(i) the distribution pXm of Xm = F (Sk) achieves capacity on the channel
(pY k|Xk , ρ(k)) at input cost Γ = Eρ(m)(Xm), i.e., I(Xm; Y m) = C(m)(Γ),

(ii) the conditional distribution pŜk|Sk of Ŝk = G(Y m) given Sk achieves
the rate-distortion function of the source (pSk , d(k)) at distortion ∆ =
Ed(k)(Sk, Ŝk), i.e. I(Sk; Ŝk) = R(k)(∆), and

(iii) F and G are such that I(Sk; Ŝk) = I(Xm; Y m), i.e., they are “information
lossless.”

Remark 3.1 Note that in the above lemma, R(k)(D) denotes the rate-distortion
function of the source that emits blocks of length k. Similarly, C(m)(P ) denotes
the capacity-cost function of the channel that operates with blocks of length m,
and C

(m)
0 denotes the unconstrained capacity of that channel.

Proof. The proof is the same as that of Lemma 2.1, except that all involved
quantities are reformulated for the vector case. �

Remark 3.2 (memoryless source) If the source is memoryless as in (3.3)
and (3.4), then, condition (ii) of Lemma 3.1 can be expressed by the following
two conditions:

(a) p(sk|ŝk) =
∏k

i=1 p(si|ŝi), and
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(b) the distributions p(si|ŝi) all achieve the rate-distortion function of the
source (pS , d) at the same distortion ∆ = Ed(S, Ŝ), i.e., I(S; Ŝ) = R(∆).
Here, R(∆) denotes the the rate-distortion function of the source (pS , d).

This follows immediately from the proof of Theorem 1.1, in particular inequali-
ties (a) and (b) of the proof.

Remark 3.3 (memoryless channel) If the channel (pY m|Xm , ρ(m)) is mem-
oryless as in (3.7) and (3.8), then, condition (i) of Lemma 3.1 can be expressed
by the following two conditions:

(a) Y1, Y2, . . . are independent random variables, and

(b) the marginals of X1, X2, . . . all achieve capacity on the channel (pY |X , ρ)
at the same input cost Γ = Eρ(X), i.e., I(X ; Y ) = C(Γ). Here, C(Γ)
denotes the capacity-cost function of the channel (pY |X , ρ)

This follows immediately from the proof of Theorem 1.1, in particular inequal-
ities (d) and (e) of the proof, and is also a special case of Lemma 3.8, to be
proved below.

3.1.2 Discrete alphabets

By analogy to Chapter 2, the cases of discrete and continuous alphabets are
again treated separately. For discrete alphabets, the situation is particularly
simple since the extension source and channel alphabets are still discrete alpha-
bets. Hence, Theorem 2.5 can be applied directly to the extension alphabet,
which leads to the following statement.

Corollary 3.2 For a discrete memoryless source (pSk , d(k)), and a discrete
memoryless channel (pY m|Xm , ρ(m)), suppose that there exist values of P and
D such that R(D) = C(P ). Consider transmission using a single-letter source-
channel code (F, G) with F : Sk → Xm and G : Ym → Ŝk, and suppose that
0 < I(Sk; Ŝk) = I(Xm; Y m) < C0. This is optimal if and only if

ρ(m)(xm)
{

= c1D(pY m|Xm(·|xm)||pY m(·)) + ρ0 if p(xm) > 0
≥ c1D(pY m|Xm(·|x)||pY m(·)) + ρ0 otherwise.

(3.9)

d(k)(sk, ŝk) = −c2 log2 p(sk|ŝk) + d0(sk). (3.10)

Proof. This corollary is Theorem 2.5, Part (i), applied to suitably extended
alphabets. �

Corollary 3.2 makes the concept of measure-matching precise: Optimality is
a matter of matching up six functions, namely the encoding and the decoding
function with the source and channel parameters. The latter are, in the case of
the source, the probability distribution and the distortion measure, and in the
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case of the channel, the conditional probability distribution and the channel in-
put cost function. Since these are all measures of some kind, and since this term
seems to be their “greatest common divisor” (or their least common multiple?),
we call the resulting concept measure-matching. In one direction, the measure-
matching conditions stated in Corollary 3.2 are explicit: For fixed source and
channel distributions and encoding/decoding functions, the condition specifies
in closed form the shape of the channel input cost function and the distortion
measure. We will exploit this feature of Corollary 3.2 in the sequel in various
ways.

It is clear that longer codes generally permit one to better match the source
and the channel. Corollary 3.2 can therefore also be interpreted as follows:
Suppose a certain finite complexity is available to implement a source-channel
communication system. Following Theorem 1.5, one would design (suboptimal)
source and channel codes independently. The advantage of additional complex-
ity appears as a lower error probability on the channel and a smaller size of the
quantization cells for the source. In contrast to this, Corollary 3.2 suggests a
very different perspective: additional coding complexity (in the shape of longer
codes) is used to better match ρ(m) and d(k) to the desired cost and distortion
measures.

3.1.3 Continuous alphabets

For continuous alphabets, a statement similar to Corollary 3.2 can be obtained.
However, in line with Theorem 2.6, the formulae for ρ and d are merely sufficient,
rather than also necessary, conditions. The extension of Theorem 2.6 to vector
sources and channels can be phrased as follows.

Theorem 3.3 Consider a discrete-time memoryless vector source/channel pair
(pSk , d(k)) and (pY m|Xm , ρ(m)) for which R(k)(D) = C(m)(P ) is feasible.
Suppose that the single-vector source-channel code (F, G) is such that 0 <

I(Sk; Ŝk) = I(Xm; Y m) < C
(m)
0 . If the source, the channel and the code satisfy

ρ(m)(xm)
{

= c1D(pY m|Xm(·|xm)||pY m(·)) + ρ0 if p(xm) > 0
≥ c1D(pY m|Xm(·|x)||pY m(·)) + ρ0 otherwise.

(3.11)

d(k)(sk, ŝk) = −c2 log2 p(sk|ŝk) + d0(sk), (3.12)

then they constitute an optimal communication system.

Proof. The proof of Lemma 2.2 can be extended to show that if ρ(k) is chosen
according to Equation (3.11), then the corresponding channel input distribution
p(xk) achieves capacity. In particular, the chain of equalities (2.35) applies
unchanged if the notation 〈·〉 is taken to mean

〈f, g〉 =
∫

x1

· · ·
∫

xk

f(x1, . . . , xk)g(x1, . . . , xk)dx1 · · · dxk. (3.13)
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Lemma 2.3 can be extended by the same token. By Lemma 3.1, these two
facts, together with the hypothesis that I(Sk; Ŝk) = I(Xm; Y m), establish that
the system satisfies κR(∆) = C(Γ). To conclude that the system performs
optimally requires the appropriate extension of Proposition 2.4. For the case
0 < I(Sk; Ŝk) and I(Xm; Y m) < C0, this is straightforward. Details are
omitted. �

While this short argument shows how to handle simple instances of the
problem of continuous sources and channels with memory, a number of sub-
tleties have been swept under the rug. Most importantly, as the length of the
blocks under consideration tends to infinity (e.g., for a simple first-order Markov
source), issues of convergence have to be resolved in detail. This is left as future
work. For the particular case where the source is Gaussian, the channel is also
Gaussian (both with memory), and uncoded transmission is used, a condition
that is both necessary and sufficient (and in this sense stronger than Theorem
3.3) has been recently presented in [56].

Remark 3.4 (MIMO systems) The setup of Theorem 3.3 is also a model
for multi-input multi-output (MIMO) source-channel communication. In par-
ticular, Theorem 3.3 considers a vector source (of length k) that is transmitted
across a vector channel, also of length k, using a code (F, G) that maps each
source output vector to a channel input vector, and each channel output vector
to a source reconstruction vector. The theorem says that if ρ and d satisfy the
stated conditions, then the MIMO source-channel communication system per-
forms optimally.

3.2 Source-Channel Codes of Finite Block Length

While longer codes permit us to better match the source (pS , d) to the channel
(pY |X , ρ), we would also like to know what code length is necessary to obtain the
optimal match. We again restrict our attention to discrete memoryless sources
and channels as defined in Definitions 1.1 and 1.2, but the code is now an arbi-
trary source-channel code of (finite) length M . For simplicity, we consider only
codes of rate κ = 1. Corollary 3.2 gives the cost function and the distortion mea-
sure on length-M blocks that are necessary for optimal performance. However,
the underlying source and channel are memoryless. Therefore, by definition, it
must be possible to express the cost function on length-M blocks as a sum of M

individual terms, and the same must be true for the distortion measure. This
excludes certain M -letter codes. Our conjecture is that a finite-length code with
optimal performance exists if and only if there exists also a single-letter code
with optimal performance for the same source/channel pair. We can prove this
conjecture under some additional assumptions:

Theorem 3.4 Let (pS , d) and (pY |X , ρ) be a discrete memoryless source and
a discrete memoryless channel, respectively. Suppose that all alphabets are of
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the same size, that p(s) > 0 for all s ∈ S, that the distortion measure has the
property that the matrix {2−d(s,ŝ)}s,ŝ is invertible and that the channel transition
probability matrix is invertible. Then, there exists a source-channel code of finite
block length that performs optimally if and only if, for the same source/channel
pair, there exists also a single-letter source-channel code that performs optimally.

Proof. The proof of this theorem is given in Appendix 3.A.
Among the restrictions imposed by the last theorem, the one on the distor-

tion measure may seem somewhat unusual. Note however that the standard
distortion measures like the Hamming distance and the squared-error distor-
tion satisfy that restriction. In fact, any distortion measure under which the
mapping T (s) = arg minŝ d(s, ŝ) is one-to-one satisfies the requirement.

3.3 Successive Measure-matching

The separation theorem furnishes one way of satisfying the measure-matching
condition (Corollary 3.2), at least asymptotically in the block length of the
code. It does so in two steps, source coding and channel coding. The source
coding maps the source outputs into an intermediate space, and the channel
coding maps from this intermediate space into the optimal channel inputs.
The separation theorem shows that this intermediate space is the same for
all source/channel pairs, namely bits. We will refer to this intermediate space
more precisely as the (asymptotically) perfect reconstruction space:3 The source
output sequence is described by one out of M different messages, and the chan-
nel code ensures that the index of the selected message can be communicated
to the decoder reliably. This implies one of the conceptually and practically
most attractive features of the separation theorem: It provides a modulariza-
tion. For example, on the source side, an optimal source code of rate R can be
optimally used for transmission across any channel of capacity R, irrespective
of the precise channel structure. The disadvantage of this modularization is the
requirement for the channel to transmit reliably; this implies infinite delays in
many cases.

In contrast to this, the source-channel codes considered in Section 3.1 are op-
timal for one special source and one special channel, but they are of unbeatably
low complexity.

Clearly, it would be interesting to identify solutions that lie between these
two extremes: to find intermediate spaces

• that provide a limited modularization in the sense that only sources and
channels out of a suitably defined class are admissible,

• but that, in turn, do not require infinite delay.

This motivates to study more closely coding systems whose encoder and
decoder are split into two steps. We call this successive measure-matching.

3or: asymptotically deterministic reconstruction space, see also the discussion in Section

1.3.
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3.3.1 Successive measure-matching

Consider the system shown in Figure 3.1. A source (pS , d) is first encoded into
an auxiliary random variable S′ = F ′(S). Thereafter, S′ is mapped into the
channel input alphabet by X = F ′′(S′). Clearly, we can put the original source
and the first encoder F ′ into a black box which serves as our new source S′, and
we can discuss the optimality of the communication system whose source is S′.
By the same token, we can put the original channel together with the encoder
F ′′ into a black box which serves as our new channel pY |X′ . This explains why
in Figure 3.1, we denote the same signal by S′ (in the source perspective) and
by X ′ (in the channel perspective).

The goal of successive measure-matching is to associate the optimality of
subsystems, obtained by applying black boxes as discussed above, with the
optimality of the overall system.

Source Channel Destination
S S′

F ′ F ′′
XX ′ Y Y ′

G′G′′ ŜŜ′

Figure 3.1: Successive measure-matching.

For the following theorem, recall that “optimal communication system” de-
notes a communication system according to Definition 1.5. Moreover, the sym-
bol I denotes the identity function, i.e., straight uncoded transmission.

Theorem 3.5 (successive measure-matching) In Figure 3.1, suppose that
(pS , d) and (pS′ , d′) are discrete-time memoryless sources, and (pY ′|X′ , ρ′) and
(pY |X , ρ) are discrete-time memoryless channels. Suppose that for each of the
following communication systems, there exist values of P and D such that
κ′R(D) = C(P ), for the corresponding values of κ′. Then, the following holds:

The two communication systems

(i) (pS , d), (pY ′|X′ , ρ′), (F ′, G′) (3.14)

(ii) (pS′ , d′), (pY |X , ρ), (F ′′, G′′) (3.15)

are both optimal if and only if the two communication systems

(i) (pS , d), (pY |X , ρ), (F ′′ ◦ F ′, G′ ◦ G′′) (3.16)

(ii) (pS′ , d′), (pY ′|X′ , ρ′), (I, I) (3.17)

are also both optimal.

Proof. A communication system for which there exist values of P and D such
that κ′R(D) = C(P ), for the corresponding values of κ′, is optimal if and only
if it satisfies Theorem 1.5.

(⇒.) The optimality of (3.14) implies that pŜ|S achieves the rate-distortion
function, and that ∆ cannot be lowered without changing R(∆). The optimal-
ity of (3.15) implies that pX achieves the capacity-cost function, and that Γ
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cannot be lowered without changing C(Γ). The optimality of (3.14) and (3.15)
together implies that I(Sk; Ŝk) = I(Xm; Y m). Using Lemma 3.1, we find that
the communication system (3.16) satisfies κR(∆) = C(Γ), and using Theorem
1.5, we conclude that (3.16) is optimal. The optimality of (3.17) is established
along the same lines.

(⇐.) The proof proceeds along the same lines as the proof of (⇒). �

This theorem permits to clarify the term “intermediate space” that was
used in the discussion above: The intermediate space is characterized by the
intermediate communication system (pS′ , d′), (pY ′|X′ , ρ′), (I, I). More precisely,
to specify an intermediate space, the following have to be determined:

(i) The alphabet S′ = X ′, and the alphabet Y ′ = Ŝ′.

(ii) The source (pS′ , d′).

(iii) The channel (pY ′|X′ , ρ′).

Our next goal is to illustrate how Theorem 3.5 relates to the separation
theorem. The key step is the specification of the intermediate space, determined
by (pS′ , d′) and (pY ′|X′ , ρ′), for the case of the separation theorem.

3.3.2 Connection to the separation theorem

The measure-matching conditions (as stated, e.g., in Corollary 3.2) were derived
essentially from the separation theorem. A natural question to ask is therefore
whether the separation theorem, in turn, can be derived from the measure-
matching conditions. In this section, we provide a part of this derivation.

In particular, the separation theorem contains a statement of the form of
Theorem 3.5, for a special intermediate space (pS′ , d′) and (pY ′|X′ , ρ′). In this
section, we determine these four entities. As explained briefly at the beginning
of this section, these must be expected to be quite singular: the intermediate
space in the case of the separation theorem is the perfect reconstruction space:
the error probability must tend to zero asymptotically. This implies in particular
that the intermediate distortion measures d′ and the intermediate conditional
distribution pY ′|X′ , are singular objects. We define the following special source
and special channel:

Definition 3.1 (M-ary asymptotically perfect source) The M -ary
asymptotically perfect source has an M -ary source alphabet and is reconstructed
in the same alphabet. Its probability distribution is the M -ary uniform
distribution, denoted by

u(M). (3.18)

The distortion measure is defined on blocks of n source symbols, denoted by sn,
and blocks of n reconstruction symbols, denoted by ŝn. It has the following form:

du(sn, ŝn) =
{

0, if sn = ŝn

d(n), otherwise.
(3.19)
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where d(n) is an increasing positive function with limn→∞ d(n) = ∞.

Definition 3.2 (M ′-ary asymptotically perfect channel) The M ′-ary
asymptotically perfect channel has an M ′-ary input alphabet and the same
M ′-ary output alphabet. Its conditional probability distribution is defined on
blocks of n input symbols, and blocks of n output symbols, as follows:

w(M ′)(yn|xn) =

{
1 − e(n), if yn = xn

e(n)

nM′−1
, otherwise,

(3.20)

where e(n) < 1 is a decreasing function with limn→∞ e(n) = 0. Its cost function
is uniform, i.e.,

ρw(x) = 0, ∀x ∈ X . (3.21)

Using this in Theorem 3.5, we obtain the following immediate corollary:

Corollary 3.6 (separation theorem, achievability) In Figure 3.1, suppose
that (pS , d) and (pS′ , d′) are discrete-time memoryless sources, and (pY ′|X′ , ρ′)
and (pY |X , ρ) are discrete-time memoryless channels. Suppose that for each of
the following communication systems, there exist values of P and D such that
κ′R(D) = C(P ), for the corresponding values of κ′. Then, the following holds:

The two communication systems

(i) (pS , d), (w(M), ρw), (F ′, G′), (3.22)

(ii) (u(M), du), (pY |X , ρ), (F ′′, G′′), (3.23)

are both optimal if and only if the two communication systems

(i) (pS , d), (pY |X , ρ), (F ′′ ◦ F ′, G′ ◦ G′′) (3.24)

(ii) (u(M), du), (w(M), ρw), (I, I) (3.25)

are also both optimal.

This is illustrated in Figure 3.2.

Source Channel Destination
S S′

F ′ F ′′
XX ′ Y Y ′

G′G′′ ŜŜ′

perfect reconstruction

Figure 3.2: Illustration of the separation theorem as successive measure-
matching

The separation theorem establishes moreover that for an arbitrary
source/channel pair (pS , d) and (pY |X , ρ) and an arbitrary M (within certain
bounds), there exists always a pair of codes, (F ′, G′) and (F ′′, G′′), that satisfies
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the conditions of Corollary 3.6. It would be interesting to prove this stronger
statement using the arguments developed in Chapters 2 and 3. This is left as
future work.

In summary, from the perspective of successive measure-matching, the sepa-
ration theorem is the statement that any match can be achieved (asymptotically)
by a two-step matching operation that passes through the perfect reconstruction
space.

3.3.3 Weak separation theorems

As explained at the beginning of Section 3.3, the challenge of successive measure-
matching is to find other “separation theorems” that do not pass through perfect
reconstruction. They may not provide true universality in the sense that they
do not apply to all sources and channels, but rather to specific classes. Such
separation theorem may be called “weak” separation theorems.

While a comprehensive theory of weak separation theorems is left for future
research, we can provide at this point one very simple example that illustrates
the point.

Example 3.1 (Gaussian separation theorem) Using the notation of Fig-
ure 3.1, consider the intermediate space characterized by the source

(N1, (s′ − ŝ′)2) (3.26)

where N1 is the iid Gaussian source of unit variance, and the channel

(Nx′,1, x
′2), (3.27)

where Nx′,1 denotes the additive white Gaussian noise channel of unit noise
variance.

Then, we can give the following weak separation theorem: Suppose that any
iid Gaussian source (pS , d) is to be transmitted across any AWGN channel
(pY |X , ρ). An optimal coding strategy can be decomposed into two stages: The
first (outer) stage is given by

S′ = F ′(S) =
1√
σ2

S

S, (3.28)

and

Ŝ = G′(Ŝ′) =
√

σ2
SŜ′. (3.29)

It is quickly verified that (e.g., using Example 2.2)

(pS , d), (N (x′, 1), x′2), (F ′, G′) (3.30)

is an optimal communication system.
The second (inner) stage is given by

X = F ′′(X ′) =
√

PX ′, (3.31)
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and

Y ′ = G′′(Y ) =
1√
P

P

P + σ2
Y. (3.32)

It is quickly verified that (e.g., using Example 2.2)

(N1, (s′ − ŝ′)2), (pY |X , ρ), (F ′′, G′′) (3.33)

is an optimal communication system.
Hence, by Theorem 3.5, we conclude that

(pS , d), (pY |X , ρ), (F ′′ ◦ F ′, G′ ◦ G′′) (3.34)

is an optimal communication system, confirming again Example 2.2.

In this simple example, a (weak) separation theorem applies, but the inter-
mediate space is not the perfect reconstruction space, and infinite delays are
not necessary. We hope in the future to extend this example using the results
of Chapters 2 and 3.

3.4 The Universality of Source-Channel Codes

Optimal communication systems designed according to the separation principle
may be quite sensitive to parameter mismatch. Suppose e.g. that the capacity
of the channel turns out to be smaller than the rate of the channel code that is
used. The effect of this parameter mismatch on the final reconstruction of the
data may be catastrophic.

Source-channel codes may feature a graceful degradation as a function of
mismatched parameters. In fact, in some cases, one and the same source-channel
code achieves optimal performance for multiple source/channel pairs. In this
sense, certain source-channel codes have a universality property. The following
example illustrates this.

Example 3.2 (fading) Let the source be the binary uniform source as in Ex-
ample 2.3. The channel is slightly different from Example 2.3: the transition
probability ε varies in a memoryless fashion during transmission. Take the en-
coder and the decoder to be identity mappings (i.e., uncoded transmission). From
Example 2.3, it is clear that this code performs optimally irrespective of the value
of ε.

In this example, the suggested code is universal for the transmission of a
binary uniform source across any one out of an entire class of channels. In the
spirit of this example, we introduce the following definition:

Definition 3.3 (universality) The source-channel code (F, G) is called uni-
versal for the source (pS , d) and the class of channels given by W =
{(p(0)

Y |X , ρ(0)), (p(1)
Y |X , ρ(1)), . . . } if, for all i, the transmission of the source (pS , d)

across the channel (p(i)
Y |X , ρ(i)) using the code (F, G) is optimal.
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Note that by complete analogy, one can define the universality of a code with
respect to a class of sources and a class of channels. In order to keep notation
simple, we leave this as an exercise to the reader. Instances of universality can be
characterized by direct application of Theorem 2.5 to the present scenario. For
example, for single-letter codes, Theorem 2.5, Part (i), provides the following
corollary:

Corollary 3.7 Consider a source (pS , d) and a class of channels W such
that for every channel in W, there exist values of Pi and Di such that
R(Di) = Ci(Pi). Suppose that for the single-letter code (f, g), it is true that
0 < I(S; Ŝ(i)) = I(X ; Y (i)) < C

(i)
0 for all i. The single-letter code (f, g) is

universal if and only if for all i,

ρ(i)(x)

{
= c

(i)
1 D(p(i)

Y |X(·|x)||pY (·)) + ρ
(i)
0 if p(x) > 0

≥ c
(i)
1 D(p(i)

Y |X(·|x)||pY (·)) + ρ
(i)
0 otherwise.

(3.35)

d(s, ŝ) = −c
(i)
2 log2 p(i)(s|ŝ) + d

(i)
0 (s), (3.36)

where c
(i)
1 > 0, c

(i)
2 > 0 and ρ

(i)
0 are constants, and d

(i)
0 (s) is an arbitrary

function.

Proof. Follows directly from Theorem 2.5. �

By analogy, one can again include all the special cases of Theorem 2.5. This
is left to the reader. The main reason for studying this particular property
of source-channel codes lies in its practical implications. One implication is
to time-varying (fading) channels, as illustrated by the above example: The
channel varies over time, but it always remains inside the class W . For that case,
it is immediate that a universal source-channel code achieves the performance
of the best source compression followed by the best channel code. However, the
significance of universal source-channel codes extends beyond the validity of the
separation theorem. To end this short discussion, we mention two key scenarios
under which source-channel codes outperform any code designed according to
the separation paradigm.

The first scenario concerns communication under channel uncertainty.
Implication 1 (non-ergodic channels). Let the source-channel code

(F, G) be universal for the source (pS , d) and the class of channels W . Let
the channel be in W , but not determined at the time of code design. Then,
transmission using the source-channel code (F, G) achieves optimal performance,
regardless of which particular channel is selected.

Capacity issues under channel uncertainty have been studied in detail, see
e.g. [71]. As the above shows, joint source-channel coding may be another
valuable perspective in the analysis of channel uncertainty. This is an object of
future research.

The second scenario concerns a very simple network topology.
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Implication 2 (single-source broadcast). Let the source-channel code
(F, G) be universal for the source (pS , d) and the class of channels W . In the par-
ticular broadcast scenario where the single source (pS , d) is transmitted across
multiple channels (p(i)

Y |X , ρ(i)) ∈ W , transmission using the source-channel code
(F, G) achieves optimal performance on each channel individually.

This will be discussed and illustrated again in the context of the significance
of source-channel codes for networks, in particular in Section 5.2.

3.5 Measure-matching through Feedback

The well-known Gaussian example has been extended to the situation with
noiseless feedback in 1967 simultaneously by several authors [27, 57, 91]. Their
work was an extension of the work of Schalkwijk and Kailath [90, 92] and Omura
[77].

Example 3.3 (the simplest case of [27, 57, 91]) Let the source be the iid
Gaussian source with variance σ2

S, and the channel the additive white Gaussian
noise channel with power constraint P and additive noise variance σ2, exactly as
in Example 2.2. The difference is that two channel uses are available per source
sample, i.e., we consider source-channel communication strategies with κ = 1/2,
see Definition 1.3. From Theorem 1.7, the minimum achievable distortion is
given by

Dmin = DN (R = 2C) = σ2
S2−4C (3.37)

= σ2
S

(
σ2

P + σ2

)2

. (3.38)

Since feedback does not increase the capacity of a memoryless channel, this result
holds whether or not feedback is available.

It is quickly verified that simply sending every source letter S twice across
the channel without further coding does not achieve optimal performance; the
resulting distortion is larger than Dmin. Instead, suppose now that noiseless
feedback is available, and consider the following scheme:

X2n = α1Sn, (3.39)

X2n+1 = α2(Sn − βY2n). (3.40)

This means that the decoder has the two following observations available:

Y2n = α1Sn + W2n, (3.41)

Y2n+1 = α2(Sn − βY2n) + W2n+1, (3.42)

leading to an estimate Ŝn = γ1Y2n + γ2Y2n+1. If α1, α2, β, γ1 and γ2 are chosen
optimally, the scheme achieves optimal performance.

To furnish a concrete example, suppose that all variances are of the same
value, σ2

S = σ2 = P . Then, C = 1/2 and hence, Dmin = P/4. The “uncoded”
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strategy described above uses the following parameters:

α1 = 1,

α2 =
√

2, β =
1
2
, (3.43)

which satisfies the power constraint. The optimum estimators are found from
standard arguments (e.g., derivatives) to be

γ1 =
1
2
, γ2 =

1
2
√

2
. (3.44)

For this choice of the parameters, the distortion is found to be

E|Sn − Ŝn|2
= E|Sn − γ1Y2n − γ2Y2n+1|2

= E

∣∣∣∣Sn − 1
2
(Sn + W2n) − 1

2
√

2

(√
2
(

Sn − 1√
2
Y2n

)
+ W2n+1

)∣∣∣∣
2

= E

∣∣∣∣−1
2
W2n +

1
4
Y2n − 1

2
√

2
W2n+1

∣∣∣∣
2

= E

∣∣∣∣−1
2
W2n +

1
4
(Sn + W2n) − 1

2
√

2
W2n+1

∣∣∣∣
2

= E

∣∣∣∣14Sn − 1
4
W2n − 1

2
√

2
W2n+1

∣∣∣∣
2

=
1
16

P +
1
16

P +
1
8
P =

P

4
, (3.45)

confirming that it was an optimal choice of the parameters: P/4 is the smallest
possible distortion. Explanations and intuition for this result are given below in
Example 3.4.

Beyond the Gaussian case, no results seem to appear in the literature. Using
the results of Chapters 2 and 3, this can be extended to more general cases. In
order to do so, recall the line of thought leading to our main result, formulated
as Corollary 3.2: The first step was to rewrite the separation theorem (Theorem
1.5) in the shape of Lemma 2.1. This led to three simultaneous conditions. The
second step was to develop these three conditions individually (Lemmata 2.2
and 2.3), which eventually led to Corollary 3.2.

The first step, Theorem 1.5, applies unchanged to the feedback case (in the
shape of Theorem 1.7). The next step is to rewrite the condition κR(∆) = C(Γ)
in a more explicit form. The equivalent of Lemma 3.1 has to be determined for
the case of discrete-time memoryless systems with feedback. This is the next
issue in our discussion. The feedback situation is illustrated in Figure 3.3.
For the purpose of this section, and in line with Example 3.3, we consider the
following limited kind of feedback encoders:
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Source Channel Destination
S

F ◦ X Y
G

Ŝ

Figure 3.3: The basic communication system with feedback.

Definition 3.4 (block feedback encoder) A block feedback encoder is de-
fined by a function

F ◦ : Sk × Ym → Xm, (3.46)

with the restriction that the dependence on Y m must be causal, i.e., the jth
output of the encoder is

Xj = F ◦
j (Sk, Yj−1, Yj−2, . . . , Y1). (3.47)

Note that the definition of a block feedback encoder incorporates only a reduced
feedback, namely only within one block of k source or m channel symbols, re-
spectively. Under this restriction, subsequent blocks are independent.

This leads to the following generalization of Lemma 2.1:

Lemma 3.8 (generalization of Lemma 2.1) For a discrete-time memory-
less source (pS , d) and a discrete-time memoryless channel (pY |X , ρ) (where
memoryless is taken in the sense of Equation (1.32)), and a block feedback code
(F ◦, G) as in Figure 3.3, κR(∆) = C(Γ) holds if and only if the following three
conditions are simultaneously satisfied:

(i) (a) Y1, Y2, . . . are independent random variables, and

(b) the marginals of X1, X2, . . . all achieve capacity on the channel
(pY |X , ρ) at the same input cost Γ = Eρ(X), i.e., I(X ; Y ) = C(Γ),

(ii) the conditional distribution pŜk|Sk of Ŝk = G(Y m) given Sk achieves the

rate-distortion function of the source (pS , d) at distortion ∆ = Ed(Sk, Ŝk),
i.e. I(Sk; Ŝk) = kR(∆), and

(iii) F ◦ and G are such that I(Sk; Ŝk) =
∑m

i=1 I(Xi; Yi), i.e., they are “infor-
mation lossless.”

Proof. We refer to the proof of Theorem 1.7. The conditions for equality in
the inequalities (1.37) are as follows: Equality holds in (a) if and only if pŜk|Sk

achieves the rate-distortion function of the source, and in (d) if and only if
Y1, . . . , Ym are independent random variables (which is proved in [74], see also
the proof of Theorem 1.7), and (e) if and only if pXn achieves the maximum
directed information, which is equal to mC(Γ). Thus, κR(∆) = C(Γ) is
satisfied if and only if all three conditions in Lemma 3.8 are satisfied, which
completes the proof. �
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Finally, we put things together to obtain the equivalent of Theorem 2.5, or
more precisely, of Theorem 3.3:

Theorem 3.9 For a discrete-time memoryless source (pS , d), and a discrete-
time memoryless channel (pY |X , ρ) (where memoryless is taken in the sense of
Equation (1.32)), suppose that there exist values of P and D such that R(D) =
C(P ). Consider the transmission using a block feedback source-channel code
(F ◦, G) with F ◦ : Sk × Ym → Xm and G : Ym → Ŝk, and suppose that
0 < I(Sk; Ŝk) =

∑m
i=1 I(Xi; Yi) < mC0. If

p(y1, . . . , ym) = pY (y1) · · · pY (ym), (3.48)

for some pY (·), and

ρ(x)
{

= c1D(pY |X(·|x)||pY (·)) + ρ0 if p(x) > 0
≥ c1D(pY |X(·|x)||pY (·)) + ρ0 otherwise,

(3.49)

d(s, ŝ) = −c2 log2 pSj|Ŝj
(s|ŝ) + d0(s), for j = 1, . . . , k, (3.50)

then the system performs optimally.

Outline of the proof. By assumption, Yi are independent random variables. If ρ

is chosen according to the formula, then the channel input achieves capacity. If
d is chosen according to the formula, then the overall conditional achieves the
rate-distortion function. Moreover, by assumption, I(Sk; Ŝk) =

∑m
i=1 I(Xi; Yi).

All of this together implies that the system satisfies κR(∆) = C(Γ) (by
Lemma 3.8). To ensure the optimality of the system, one has to verify that
∆ cannot be reduced without reducing R(∆), and that Γ cannot be reduced
without reducing C(Γ). By the arguments of Proposition 2.4, the condition
0 < I(Sk; Ŝk) =

∑m
i=1 I(Xi; Yi) < mC0 is sufficient for this. �

Example 3.4 (continuation of Example 3.3) Both the receiver and
(through the feedback) the transmitter can form the minimum mean-squared
error (MMSE) estimate Ŝ′

n based on Y2n. By the orthogonality principle (see
e.g. [11, Proposition V.C.2]), the error associated with Ŝ′

n is orthogonal to the
observations that led to Ŝ′

n, i.e., E[(Ŝ′
n − Sn)Y2n] = 0. In the Gaussian case,

this implies that (Ŝ′
n − Sn) and Yn are independent. Hence, if the transmitter

sends X2n+1 = α2(Ŝ′
n − Sn), then Y2n+1 is independent of Y2n. It is quickly

verified that with the suggested choice of α2 and β, Y1 and Y2 are independent
and identically distributed. More precisely, they are normal with mean zero and
variance 2P . To apply Theorem 3.9, we have to determine I(S; Ŝ). From the
development (3.45), we know that

Ŝn =
3
4
Sn +

1
4
W2n +

1
2
√

2
W2n+1, (3.51)
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from which we find immediately

I(Sn; Ŝn) =
1
2

log2

(
1 +

9
16P

1
16P + 1

8P

)
= 1. (3.52)

Moreover,
∑1

i=0 I(X2n+i; Y2n+i) can be found easily by noting that the marginals
of X2n and X2n+1 are both capacity achieving, hence

1∑
i=0

I(X2n+i; Y2n+i) = 2
1
2

log2

(
1 +

P

P

)
= 1. (3.53)

Hence, in this example, the condition I(Sn; Ŝn) =
∑1

i=0 I(X2n+i; Y2n+i) is sat-
isfied.

The next step is to determine ρ(x) as in Theorem 3.9. The exact same
calculation as in Example 2.5 reveals that ρ(x) = x2. For the distortion measure,
one has to determine the conditional density of S given Ŝ. Again, from the
development (3.45),

Sn =
4
3
Ŝn − 1

3
W2n −

√
2

3
W2n+1, (3.54)

The exact same calculation as in Example 2.5 reveals that with appropriate
scaling, d(s, ŝ) = (s − ŝ)2.

We conclude this short discussion of source-channel communication with
feedback with a simple discrete example.

Example 3.5 (quaternary source and binary channel) 4 In this exam-
ple, we consider a quaternary source whose symbols are denoted by 0, 1, 2,
and 3, with distribution

p(s) =
{

1
3 , if s = 0 or s = 3,
1
6 , otherwise.

(3.55)

The channel is the binary symmetric channel with transition probability ε = 1
4 .

Suppose there are two channel uses available per source sample. We consider
the following feedback encoder, mapping one source symbol, s, onto two channel
inputs, x1 and x2, as follows:

x1 =
{

0, if s = 0, 1
1, otherwise.

(3.56)

x2 =

⎧⎨
⎩

0, if s = 0, and y1 = 0, or
if s = 0, 1, 2, and y1 = 1,

1, otherwise.
(3.57)

The conditional joint distribution of Y1 and Y2 given S = 0 is
4This example appears to be new here; it is inspired by the capacity considerations of

Horstein in [55].
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Y1 = 0 Y1 = 1
Y2 = 0 (1 − ε)2 = 9

16 ε(1 − ε) = 3
16

Y2 = 1 (1 − ε)ε = 3
16 ε2 = 1

16

The table for S = 3 is obtained by swapping the roles of Y1 = 0 and Y1 = 1 as
well as the roles of Y2 = 0 and Y2 = 1. The conditional joint distribution of Y1

and Y2 given S = 1 is

Y1 = 0 Y1 = 1
Y2 = 0 (1 − ε)ε = 3

16 ε(1 − ε) = 3
16

Y2 = 1 (1 − ε)2 = 9
16 ε2 = 1

16

The table for S = 2 is obtained by swapping the roles of Y1 = 0 and Y1 = 1 as
well as the roles of Y2 = 0 and Y2 = 1. By adding the tables,

p(y1, y2) =
3∑

s=0

p(y1, y2|s)p(s), (3.58)

it is quickly verified that Y1 and Y2 are independent and uniform binary ran-
dom variables. From this, it follows immediately that the scheme achieves the
unconstrained capacity C0 of the channel, hence any cost function will do.

Furthermore, define the decoding operation as follows:

ŝ =

⎧⎪⎪⎨
⎪⎪⎩

0, if y1 = 0 and y2 = 0,

1, if y1 = 0 and y2 = 1,

2, if y1 = 1 and y2 = 0,

3, if y1 = 1 and y2 = 1.

(3.59)

To verify the condition I(S; Ŝ) = I(X1; Y1) + I(X2; Y2), write out the dis-
crete memoryless channel between S and Ŝ, and take the input distribution
of Equation (3.55). This reveals that I(S; Ŝ) = 2 − 2hb(ε),5 which is equal to
I(X1; Y1) + I(X2; Y2), since Y1 and Y2 were shown to be independent uniform
binary random variables. According to Theorem 3.9, a distortion measure under
which this system is optimal is

d(s, ŝ) = −c2 log2 p(s|ŝ) + d0(s). (3.60)

Using the above tables, this can be evaluated easily:

p(s = i|ŝ = j) = p(s = i|y1 = k1(j), y2 = k2(j))

=
p(y1 = k1(j), y2 = k2(j)|s = i)p(s = i)

p(y1 = k1(j), y2 = k2(j))

= p(y1 = k1(j), y2 = k2(j)|s = i)
p(s = i)

1/4
,

and the expression p(y1 = k1(j), y2 = k2(j)|s = i) only assumes one out of three
different values, namely ε2, ε(1 − ε) or (1 − ε)2. To normalize this distortion
measure, we pick c2 and d0(s) in Theorem 3.9 as

c2 =
1

log2 3
and d0(s) = − 1

log2 3
log2(4(1 − ε)2p(s)).

5Here, hb(·) denotes the binary entropy function, i.e., hb(p) = −p log2 p−(1−p) log2(1−p)
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In other words, an optimal distortion measure is the following:

d(s, ŝ) =
1

log2 3
(
log2 p(s|ŝ) − log2(4(1 − ε)2p(s))

)
. (3.61)

This evaluates, for j = 0, 3, to

d(s = j, ŝ = i) =

⎧⎨
⎩

0, if j = i,

1, if |j − i| = 1, or |j − i| = 2
2, if |j − i| = 3,

(3.62)

which is thus the Hamming distance between the binary representations of the
integers 0, 1, 2, and 3. For j = 1, 2,

d(s = j, ŝ = i) = |j − i|. (3.63)

It should be clear that these two cases cannot easily be expressed in terms of
one and the same distance measure, simply because the distance between inte-
gers, and the Hamming distance between their binary representations impose
a different structure. The distortion can still be expressed in one formula, as
follows:

d(s, ŝ) =

⎧⎨
⎩

0, if s = ŝ,

2, if |s − ŝ| = maxt |s − t|
1, otherwise.

(3.64)

The main goal of this example is to illustrate that measure-matching through
feedback is not limited to the Gaussian case: rather, it reveals a new class
of source/channel pairs for which very simple source-channel codes, now with
feedback, achieve optimal performance.

3.6 Connections to Other Results

The results discussed in this chapter provide different perspectives on other re-
sults. For example, they have been used in [82] to analyze the duality between
source and channel coding, with and without side information, and in [75] to an-
alyze uncoded transmission for the Wyner-Ziv source and the Gel’fand-Pinsker
channel. In this section, we consider the queuing channel studied in [15] from
the point of view of our results.

3.6.1 Bits through queues

Anantharam and Verdú derive in [15] a capacity result for a certain queuing
channel. The channel is a Poisson queue of service rate µ, and the channel inputs
are impulses. The contents of these impulses is of no relevance to the problem
studied in [15]. They may be information packets, for example. The main
insight is that the timing of these impulses can be used to transmit information,
similar to pulse position modulation. Each pulse is delayed by a random amount
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of time, but this random amount depends on the delay of the previous pulses.
It is found that the capacity-achieving input distribution is a Poisson process.6

The problem can also be considered as a joint source-channel communication
problem, as follows: A Poisson process of rate λ is transmitted without further
coding across a Poisson queue of service rate µ. This can be plugged into
Theorem 2.5 (or, more particularly, Theorem 3.3) to yield the cost and distortion
functions that make this an optimal source-channel communication system.

The input to the queue is a sequence of impulses with random intervals.
Denote the ith interval by Ai. In our case, the input process is Poisson, and
hence, Ai is exponentially distributed. A vector of n such intervals has joint
distribution

p(a1, . . . , an) =
n∏

i=1

eλ(ai), (3.65)

where eλ(·) denoted the exponential distribution with mean 1/λ. For a Poisson
queue of service rate µ > λ, it can be shown [15, Eqn. (2.23)] (see also [107])
that the output is also a Poisson process. Denote the intervals between the
output impulses by Di. The joint distribution of n such intervals can be given
as

p(d1, . . . , dn) =
n∏

i=1

eλ(di). (3.66)

The conditional density is given by the queue specification. As shown in [15], it
can be expressed as

Di = Wi + Si, (3.67)

where Si is the service time and is independent of the entire sequence {Aj} and
of the past {Dj}i−1

j=1, and Wi are the idling times,

Wi = max

⎧⎨
⎩0,

i∑
j=1

Aj −
i−1∑
j=1

Dj

⎫⎬
⎭ , (3.68)

i.e., Wi is a deterministic function of {Aj}i
j=1 and {Dj}i

j=1. Hence, we can
write

p(d1, . . . , dn|a1, . . . , an) = pS1,... ,Sn(d1 − w1, . . . , dn − wn), (3.69)

where pS1,... ,Sn is the distribution of the service times of the queue. For the
Poisson queue with service parameter µ,

p(d1, . . . , dn|a1, . . . , an) = eµ(d1 − w1) · · · eµ(dn − wn). (3.70)
6In a discussion on the matters of Chapter 2 during the 2001 DSC Summer Research

Institute at EPFL, Prof. Sergio Verdú suggested to us to study this “Poisson-over-Poisson”

example.
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Theorem 3.3 tells us that an optimal choice for the cost function is given by

ρ(a1, . . . , an) = D(p(d1, . . . , dn|a1, . . . , an)||p(d1, . . . , dn))

=
∫ ∞

d1=w1

· · ·
∫ ∞

dn=wn

(
n∏

i=1

µe−µ(di−wi)

)
⎛
⎝−µ

n∑
j=1

(dj − wj) + λ

n∑
j=1

dj

⎞
⎠ dd1 · · ·ddn,

which is well defined: wi can be easily computed for given a1, . . . , ai and given
d1, . . . , di−1. We did not, however, find a closed-form solution for this integral.

In order to still gain some insight, we change the integration variables. In-
troduce si = di − wi. The integral can be expressed as

∫ ∞

s1=0

· · ·
∫ ∞

sn=0

(
n∏

i=1

µe−µsi

)⎛
⎝−µ

n∑
j=1

sj + λ

n∑
j=1

(sj + wj)

⎞
⎠ ds1 · · ·dsn.

By the construction of wi, the variable si does not depend on the values of
a1, . . . , an, i.e., the dependence on a1, . . . , an resides in w1, . . . , wn exclusively.
In other words, we can write

ρ(a1, . . . , an) =
∫ ∞

s1=0

· · ·
∫ ∞

sn=0

(
n∏

i=1

µe−µsi

)
λ

n∑
j=1

wjds1 · · · dsn + const.,

where wi is determined by a1, . . . , ai and on s1, . . . , si−1 through (3.67) and
(3.68):

wi = max

⎧⎨
⎩0,

i∑
j=1

aj −
i−1∑
j=1

(wj − sj)

⎫⎬
⎭ . (3.71)

To interpret the expression for ρ(a1, . . . , an), note that for given a1, . . . , an,
all the randomness of Wi is due to S1, . . . , Si−1, hence the above integral is
the expectation of

∑n
i=1 Wi for given a1, . . . , an. In words, the cost of using

a certain input sequence a1, . . . , an is the resulting expected sum of the idling
times.

By the same token, one can determine the distortion measure according to
the formula of Theorem 3.3. For the Poisson source, rate-distortion consider-
ations have appeared in [89] and [107] for two different distortion measures.
Only the latter led to closed-form results. The distortion measure according to



3.6. Connections to Other Results 81

Theorem 3.3 does not seem to coincide with either. More precisely, we find

d((a1, . . . , an), (d1, . . . , dn))

= − log2 p(a1, . . . , an|d1, . . . , dn)

= − log2

p(d1, . . . , dn|a1, . . . , an)p(a1, . . . , an)
p(d1, . . . , dn)

= − log2 p(d1, . . . , dn|a1, . . . , an) − log2

p(a1, . . . , an)
p(d1, . . . , dn)

= µ
n∑

j=1

(dj − wj) + λ
n∑

j=1

(aj − dj) + const. (3.72)

By Theorem 3.3, we can add or subtract an arbitrary function of a1, . . . , an,
and hence, an equivalent distortion measure is

d((a1, . . . , an), (d1, . . . , dn)) = (µ − λ)
n∑

j=1

dj − µ

n∑
j=1

wj . (3.73)

The result of this consideration is a new example of optimal uncoded trans-
mission, and can be summarized as follows: When a Poisson process is to be
transmitted across a Poisson queue channel, and the cost is the expected sum
of the idling times of the queue, then uncoded transmission is optimal.
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3.7 Summary and Conclusions

The (ergodic, point-to-point) source-channel communication problem can be
solved by the separation theorem. This was discussed in Chapter 1. The result-
ing perspective can be called rate-matching: The solution to the source-channel
communication problem is found by matching the rate of the source (its rate-
distortion function) to the rate of the channel (its capacity).

In this chapter, we developed a different point of view: optimal solutions
to the source-channel communication problem can also be characterized by a
particular relationship between the source and channel parameters and the en-
coding and the decoding functions. In particular, the source parameters consist
of the source probability distribution and the distortion measure. The channel
parameters consist of the channel conditional probability distribution and the
channel input cost function. Since these can all be seen as measures of some
kind, we call the resulting perspective measure-matching, and the conditions
expressed in Corollary 3.2 the measure-matching conditions.

One special feature of the measure-matching conditions given in Corollary
3.2 is the fact that they are explicit, at least in one direction: for fixed probability
distributions and encoding/decoding functions, the optimal cost function and
the distortion measure are derived in closed form. This fact was exploited in
various ways in this chapter. For example, it was derived that for a relevant class
of source/channel pairs, the optimal match can be achieved either by a code of
block length one, or else by no code of finite block length. Measure-matching
also serves to define a property of universality featured by certain source-channel
codes, and to analyze source-channel communication systems with feedback.

The search for further instances where the measure-matching conditions can
be successfully applied is an object of future research.
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Appendix 3.A Proof of Theorem 3.4

Proof of Theorem 3.4. (⇐ .) If there is a single-letter code with optimal perfor-
mance, then trivially there is also a code of length M with optimal performance.
(⇒ .) Under the stated assumptions, the existence of a code of length M with
optimal performance implies the existence of a single-letter code with optimal
performance for the same source and channel. To prove this, we consider single-
letter codes for the length-M extension source and channel.

Notation: We use the notation introduced in Section 3.1, and reprinted here
for convenience. Let sM = (s1, . . . , sM ) be the vector of M consecutive source
symbols, and define ŝM accordingly. By assumption, all alphabets are of the
same size. Without (further) loss of generality, we use the generic alphabet
{1, 2, . . . , K}. The length-M extension source is p(sM ) =

∏M
m=1 pS(sm) with

d(M)(sM , ŝM ) =
∑M

m=1 d(sm, ŝm). For some of the considerations below, it
will be more convenient to map sM into an extension alphabet of size KM .
We use bold face characters to denote symbols of the extension alphabets, and
the mapping is carried out according to s =

∑M
i=1 Kisi. Both representations

will be used interchangeably. Similarly, the extension channel is p(yM |xM ) =∏M
m=1 pY |X(ym|xm) with ρ(M)(xM ) =

∑M
m=1 ρ(xm). In the proof, it will also

be handy to use matrix notation. We will use PY |X for the matrix of channel
transition probabilities, where y indexes the rows and x the columns. Note that
in the extension alphabet, PY|X = PY |X ⊗ . . . ⊗ PY |X (M terms), where ⊗
denotes the Kronecker product (tensor product).

Outline: The single-letter code for the length-M extension will be denoted
(F, G). Obviously, this is an M -letter code for the original source and channel.
We will now apply the theory developed in Chapters 2 and 3 to the extension
source and channel, and their single-letter code (F, G). Plugging pS, pY|X and
the code (F, G) into Formulae (2.14) and (2.15) of Theorems 2.2 and 2.3, we
obtain the ρ(M) and d(M) that are necessary and sufficient for optimal perfor-
mance.7 However, by assumption, they have to be averaging (or single-letter)
measures, that is, ρ(M)(xM ) =

∑M
m=1 ρ(xm) for some cost function ρ(·), and

d(M)(sM , ŝM ) =
∑M

m=1 d(sm, ŝm) for some distortion measure d(·, ·). This ex-
cludes many of the possible M -letter codes (F, G).

From Theorem 2.3, the distortion measure has to be chosen as

d(M)(sM , ŝM ) = − log2 p(sM |ŝM ). (3.74)

Clearly, for this to split additively into equal functions each of which depends
only on one of the pairs (si, ŝi), it is necessary that p(sM |ŝM ) = pS|Ŝ(s1|ŝ1) ·
. . . ·pS|Ŝ(sM |ŝM ). This can also be inferred from the argument given in Remark
3.2. In terms of transition probability matrices, this can be expressed as

PS|Ŝ = PS|Ŝ ⊗ . . . ⊗ PS|Ŝ . (3.75)
7Suppose there exists a code (F, G) such that I(XM ; Y M ) = MC0. When all alphabets are

of the same cardinality and p(s) > 0 for all s, it is a simple matter to prove that there exists

also a single-letter code that achieves I(X; Y ) = C0. For this reason, the interesting case is

when I(XM ; Y M ) < MC0, in which case the formula for ρ is indeed a necessary condition.

A similar comment applies to the case I(S; Ŝ) = 0.
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By symmetry, the second key insight follows from the fact that the cost function
has to split additively. From Remark 3.3, we know that Y are iid. However,
the derivation is somewhat more technical. Therefore, we state the result in the
shape of the following lemma, to be proved below:

Lemma 3.10 If ρ(M) is averaging and PY |X invertible, then X and Y are iid.

Note that the fact that Y are iid follows by the argument given in Remark
3.3. Hence, it remains to prove the assertion for X .

The third insight is that under the additional assumptions on the alphabet
sizes and p(s), the encoder and decoder have to be bijective. It is given by the
following lemma (to be proved below):

Lemma 3.11 If all alphabets are of the same cardinality, p(s) > 0 for all s,
PS|Ŝ and PY |X are invertible and d(M) is averaging, then encoder F and decoder
G are permutation matrices.

To complete the proof, consider first the encoder. Suppose that for fixed
distribution of S and X , there exists indeed a bijective encoder F that maps
S to X. Equivalently, this means that there exists a permutation matrix F

such that pX = FpS, where pX here means a vector containing the probabilities
pX(x), and pS the corresponding for the random variable S. By Lemma 3.10,
X is iid, hence we can write

pX ⊗ . . . ⊗ pX = F (pS ⊗ . . . ⊗ pS). (3.76)

But this can only be true if there exists also a permutation matrix f such that

pX = fpS . (3.77)

In other words, there exists also a single-letter encoder f that maps S to X .
This argument can be applied to the matrix PS|Ŝ to conclude that the de-

coder can also be implemented by a single-letter mapping. First, recall that
PS|Ŝ = PS|XPX|YPY|Ŝ. On the right hand side, PX|Y can be written as an
M -fold Kronecker product because the channel is memoryless and X and Y are
iid. Moreover, we have just shown that the encoder is a permutation matrix,
and that it can be written also as an M -fold Kronecker product. Using Eqn.
(3.75), we find

PS|Ŝ ⊗ . . . ⊗ PS|Ŝ = (PS|X ⊗ . . . ⊗ PS|X)(PX|Y ⊗ . . . ⊗ PX|Y )PY|Ŝ
= (A ⊗ . . . ⊗ A)PY|Ŝ (3.78)

for some matrix A. But if there does indeed exist a permutation matrix PY|Ŝ
(namely, the decoder G) that satisfies the above equation, then there exists
also a permutation matrix PY |Ŝ that satisfies PS|Ŝ = APY |Ŝ, which implies the
existence of a single-letter decoder g. �
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Remark 3.5 Let us explain at this point why the additional assumptions in
Theorem 3.4 are necessary: To ensure that the encoder and the decoder are
permutation matrices. Using this, the step from Eqn. (3.76) to Eqn. (3.77) is
simple. However, if this is not ensured, then the step from Eqn. (3.76) to Eqn.
(3.77) seems to become surprisingly tricky. Relatively little seems to be known
about Kronecker products.

Proof of Lemma 3.10.
Part 1: Under the stated conditions, Yi are iid random variables. This can

be inferred from the argument in Remark 3.3. Here, we provide an alternative
direct proof, using matrix arguments.

From Theorem 2.2, the cost function ρ(xM ) has to be chosen as

ρ(xM ) = D
(
pY M |XM (·|xM )||pY M (·)) =

∑
yM

p(yM |xM ) log2

p(yM |xM )
p(yM )

.(3.79)

By definition, the cost function of a memoryless channel has to split additively
into M equal functions, each depending only on one of the xi. It is now shown
that this implies that p(y1, . . . , yM ) = pY (y1) · . . . ·pY (yM ). For the case M = 2,

ρ(x1, x2) = H(Y |X = x1) + H(Y |X = x2)

−
∑
y1,y2

p(y1|x1)p(y2|x2) log2 p(y1, y2). (3.80)

The last double sum has to split additively into two parts, one depending only
on x1, the other only on x2. As a first step, we now show that this implies that
Y1 and Y2 are independent random variables. Equivalently, we show that the
matrix PY1Y2 containing the joint pmf of Y1 and Y2 has rank at most 1.

To see why this holds, let us introduce the following shorthand: zj
i = p(y =

j|xi), where 1 ≤ i ≤ K and 1 ≤ j ≤ K. Moreover, in this paragraph, we use
p(·, ·) in place of pY1Y2(·, ·) to make the formulae more readable. With this, we
can rewrite the double sum on the RHS of Eqn. (3.80) as

z1z2 log2 p(1, 1) + z1z
2
2 log2 p(1, 2) + . . . + z1z

K
2 log2 p(1, K)

+ z2
1z2 log2 p(2, 1) + z2

1z2
2 log2 p(2, 2) + . . . + z2

1zK
2 log2 p(1, K)

+
...

+ zK
1 z2 log2 p(K, 1) + zK

1 z2
2 log2 p(K, 2) + . . . + zK

1 zK
2 log2 p(K, K),

(3.81)

with the constraint

zi + z2
i + . . . + zK

i = 1, for all i. (3.82)

To split the sum additively into terms that depend only on one of the xi (or,
equivalently, of the zi), it is necessary that the coefficients of all terms that
involve more than one of the variables zi are zero. Substitute for instance
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z2
1 = 1 − z1 − z3

2 − . . . − zK
2 and z2

2 = 1 − z2 − z3
2 − . . .− zK

2 . Then it is quickly
verified that the coefficient of z1z2 is

log2 p(1, 1) + log2 p(2, 2) − log2 p(1, 2)− log2 p(2, 1). (3.83)

But this is precisely the determinant of a 2× 2 submatrix of PY1Y2 . In a similar
fashion, we find that the determinants of all 2× 2 submatrices of PY1Y2 have to
be zero. But this implies that rankPY1Y2 ≤ 1 (a well-known fact for which we
did not find a reference, but which has a short proof; therefore it is given below
as Lemma 3.12), which implies that Y1 and Y2 must be independent random
variables.

For M > 2, define two sets of indices, I and J , such that I ∩ J = ∅. Let
Y (I) = {Yi : i ∈ I} and Y (J) = {Yj : j ∈ J }. But since Y are discrete random
variables, Y (I) and Y (J) can be interpreted as two discrete random variables
over larger alphabets. Denote the joint pmf matrix of Y (I) and Y (J) by PIJ .
For this matrix, it can again be shown that all 2 × 2 submatrices have zero
determinant, and from Lemma 3.12, that PIJ has rank one. Hence, the joint
distribution matrix is PIJ = pY (I)p′Y (J) . Since this holds for any two index sets,
it follows that the Yi are independent random variables.

Up to now, we have established that Y1, . . . , YM have to be independent
random variables, thus we can write

ρ(x1, . . . , xM ) = H(Y |X = x1) −
∑
y1

p(y1|x1) log2 p(y1)

+ . . . + H(Y |X = xM ) −
∑
y2

p(y2|xM ) log2 p(y2),

(3.84)

which indeed splits additively into M functions, each of which depends only on
one of the xi. Moreover, it has to split into equal functions. That is, whenever
xi = xj , we must have that∑

yi

p(yi|xi) log2 p(yi) =
∑
yj

p(yj|xj) log2 p(yj), (3.85)

which can be rewritten (by letting x = xi = xj)∑
y

p(y|x)(log2 pYi(y) − log2 pYj (y)) = 0. (3.86)

This must hold for every choice of x. In other words, the vector {log2 pYi(y) −
log2 pYj (y)}y must be orthogonal to all of the K vectors {p(y|x)}y. Hence, if
those K vectors span the entire K-dimensional space, then pYi = pYj , and thus
Yi and Yj are identically distributed random variables. Thus, if the channel
transition probability matrix PY |X admits a right inverse, then the channel
outputs Y1, . . . , YM must be iid random variables.

Part 2: Under the stated conditions, Xi are iid random variables.
Under certain circumstances, the fact that Y1, . . . , YM are iid implies that

X1, . . . , XM are also iid. A sufficient (but not necessary) condition for this is
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that the channel transition probability matrix PY |X admit a left inverse. For
codes of length M = 2, this can be shown as follows. Construct matrices
PY1Y2 = {p(y1, y2)}y1,y2 and PX1X2 = {p(x1, x2)}x1,x2 . Then, we can write

PY1Y2 = PY |XPX1X2P
T
Y |X . (3.87)

Denote the left inverse of PY |X by PL
Y |X . Then,

PL
Y |XPY1Y2P

LT
Y |X = PX1X2 . (3.88)

However, since Y1 and Y2 are iid, PY1Y2 = ppT for some vector p, and thus

rankPX1X2 = rank(PL
Y |XPY1Y2P

LT
Y |X) ≤ rankPY1Y2 = 1. (3.89)

Since moreover, PX1X2 = PT
X1X2

, there must exist a vector q such that PX1X2 =
qqT .

To extend this argument to M > 2, we use again the sets I and J as
defined above. The joint distribution of Y (I) and Y (J) can thus be written in
matrix form as PIJ = pY (I)p′Y (J) . This is a rectangular matrix of dimension
K |I| × K |J |. By construction, it has only one non-zero singular value. The
transition probability matrices are Kronecker products of multiple copies of
PY |X and are therefore also left invertible. This implies (by analogy to the
argument for M = 2) that the joint pmf matrix of X(I) and X(J) has also only
one non-zero singular value, which means that it must be the outer product
of two vectors, hence X(I) and X(J) are independent. But since this holds
for arbitrary sets I and J , we have that X1, . . . , XM must be independent.
The fact that they are also identically distributed can then be derived by
considering Xi and Xj for all i �= j, and using the same argument as in the
case M = 2. �

Proof of Lemma 3.11. Consider the matrix PS|Ŝ. It may be expressed as
PS|Ŝ = PS|XPX|YPY|Ŝ. The distortion measure has to be averaging, which, by
Eqn. (3.75), implies that PS|Ŝ = PS|Ŝ ⊗ . . . ⊗ PS|Ŝ (M terms). By assumption,
PS|Ŝ is nonsingular. This is true if and only if PS|Ŝ is also nonsingular. Hence,
PS|X and PY|Ŝ must be full-rank matrices.

Moreover, using the requirement that I(X;Y) = I(S; Ŝ), we now infer that
PS|X and PY|Ŝ have to be permutation matrices. Consider the mutual informa-
tion

I(S,X;Y) = I(S;Y) + I(X;Y|S)

= I(X;Y) + I(S;Y|X), (3.90)

where I(S;Y|X) = 0 since S → X → Y is a Markov chain, and hence I(X;Y) =
I(S;Y)+I(X;Y|S). To satisfy I(X;Y) = I(S;Y), it is therefore necessary that
I(X;Y|S) = H(X|S)−H(X|Y,S) = 0. This is true if and only if X and Y are
independent given S. Hence consider the joint distribution matrix PY,X|S=s.
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Denoting by PX|S=s a diagonal matrix with entries p(x|s) along the diagonal,
we can write

PY,X|S=s = PY|XPX|S=s. (3.91)

For X and Y to be independent given S, the matrix PY,X|S=s has to have rank
1 for all s. However, since by assumption, any set of two columns of PY|X are
linearly independent, the diagonal matrix PX|S=s can have at most one non-zero
entry, hence p(x|s) = 1 for exactly one of the x. Hence, the matrix PX|S has only
ones and zeros as entries. Moreover, p(s) > 0 for all s and PS|X is invertible,
which implies that PX|S is also invertible. Hence PX|S is a permutation matrix
(and so is PS|X).

By analogy, consider

I(S;Y, Ŝ) = I(S;Y) + I(S; Ŝ|Y)

= I(S; Ŝ) + I(S;Y|Ŝ). (3.92)

To satisfy I(S;Y) = I(S; Ŝ), we need that I(S;Y|Ŝ) = H(Y|Ŝ)−H(Y|Ŝ,S) =
0. This is true if and only if S and Y are independent given Ŝ. By analogy to
the first half of the proof, this implies that PY|Ŝ can have only zero or one as
entries. Since moreover, it is invertible, it follows that PY|Ŝ is a permutation
matrix.

To conclude the proof, note that permutation matrices represent bijective
mappings. �

Lemma 3.12 For any matrix A ∈ M(n × m), rank(A) ≤ 1 if and only if

AijAkl − AkjAil = 0, (3.93)

for all 1 ≤ i, k ≤ n and 1 ≤ j, l ≤ m.

Proof. rank(A) ≤ 1 ⇔ A = xyT for some vectors x and y. But then, the
forward part is immediate.

For the reverse, we show that any two rows of A are dependent. Pick row i

and row k, and form the 2×m submatrix A′. The rows of A′ are independent if
and only if we can find two columns j and l that are linearly independent. This
happens if and only if the 2 × 2 submatrix A′′ containing only columns j and l

of A′ has full rank. However, by assumption, this matrix has determinant zero.
Hence any two rows of A are dependent, and the rank cannot be larger than 1. �



Chapter 4

An Intermezzo — Uncoded

Transmission and Biological

Systems

This chapter illustrates an area where some of the theory developed in Chap-
ters 2 and 3 may be of particular interest: communication in biological systems.
Uncoded transmission is simple and operates at no delay. Neural communica-
tion, for example, may be very interested in such transmission schemes. Rather
than aiming at an exhaustive treatment, this chapter merely outlines one line
of thought, and it does so by reinterpreting a known example from neural com-
munication, taken from [29].

We first review this example in its original formulation, taking a point of
view that we call the capacity perspective. Here, the measures of interest are
rate and mutual information. Thereafter, we suggest an alternative point of view
that we call the energy vs. accuracy perspective. This is based on the results
presented in Chapters 2 and 3, and its measures of interest are the accuracy of
the representation of the stimulus, and the cost of having this accuracy.1

To provide a precise and complete historic treatment would be beyond the
framework of the present thesis. References can be found e.g. in [12].

4.1 The Capacity Perspective

One attractive way of applying information theory to sensory processing is to
measure the statistics of the involved signals, and to plug these measurements
into Shannon’s capacity formula for the Gaussian channel, see for example the
figure in [12, p. 157]. This rationale is motivated by the desire to “establish an
absolute scale for neural performance” [12, p. 267, second paragraph].

Such a computation can be performed for spiking neurons, as in [12]. We
prefer here to study in more detail another neural system, the so-called graded-

1The ideas discussed in this chapter were presented, in part, in [40] and [41].
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s(t)
T (f)

x(t)

n(t)

y(t)

Figure 4.1: The system considered in [29].

potential synapse. A capacity calculation of the type of [12] was presented in
[29]. The following example is a simplified version of that publication, concern-
ing the early stages of the blowfly visual system.

Example 4.1 (graded potential synapse) Consider the following line of
thought, presented in [29]:

1. The system model is illustrated in Figure 4.1. The stimulus is first pro-
cessed through a transfer function T (f). Thereafter, (colored) Gaussian
noise is added. Hence, the power spectral density SY (f) of the output
signal y(t) is

SY (f) = |T (f)|2SS(f) + SN (f), (4.1)

where SS(f) is the power spectral density of the stimulus, T (f) is the
transfer function, and SN (f) is the power spectral density of the noise
n(t).

2. The system parameters are determined from measurements. In partic-
ular, we need the transfer function and the power spectral density of the
additive noise.2 To achieve this goal, the same stimulus s(t) is presented
many times. The average response is taken to have power spectral density
|T (f)|2SS(f). Since SS(f) is known, the average response permits one to
determine

T (f). (4.2)

The deviations from this average response are taken to be the noise, yield-
ing the noise power spectral density

SN (f). (4.3)

3. Shannon’s capacity formula for the system of Figure 4.1 is

C = max
SS(f)

∫ ∞

0

df log2

(
1 +

|T (f)|2SS(f)
SN (f)

)
. (4.4)

2In [29], it is argued that the Gaussianity of the signals also follows from the measurements.

However, [29] does not provide sufficient detail to be sure that this Gaussianity is not merely

a consequence of the central limit theorem. Therefore, we here include the Gaussianity with

the model parameters.
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4. The maximization is taken over all SS(f) that satisfy

∫ ∞

0

dfSS(f) ≤ 0.1. (4.5)

Hence, the maximizing SC(f) is found by water-filling on the power spec-
tral density

SN (f)
|T (f)|2 . (4.6)

The result of the maximization is C = 1650 bits per second.

5. It is argued: “The graded responses of these non-spiking cells transmit as
much as 1650 bits per second.”

As this example demonstrates, the capacity perspective does provide an absolute
scale for neural performance in the sense of Point 5. of Example 4.1, i.e., the
result C = 1650 bits per second. A similar capacity result for the bullfrog
auditory system can be found in [12, p. 185]. The remaining question is the
significance of this absolute scale. We discuss some of this below in Section
4.1.1.

Another capacity perspective has been investigated by Berger [19]. His ap-
proach is almost exclusively based on models rather than on experimental data.
More precisely, he considers “diffusive communication” across a synaptic gap:
Initially, the gap is filled with a medium containing different types of molecules.
Each type of molecule is present with its characteristic concentration. In other
words, there is a concentration distribution over the types of molecules. When
a spike arrives at one edge of the gap, the corresponding nerve cell injects
molecules into the gap, altering the concentration distribution. By diffusion,
this new concentration distribution can also be sensed at the far end of the gap.
Hence, such a mechanism permits the spike to cross the synaptic gap.

In more detail, Berger’s goal in [19] is to determine the capacity of this
diffusion channel. The synaptic gap medium contains a total of b “chemical
symbols” (e.g., molecules). There are M different types of chemical symbols.
The simplest model for diffusion is that in each time slot, the cell at the far
end of the gap grabs uniformly at random one of the b chemical symbols in the
medium, and the cell at the near end of the gap injects a new chemical symbol
into the gap. Hence, there are always b chemical symbols in the gap. A capacity
result was given in [19], and referenced to yet unpublished work by Zhang and
Berger. Asymptotically in b, the capacity behaves at least like b−2/3. Obviously,
the largest capacity is achieved by setting b = 1; this is simply a lossless channel.
So will nature use that channel? In [19], Berger argues that such a channel is
“expensive to build and run. Unless you are in a hurry (and sometimes you
are), bits per energy matters more than bits per second.” In a sense, Section
4.2 below formalizes and extends this last point. However, we trade off accuracy
versus energy, rather than bits.
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4.1.1 Critical review

While the capacity perspective is both elegant and seducing, it suffers from
certain limitations. In particular, we note the following points:

1. The fact that from the measurements, one evaluates

C = max
SC(f)

∫ ∞

0

df log2

(
1 +

|T (f)|2SC(f)
N(f)

)
, (4.7)

does not mean that the system operates at C bits per second.

Rather, it means that C bits per second are achievable by means of a
generally very complex encoder/decoder. More explicitly, a system with
a higher C does not necessarily provide a better stimulus reconstruction;
this implication holds only if capacity-achieving encoding and decoding is
used.

It seems unlikely that a biological system has the kind of encoder/decoder
pair that makes it possible to transmit C bits per second.

Besides the fact that inspection does not seem to support the presence
of such an encoder/decoder pair, it is also reasonable to assume that bio-
logical systems cannot afford the delay that communication very close to
Shannon capacity implies.

2. More fundamentally, the Shannon capacity is the largest number of bits
per second at which it is possible to make the error probability Pe go
to zero (as the delay goes to infinity). It seems probable that neural
communication (as opposed to communication via DNA) is not designed
to make the error probability go to zero at such a high cost in terms of
delay.

4.2 The Energy vs. Accuracy Perspective

Instead of maximizing the number of bits per second under the constraint that
the error probability Pe must go to zero at some fixed cost (as in the capacity
perspective), a more reasonable goal is to maximize the accuracy of the recon-
struction at the same fixed cost.

As discussed in Chapters 1, 2 and 3 of this thesis, information theory also
provides tools to attack this problem. The theory discussed in this thesis applies
to discrete-time systems. In contrast, by nature, biological systems must be
expected to operate in continuous time, which is also reflected by Example
4.1. For neural communication, there is a finite speed of reaction, and a finite
transition time for electro-chemical processes. For these reasons, we assume in
the sequel that one can model neural communication systems as band-limited
systems, or that such a model is close enough to reality. Under this assumption,
the continuous-time signals can be represented exactly by a sequence of samples,
i.e., by a discrete-time signal. Hence, under the assumption that the involved
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systems are band-limited, a discrete-time consideration is sufficient. Our general
framework can be outlined as follows:3

The source S with distribution p(s) is communicated to a destination via
a channel with conditional distribution p(y|x). The encoder maps k source
symbols onto m channel input symbols, and the decoder maps m channel output
symbols onto k source reconstruction symbols. This is illustrated in Figure 4.2.
The input X to the channel is any symbol x of the alphabet X , and the cost

Source Channel Destination
S

F
X Y

G
Ŝ

Figure 4.2: Conceptual framework of the energy vs. accuracy perspective.

(the “energy”) of using the particular symbol x is denoted by ρ(x). The average
expected cost per channel use is

Γ =
1
m

m∑
j=1

Eρ(Xj). (4.8)

The channel output sequence Y m is processed into an estimate Ŝk of the source
sequence Sk. A distortion function d(s, ŝ) specifies how good or bad it is if
the source letter s is reproduced by the reconstruction letter ŝ. The average
distortion per source symbol is

∆ =
1
k

k∑
j=1

Ed(Sj , Ŝj). (4.9)

The source-channel communication problem is the trade-off between cost Γ and
distortion ∆.

This does not only seem to be a more reasonable goal for a neural commu-
nication system; it is also well known that an optimal cost-distortion trade-off4

can be achieved at low complexity in certain cases. This was discussed in detail
in Chapters 2 and 3.5

More precisely, from Theorem 2.5 (and its extensions presented in Chapter
3), the optimum cost-distortion trade-off can be achieved at low complexity and
delay, provided that the source and the channel are favorably matched. This
may be too much to ask in a man-made communication system where the source
and the channel are picked independently of each other. However, evolution

3In an attempt to make this chapter self-contained at the level of concepts, we briefly

review the main ideas discussed in Chapter 1.
4Recall that optimal means: the best performance irrespective of delay and complexity.

See Definition 1.5.
5When we presented the main results of Chapter 2 at the International Symposium on

Information Theory (ISIT) in Sorrento in June 2000 [42], Prof. T. Berger suggested to us

to apply our results to neural communication. He generously provided us with the models

of neural communication he was studying [18], and later with his estimation and capacity

considerations, mentioned above in Section 4.1 [19]. This was followed by a series of mutually

inspiring discussions at the 2001 DSC Research Day at EPFL, and at ISIT 2001.
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could have “designed” the source and the channel in a matching fashion. We
are excited about the possibility that nature may indeed have followed such a
path. It is in this spirit that we propose the following thoughts:

Example 4.2 Starting from the channel model proposed in [29], illustrated in
Figure 4.1, we select the channel to be an additive Gaussian noise channel with
power spectral density given by SN (f) as in (4.3). We select the transfer func-
tion T (f) of Figure 4.1 to be the encoder F , and we take the decoder G to be the
identity function. This defines a system of the kind shown in Figure 4.2, and
permits to apply the techniques developed in Chapters 2 and 3 of this thesis.

For our arguments, we simplify Example 4.1 slightly by assuming that all
processes are band-limited, and that therefore, a discrete-time consideration is
sufficient. To make matters precise, we simplify this further by considering
finite blocks of length k: the source emits blocks of length k. The blocks are
independent of one another, and every block has the same distribution. Similarly
and synchronously, the channel noise emits blocks of length k, which are again
assumed independent and identically distributed. Moreover, in the simplified
model, the transfer function T (f) is a k × k matrix, denoted by T . This is
illustrated in Figure 4.3. We denote the k-dimensional Gaussian distribution in

Stimulus Channel Central Nervous
System

Sk

T
Xk Y k = Ŝk

Figure 4.3: The simplified version of the model of Figure 4.1, as used for Ex-
ample 4.2.

the (vector-valued) variable xk whose mean is given by the vector m (of length
k) and whose covariance matrix is ΣX , by

N (m, ΣX)(xk) =
1

(
√

2π)k
√

det ΣX

exp(−1
2
(xk − m)T Σ−1

X (xk − m). (4.10)

We will also sometimes use the shorter notation N (m, ΣX) when the variable
is not needed explicitly. The covariance matrices of the source, the channel
noise, and the channel output will be denoted by ΣS , ΣN , and ΣY , respectively.
Theorem 3.3 says that if

ρ(k)(xk) = D(p(yk|xk)||p(yk))

= D(N (xk , ΣN)||N (0, ΣY )), (4.11)

and, recalling that p(sk|ŝk) is Gaussian with mean E[Sk|Ŝk = ŝk] and variance
V ar(Sk|Ŝk = ŝk),

d(k)(sk, ŝk) = − log2 p(sk|ŝk)

= − log2 N (TΣSΣ−1
Y ŝ, ΣS − ΣST T Σ−1

Y TΣS)(sk)

= (s − P ŝ)T Σ−1(s − P ŝ) + const., (4.12)
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where P = TΣSΣ−1
Y and Σ = ΣS − ΣST T Σ−1

Y TΣS, then the overall system is
optimal.6

In order to gain insight into the structure of the cost and distortion functions
according to Equations (4.11) and (4.12), respectively, the next goal is to rewrite
ρ and d in terms of well-known quantities, such as the power spectral densities of
the involved signals. For simplicity, we assume that the covariance matrices ΣS,
ΣN and ΣY as well as the encoder matrix T have identical eigenvectors. This
is a reasonable assumption: If the source and the noise process are stationary
(and here we mean stationary inside the blocks of length k), then their covariance
matrices are Toeplitz. Moreover, if the encoder T can indeed be described by a
transfer function (as is assumed in [29]), then the corresponding matrix is also
Toeplitz. But in the appropriate sense, as k → ∞, the eigenspace of a Toeplitz
matrix is the Fourier space. This can be made precise, see e.g. [49].

Under the assumption of equal eigenvectors of ΣN and ΣY , we can evaluate
the above formula for ρ. Using the auxiliary Lemma 4.1 (see Appendix 4.A), we
can rewrite (4.11) as

ρ(k)(xk) =
k∑

j=1

D(N (Xj , λN,j)||N (0, λY,j)), (4.13)

with Xk = Qxk, where Q is the matrix of eigenvectors of the covariance matrix
ΣN , and hence also of ΣY . Each term in the sum can be evaluated like in
Example 2.5, yielding

ρ(k)(xk) =
k∑

j=1

αjX
2
j , (4.14)

where we have subtracted an appropriate constant. To interpret this formula,
note that as k → ∞, the sequence Xk converges (in an appropriate sense) to the
spectrum of the sequence xk, see e.g. [49]. This suggests that in the formalism of
Example 4.1, the cost of the signal x(t) can be expressed in the spectral domain
as

ρ(X(f)) =
∫

dfα(f)|X(f)|2 (4.15)

for a function α(f) that is essentially the spectrum of the noise.
Similarly, under the assumption of equal eigenvectors of ΣS, ΣN , ΣY , and

T , the distortion function can be simplified along the following lines:

d(k)(sk, ŝk) = (s − P ŝ)HΣ−1(s − P ŝ)

=
k∑

j=1

βj(Sj − γjŜj)2. (4.16)

with Sk = Qsk and Ŝk = Qŝk, where Q is the matrix of eigenvectors of the
covariance matrix ΣS, and hence also of ΣN , ΣY and T . Note that this implies

6Recall that Theorem 3.3 does not establish that Equations (4.11) and (4.12) are the only

optimal choices.
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that Q is also the matrix of eigenvectors of the matrices P and Σ. This formula
can be interpreted along the same lines as the formula for ρ(x). In particular,
in the appropriate sense, the sequences Sk and Ŝk converge again to the spectra
of sk and ŝk, respectively. This suggests that in the formalism of Example
4.1, we can express the distortion between a certain input signal s(t) and its
corresponding reconstruction ŝ(t) = y(t) (recall that the decoder is taken to be
the identity function) in the spectral domain as

d(S(f), Y (f)) =
∫

dfβ(f)|S(f) − γ(f)Y (f)|2 (4.17)

for a function γ(f) that is essentially the spectrum of the encoder, and a function
β(f) that is the product of the square of the spectrum of the encoder with the
spectrum of the noise.7

In conclusion, if we take for granted the model of a biological system given
in [29], then the cost function ρ(x) and the distortion measure d(s, y) given in
(4.14) and (4.16) are the ones for which the system is optimal. In words, no
processing at the input or at the output can lead to a better average cost versus
average distortion trade-off, regardless of complexity.

4.2.1 Critical review

As illustrated by Example 4.2, our approach is also based on statistical mea-
surements, just like the capacity perspective of Section 4.1. But while the latter
yields an “absolute” result, e.g., 1650 bits per second, our perspective yields a
channel input cost function and a distortion measure. This is one step short of
a final result: it remains to be argued that these functions make (physiologi-
cal) sense. For instance, in Example 4.2, the last step is to argue that on the
graded-potential synapses connecting the photo-receptor to the large monopolar
cells in the blowfly visual system [29], it makes sense that the cost function is
a weighted energy (with weighting in the frequency domain). Such arguments
are beyond the scope of this thesis.

4.3 Further Perspectives

4.3.1 The redundancy perspective

Another application of information theory to sensory processing takes into ac-
count coding. The flavor of this perspective is quite different: The goal is to
devise a sensible design principle for neural coding. This design principle is the
redundancy of the stimulus representation, e.g., the redundancy in the neural
signals that represent an image. The considered notion of redundancy is inspired
by information theory:

θ = 1 − H(M)/R, (4.18)
7The precise analysis of the continuous-time problem is not pursued further.
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where R is the rate8 of the representation, and H(M) is the entropy of the
stimulus.

The problem of determining codes that minimize redundancy is known to
be difficult. Therefore, simpler functionals were studied. One approach can be
outlined as follows: Consider an input layer of n neurons whose activities are
described by L1, . . . , Ln. The corresponding activities in the output layer are
described by O1, . . . , Ol, and the response of the output neuron is assumed to
be some general function,

Oi = Ki(L1, . . . , Ln).

Using this, a simplified redundancy function that retains some of the basic
features is defined as

E[Ki] =
l∑

i=1

H(Oi) − 2ρ(H(O1, . . . , Ol) − H(L1, . . . , Ln)).

The goal is to optimize this over all possible recoding functions Ki. A further
simplification is to consider only simple coding functions Ki, such as linear
mappings.9

The line of thought furnished by this approach can be outlined as follows:
Starting from statistical measurements, one determines the optimal coding.
Then, it is verified (by “inspection”, by experimentation, etc) that the actual
coding is “close” to the optimum. The goal of this approach is to argue “that
much of the processing in the early levels of sensory pathways might be geared
towards building efficient representations of sensory stimuli in an animal’s envi-
ronment” [16]. A more detailed treatment of these ideas along with the relevant
references is given in the review article [16].

Critical review

One key advantage of the redundancy perspective has been described as follows
[12, p. 268, last paragraph]: “We can generalize this definition to include whole
arrays of neurons, not just two.” Recall that while the true information theo-
retic perspectives (as in Sections 4.1 and 4.2) are somewhat less ad-hoc, they
are difficult to extend to the network case: only very few results in network
information theory are known to date.

However, redundancy is an ad-hoc concept: There is no strong evidence
that biological systems are interested in removing redundancy in general, or,
as Atick puts it in [16, p. 220, second paragraph]: “In higher animals we feel
it is more likely that cognitive benefits are the driving force towards efficient
representation”.

8In [16], Atick calls this the “capacity” of the representation.
9However, in contrast to Section 4.2, those simple codes are not argued to be information-

theoretically optimal. Rather, within the class of simple codes, the one minimizing the redun-

dancy R, or more precisely, the simplified functional E[Ki], is determined.
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4.4 Summary and Conclusions

In Chapter 3, we argued that optimal communication can be characterized by
matched measures. Certain source/channel pairs are already favorably matched
in such a way that an optimal match of the measures can be achieved by little
coding, if any. The hypothesis of this chapter is that such a favorable match oc-
curs in biological systems. However, an experimental “proof” of the hypothesis
is beyond the scope of this thesis.

In particular, we illustrated how the results of Chapter 3 can be used to un-
derstand, from a different point of view, certain experiments that were published
in the literature: rather than plugging the measurement data into Shannon’s
capacity function, and claim that the result is an “absolute scale for neural
performance”, we determine the framework in which the neural communication
system achieves an information-theoretically optimal trade-off between the cost
of transmission and the quality of reconstruction. This framework consists of
the measured statistics, the coding functions, and the input cost function of the
channel and the distortion measure.

This raises the future challenge of understanding the resulting cost and dis-
tortion measures from a physiological perspective — of associating these mea-
sures with observable physiological processes.
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Appendix 4.A Auxiliary Lemma for Gaussian Diver-

gence

Let the k-dimensional Gaussian distribution with mean m and covariance matrix
ΣX be denoted by N (m, ΣX). This is a slightly simplified notation of (4.10).
Then, the following is true:10

Lemma 4.1 Suppose that ΣZ and ΣY are covariance matrices of dimensions
N and with the same eigenvectors q1, . . . , qN , and that x is a constant vector of
length N . Then,

D(N (x, ΣZ )||N (0, ΣY )) =
N∑

k=1

D(N (Xk, λZ,k)||N (0, λY,k)), (4.19)

where λZ,k and λY,k are the eigenvalues of ΣZ and ΣY , respectively, correspond-
ing to eigenvector qk, and

X = Qx, (4.20)

where Q is the matrix whose columns are the eigenvectors q1, . . . , qN .

Proof. The lemma could be established from the chain rule for divergence, see
e.g. [3, Thm. 2.5.3]. We here prefer to simply write out the definition,

D(N (x, ΣZ )||N (0, ΣY ))

=
1

(
√

2π)N
√

detΣX

∫
· · ·
∫

e−
1
2 (y−x)T Σ−1

Z (y−x)

log2

detΣY

detΣZ
e−

1
2 (y−x)T Σ−1

Z (y−x)+ 1
2 yT Σ−1

Y ydy1 · · · dyN .

Introduce the new variables

Y = Qy.

Since Q is a unitary transform, the determinant of the Jacobian is one. For
convenience, we moreover replace

X = Qx.

Using this, the integral can be written in the new coordinates as∫
· · ·
∫

e−
1
2 (QT Y −x)T Σ−1

Z (QT Y −x)

log2

detΣY

detΣZ
e−

1
2 (QT Y −x)T Σ−1

Z (QT Y −x)+ 1
2 Y T QΣ−1

Y QT Y dY1 · · · dYN

=
∫

· · ·
∫

e−
1
2 (Y −X)T QΣ−1

Z QT (Y −X)

log2

detΣY

detΣZ
e−

1
2 (Y −X)T QΣ−1

Z QT (Y −X)+ 1
2 Y T QΣ−1

Y QT Y dY1 · · · dYN .

10While we feel that this fact must be noted somewhere, we failed to discover an appropriate

reference. Since the proof is rather straightforward, we include it here.
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By assumption on the matrix Q, both the matrix QΣ−1
Z QT and the matrix

QΣ−1
Y QT are diagonal matrices whose entries are the reciprocals of the corre-

sponding eigenvalues. Hence,∫
· · ·
∫

e−
1
2 (Y −X)T QΣ−1

Z QT (Y −X)

log2

detΣY

detΣZ
e−

1
2 (Y −X)T QΣ−1

Z QT (Y −X)+ 1
2 Y T QΣ−1

Y QT Y dY1 · · · dYN

=
∫

· · ·
∫

e
− 1

2
∑N

k=1
(Yk−Xk)2

λZ,k

(
N∑

k=1

(
log2

λY,k

λZ,k

)(
− (Yk − Xk)2

λZ,k
+

Y 2
k

λY,k

))
dY1 · · ·dYN

=
N∑

k=1

(
log2

λY,k

λZ,k

)∫
· · ·
∫

e
− 1

2

∑N
k=1

(Yk−Xk)2

λZ,k

(
− (Yk − Xk)2

λZ,k
+

Y 2
k

λY,k

)
dY1 · · ·dYN . (4.21)

At this point, we bring the determinant term back in, noting that it can be split
according to

1
(
√

2π)N
√

detΣZ

=
N∏

k=1

1√
2π
√

λZ,k

.

With this, in each summand of (4.21), N − 1 of the integrals yield one (since
they are simply over a Gaussian distribution), and only the integral over Yk

remains, yielding

D(N (x, ΣZ )||N (0, ΣY ))

=
N∑

k=1

1√
2π
√

λZ,k

∫
e
−∑N

k=1
(Yk−Xk)2

λZ,k

(
−
(

log2

λY,k

λZ,k

)(
(Yk − Xk)2

λZ,k
− Y 2

k

λY,k

))
dYk

=
N∑

k=1

D(N (Xk, λZ,k)||N (0, λY,k)),

which concludes the proof. �



Chapter 5

Uncoded Transmission In

Networks

This chapter explores some of the significance of uncoded transmission in a net-
work context. Since the separation paradigm does not lead to optimal design
in general, uncoded transmission can “beat capacity” in certain situations; i.e.
it can achieve a better performance than source coding followed by capacity-
approaching codes. Section 5.1 gives a brief introduction to network information
theory, which serves to quote the relevant prior art and to relate the contribu-
tions of this chapter to the known results. Then, in Section 5.2, the results
of Chapter 3 are applied to a single-source broadcast situation where one can
indeed beat capacity in the above sense. New instances of such behavior are
determined.1 Section 5.3 gives an example of a multiple description network
where uncoded transmission performs optimally.

The main part of the chapter, Section 5.4, concerns large Gaussian relay
networks. We determine the capacity of a particular large Gaussian relay net-
work in the limit as the number of relays tends to infinity. The upper bounds
follow from a cut-set argument, and the lower bound follows from an argument
involving uncoded transmission. We prove that in many cases of interest, up-
per and lower bounds coincide in the limit as the number of relays tends to
infinity. Hence, this section gives one more example where the cut-set bound is
achievable, and one more example where uncoded transmission achieves optimal
performance.

To illustrate our findings, we first apply them to a sensor network situation.
The comparison of our results with the CEO problem leads to a new instance
of the fact that the source-channel separation paradigm does not extend to
networks in general. Then, we show how to extend our approach to include
certain ad-hoc wireless networks, which leads to a capacity result: When all
nodes act purely as relays for a single source-destination pair, capacity grows
with the logarithm of the number of nodes.2

1Section 5.2 is taken from [43].
2Section 5.4 is (up to editorial changes) identical to [45].
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5.1 Network Performance Analysis

By means of well-known counterexamples, we pointed out in Chapter 1 that the
separation paradigm does not extend to networks: Systems designed according
to Theorem 1.8 cannot be argued to be optimal in general. This leads to a double
perspective on network performance analysis: On the one hand, one can focus
on the problem of achieving the best possible cost-distortion trade-off, and hence
study the joint source-channel communication problem. On the other hand, one
can focus on systems designed according to the separation theorem. Those will
not generally achieve the best possible cost-distortion trade-off, but they are of
independent interest precisely for their modular structure.

In this sense, both the source-channel and the rate-distortion/capacity per-
spectives are interesting points of view. As we will see, uncoded transmission is
helpful in both cases. In the following subsections, we outline and quote a part
of the prior art. This is needed both to establish the new results presented in
the sequel, as well as to relate them to known results.

In particular, we first outline some known results on network joint source-
channel coding; this is needed for the new results of Sections 5.2 and 5.4.6. Then,
we quote certain known results on the capacity of channel networks, necessary
for Section 5.4. Finally, we outline results on the rate-distortion behavior of
source networks; such a result is needed in Section 5.4.6.

5.1.1 Network joint source-channel coding

As pointed out earlier (Remark 1.9), the network source-channel communica-
tion problem, just like in the point-to-point case, is a matter only of achieving
the right marginal distributions, and the key difficulty is to identify the set of
achievable marginals. In the point-to-point case, this set is characterized by
Theorem 1.4. For the general network situation, the answer is not known.

In the absence of a general theory, and since the combination of rate-
distortion and capacity does not lead to optimal cost-distortion trade-offs, an
intermediate quest is for interesting examples of network joint source-channel
codes; in particular, examples that outperform the separation-based approach.

A well-known case, described in Example 1.3, involves a simple binary
multiple-access scenario with dependent binary sources. Using our results for
the relay channel derived in Section 5.4, we provide in Section 5.4.6 an exam-
ple that is similar in spirit to Example 1.3, but involves Gaussian sources and
channels, and mean-squared error distortion.

Another well-known example of this approach is Example 1.4, i.e., broad-
casting a single Gaussian source to multiple users across AWGN channels. In
the spirit of Chapter 2, this example is extended to sources and channels other
than the Gaussian (Section 5.2). Another extension of Example 1.4 was given
in [85].

The theme of uncoded transmission in networks does not only appear in
these two well-known examples; it has also been investigated in other contexts,
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including Gaussian sources in a particular linear network of Gaussian channels
[32], and binary sources in a simple broadcast network [36].

5.1.2 Capacity of channel networks

Water networks

Consider a network of water pipes. There is one source of water, and one sink
where all the water has to go. Given the structure and the parameters of the
network, what is the maximum source output that can be accommodated by
the network?

This question was studied by Ford and Fulkerson [6]. Their basic example
is illustrated in Figure 5.1. The node labeled s is the source, the node labeled

s t

x

y

1

1

1

1 3

3

Figure 5.1: An example of the max-flow min-cut theorem, quoted from [6].

t is the sink, and the nodes labeled x and y are intermediate nodes. The labels
on the edges are the corresponding flow capacities. A cut separates the network
into two parts, one containing the source, the other containing the sink. The
flow across a cut is just the sum of the capacities of the links that the cut cuts.
One such cut is the dashed line in Figure 5.1. Its flow is 3, since the sum of the
capacities of the edges crossing the cut from the source to the sink is 3. It is
shown in [6] that the maximum flow from the source to the sink (the “max-flow”)
is equal to the minimum flow, minimized over all cuts (the “min-cut”),

max-flow = min-cut,

often referred to as the max-flow min-cut theorem. The dashed cut in Figure 5.1
is a min-cut, as can be verified quickly by inspection, meaning that the capacity
in the example is 3.

Suppose now that there are multiple sources and channels. This introduces a
subtle distinction between the water network and, say, a postal delivery network:
In the former, the goal is simply for the influx of water to disappear through
the sinks. In the latter, it is not enough that a packet from source k arrives
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at some sink. Rather, it has to arrive at a specified destination. Hence, the
latter is not just a trivial extension of max-flow min-cut: It is not sufficient
that the pipes are wide enough; they also have to be in the right place. This
problem was introduced and partially solved in [13]. An algebraic solution
to the same problem has recently been proposed by Koetter and Médard [60,
61]. “Algebraic” here means that the authors define a number of multivariate
polynomials whose coefficients follow from the network topology, and they show
that the zeros of these polynomials constitute the answer to certain capacity
questions. This has been extended in [54].

Channel networks under simplifying assumptions

The true behavior of information in a network, along with its capacity, is un-
known to date. It has already been suggested that information in a network
does not behave like water (see e.g. [13]). If we nevertheless start from the hy-
draulic perspective, then so-called circuit-switched networks (see e.g. [2]) result:
for every source-channel pair, a (set of) pipes is created by putting the knobs
in the right position.

As a next step, information can be constrained to behave like packets in
a postal packet network. This perspective leads to so-called packet-switched
networks (see e.g. [2]). As mentioned above, certain capacity results are known,
see e.g. [60, 61].

With the advent of mobile communication, it was noticed that neither of
these two perspectives is well fit to the wireless scenario. One of the main par-
ticularities of the wireless case is that every node receives the signals from every
other node. This fact can be seen as a source of interference exclusively, a point
of view taken e.g. in [51]. Under this simplifying assumption, the remaining
problem is to schedule the transmissions in the best possible way. The basic
trade-off is between low-power transmissions, which cause little interference but
require the participation of a large number of intermediate nodes (so-called hops)
on the one hand, and long-range transmission causing large interference but re-
quiring few hops on the other hand. For the particular scenario considered in
[51], it was found that as the number of nodes tends to infinity, the low-power,
many-hops extreme of the above trade-off is optimal. For the same physical
setup, but a different traffic scenario and different simplifying assumptions, we
derive a result in Section 5.4.7.

The double temptation of the separation paradigm

It is conceptually and practically appealing to modularize a communication sys-
tem. The point-to-point scenario can be modularized in the sense that source
and channel codes are designed separately. There, the separation theorem guar-
anteed that this modularization comes without loss of optimality.

In the network context, there are two places where such a modularization
could occur: On the one hand, source and channel codes could be designed sepa-
rately. It has been pointed out above that this leads to suboptimal performance
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in general.
On the other hand, the capacity considerations described above have a basic

feature in common: at an intermediate node, the incoming signal is completely
decoded (i.e., the intermediate node gets to know the actual message), and
subsequently re-encoded. This is reminiscent of the separation-based design in
the sense that an intermediate node only needs local knowledge to operate. More
precisely, an intermediate node needs to know the code used by his immediate
neighbor, and the capacity of the link over which he forwards the message, but
may ignore the rest of the network. In the following, we will refer to this loosely
as the modularization principle. It is known that this does not lead to optimal
network designs in general. We discuss this briefly in the next paragraph.

Capacity of channel networks

In extension of Shannon’s definition of capacity in the point-to-point case, the
capacity region of a channel network must be determined by optimizing over all
possible coding schemes, irrespective of complexity and delay. This seems to be
a hard problem. A coding scheme should really be thought of as a code tree
for each terminal. The path through the tree is given by the information that
the terminal wants to transmit as well as by the signals that are received by
the terminal. A recent study along these lines has been presented by Kramer in
[67]. There are no simple expressions for the result of this optimization in gen-
eral, but for certain special cases, answers have been found, and these answers
demonstrate that modularization as outlined above often leads to suboptimal
performance. In the following, we discuss three reasons for this.

• Traffic matrices that are not point-to-point. The desired communi-
cation may not be point-to-point, but (e.g.) broadcast or multiple-access.
As an example, consider the broadcast case: One transmitter sends inde-
pendent information to two receivers, respectively. In line with the stan-
dard literature [3], suppose the two receivers cannot communicate with
each other. Restricting to point-to-point transmission in this case means
to serve only one of the destination nodes in a given frequency band and
time slot. It is explained in [25] that this is suboptimal. Rather, superpo-
sition coding [25] can achieve higher rates (and was shown to be optimal
in the so-called degraded case [22, 35]).

• Relay nodes available. Suppose that the desired communication is
point-to-point, and that there is an otherwise idle node which serves as a
relay for this point-to-point communication. Can this problem be modu-
larized into two point-to-point transmissions, namely source to relay, relay
to destination, without loss of optimality? It is well known that this is not
the case [26]. Rather, in general, the source node’s signal is received both
by the relay and by the destination; thereafter, the relay helps to improve
the destination’s first reception. To make a subtler point, it is implicit in
[26] and was shown explicitly in [38] for a simple Gaussian scenario that
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it is generally suboptimal for the relay to know the message at the end of
the day, even if the channel from the source to the relay is better than the
channel from the source to the destination. This provides strong evidence
against the existence of a modularization principle for general networks.
The main part of this chapter, Section 5.4, concerns large Gaussian relay
networks. We show that as the number of relays tends to infinity, an op-
timal strategy is for the relays to apply uncoded forwarding. In that case,
the relays cannot decode the message.

• Collaboration between the nodes. The wireless network situation
suggests an even more optimistic perspective: the fact that every node
automatically receives signals from every other node can be interpreted
as an opportunity for the nodes to collaborate in achieving their respec-
tive goals. They can be, at the same time, relays for each other and
sources/destinations of communication links. To illustrate this, consider
the Gaussian multiple-access channel (MAC) (see e.g. [3, p. 378]). If the
two terminals at the inputs of the MAC cannot cooperate, the sum of
their respective rates is no larger than 1

2 log2(2P/N). However, if they co-
operate, they can achieve up to 1

2 log2(4P/N), which is sometimes called
the cooperative capacity of the MAC, see [3, p. 452]. A more precise
(and very elegant) result has been found by Willems [111] for the network
illustrated in Figure 5.2. The two transmitting terminals want to send the

M1

M2

M̂1, M̂2

X1

X2

Y

F1

F2

GC12 C21

Terminal 1

Terminal 2

Terminal 3

Channel

Figure 5.2: The three-terminal network studied by Willems in [111].

independent messages M1 and M2, respectively, to terminal 3. Moreover,
terminals 1 and 2 can communicate over links of capacities C12 and C21,
respectively. The capacity region for this network is given in [111]. In the
wireless case, the channels C12 and C21 in Figure 5.2 interfere with each
other as well as with the multi-access channel. The capacity region is not
known for this case. Achievable rates have been found in [23]. Recently,
in view of wireless communications, such networks have received renewed
interest, in particular scenarios that involve fading, see e.g. [70, 94, 95].

A subtler form of such collaboration is available when fading is present.
To keep the argument simple, consider a multi-access situation where the
channel gains change randomly over time but are known throughout the
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network. Then, in each time slot, only the best user transmits. This idea
was first presented by Knopp and Humblet in [59], and further extended in
a wealth of papers, most notably by Hanly, Tse et al. in e.g. [102, 53, 109].

Another form of collaboration occurs in networks with mobile nodes. Here,
a part of the communication distance can be provided by the mobility
of the nodes. However, the probability that one node meets its desired
communication partner itself is small, at least in uniformly random models
of mobility. This can be helped if the node uses many other nodes as
relays: the chance that at least one of those relay nodes meets the desired
destination can be shown to be large for a class of mobility patterns. This
was shown in [50].

The cut-set upper bound on channel network capacity

We outlined certain capacity results for special cases of networks (simple network
topologies, additional constraints on the coding scheme). For general networks
and arbitrary coding schemes, capacity is not known.3 A general upper bound
on the capacity was given in [3, Thm.14.10.1]. We state it as follows: Suppose
there are n nodes in a network. Node k receives Yk and transmits Xk. Denote
the rate at which node i sends to node j by Rij . The nodes are split into two
subsets, denoted by S and Sc. Using the shorthand X(S) def

= {Xk}k∈S , Theorem
14.10.1 of [3] can be stated as follows:

Theorem 5.1 (cut-set bound [3]) If the rates {Rij} are achievable, then
there exists a joint density p(x1, . . . , xn) (satisfying the channel network input
constraints) such that

∑
i∈S,j∈Sc

Rij ≤ I
(
X(S); Y (Sc)

∣∣∣ X(Sc)
)

(5.1)

for all subsets S of the network.

Incidentally, this upper bound takes a form that is very much reminiscent
of “max-flow min-cut”: the set S characterizes the cut; the bound then says
that the sum of the rates across the cut cannot be larger than the capacity of
the cut. However, in contrast to the max-flow min-cut theorem of [6] (see the
discussion at the beginning of this section), the bound of Theorem 5.1 it is not
generally achievable; on the contrary, it is quite loose in many cases.

In order to exploit this theorem to its limit, one has to fix a joint distribu-
tion p(x1, . . . , xn) and calculate the mutual information for each cut through
the network. This exercise must be repeated for every choice of p(x1, . . . , xn).
Clearly, it is not generally simple to find the best bound.

Instead, it is possible to weaken the cut-set bound. This yields an upper
bound which is easier to compute (and, in fact, also more easily proved).

3See also the explanations in Section I of [67].
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Corollary 5.2 (weak cut-set bound) For any subset S of the network,∑
i∈S,j∈Sc

Rij ≤ max
p

X(S)
I
(
X(S); Y (Sc)

∣∣∣ X(Sc)
)

. (5.2)

Proof. While this corollary follows directly from Theorem 5.1, there is also a very
simple way of proving it directly, namely by a “genie argument.” To see this,
suppose that all the terminals on the left of the cut can cooperate arbitrarily, and
all the terminals on the right can cooperate arbitrarily. The resulting system
cannot have smaller capacity than the original one simply because the original
one is one way to implement the arbitrary cooperation. Hence, if we maximize
the rate in the resulting system, this must lead to an upper bound on the rates
in the original system. However, the resulting system is simply a point-to-point
(vector) channel whose capacity is given by

max
p

X(S)
I
(
X(S); Y (Sc)

∣∣∣ X(Sc)
)

. (5.3)

�

Remark 5.1 (feedback) The bound of Corollary 5.2 applies also to the case
where feedback is available, at least as long as conditional distribution of Y (Sc)

given X(S) is memoryless. This follows directly from the proof: the network
capacity is upper bounded by the capacity of a point-to-point channel, and feed-
back cannot increase the capacity of a memoryless point-to-point channel ([99];
see also e.g. [3, p. 213]).— While this is true for the upper bound given in
Corollary 5.2, recall that feedback can increase the capacity of even a memory-
less network, which was shown for the multi-access channel in [34], and for the
broadcast channel in [30].

This last formulation gives a simple means of finding upper bounds on the
capacity of a communication network: Choose a subset S of the network, and
maximize the mutual information across the cut; the sum of the rates across the
cut must be smaller. Note that this is weaker than the cut-set bound (Theorem
5.1) because we maximize for each cut separately, rather than allowing only for
one joint distribution p(x1, . . . , xn) for all cuts. However, if the set S is cleverly
chosen, this may already give an interesting upper bound.

Note that the general bound, Theorem 5.1, is found by superimposing
bounds of the type of Corollary 5.2. While the proof is technically somewhat
more involved, even Theorem 5.1 remains in essence a two-terminal bound, and
consequently fails to capture the true multi-terminal nature of the underlying
system. For this reason, the general bound must be expected to be loose in
general.

5.1.3 Rate-distortion behavior of source networks

The paradigmatic and fatal first problem involving a source network is illus-
trated in Figure 5.3. The two sources are to be represented by codewords of
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Figure 5.3: A basic source network problem.

rates R1 and R2 bits per source sample, respectively. The goal is to determine
the set of rate pairs (R1, R2) such that the decoder can reconstruct source 1
at distortion D1 and source 2 at distortion D2. The answer to this problem is
not known in general. The best known outer and inner bounds can be found
e.g. in [17], and they do not coincide in general. Nevertheless, the answer to
the problem of Figure 5.3 is known for a number of special cases: The case
of perfect reconstruction has been solved by Slepian and Wolf in [100]. Other
special cases include the situation when R1 → ∞ (or R2 → ∞), which is called
the Wyner-Ziv problem [113] and was discussed above in Section 1.6.3; the case
when D1 = 0 (or D2 = 0), see [58]; and the case when one random variable has
to be reconstructed perfectly [20]. The Gaussian case where only one source
is reconstructed (but both have to be encoded, using rates R1 and R2, respec-
tively) was treated in [78].

In Section 5.4.6, we will encounter a close relative of the problem illustrated
in Figure 5.3, the so-called CEO problem. For that case, asymptotic results (as
the number of sources tends to infinity) are known.

5.2 Single-source Broadcast Networks

The Gaussian single-source broadcast example was briefly discussed in Sec-
tion 1.6 (Example 1.4). It is a paradigmatic illustration of the failure of the
separation-based design in networks. In this section, we revisit this example
in detail and extend it using the results on uncoded transmission that were
presented in Chapter 2.

Example 5.1 (single-source Gaussian broadcast) As in Example 1.4, let
the source S be iid Gaussian of zero mean and variance P , and consider a
Gaussian broadcast channel with two users, as introduced in [25] and illustrated
in Fig. 5.4. The noises Z1 and Z2 are zero-mean and Gaussian of variances σ2

1

and σ2
2, respectively, and we assume that σ2

1 < σ2
2 .

Consider first the performance of a separation-based communication system
design that uses capacity-achieving codes on the broadcast channel. The broad-
cast channel is degraded according to [22], and its capacity region is known.
Moreover, it is known that in this special case, user 1 (at the end of the better
channel) can also decode the codeword destined to user 2. As a consequence
of this fact, the problem of common information [3, p. 421], i.e., information
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Figure 5.4: Single-source Gaussian broadcast.

destined to both users, is solved in the degraded case: it is simply the codeword
destined to user 2. Hence, the largest possible common rate to both users is R2,
on top of which user 1 gets a rate R1, where R1 and R2 are in the capacity
region of the considered Gaussian broadcast channel, found by Bergmans [22]
and Gallager [35], see e.g. [3, p. 380]: (R1, R2) is in the capacity region if it
satisfies

R1 ≤ 1
2

log2

(
1 +

αP

σ2
1

)
(5.4)

R2 ≤ 1
2

log2

(
1 +

(1 − α)P
αP + σ2

2

)
, (5.5)

for some 0 ≤ α ≤ 1.
Hence, the best possible distortions we can hope for are D1 = DN (R1 + R2)

for user 1 and D2 = DN (R2) for user 2, where DN (·) denotes the distortion-
rate function of the Gaussian source with respect to mean-squared error, see e.g.
[3, p. 346].

This performance is indeed achievable by successive refinement source coding
[63, 64, 65, 33, 86]. Here, a source is described (coarsely) at rate R2, and refined
at rate R1. In general, it is not possible to choose the source code such that both
the coarse description as well as the its combination with the refinement are
rate-distortion optimal. However, for the Gaussian source and mean-squared
error, this is possible (and it has recently been established that this is “nearly”
true for all sources [72]). Hence, the separation-based communication system
design can achieve D1 = DN (R1 + R2) for user 1 and D2 = DN (R2) for user
2, where R1 and R2 satisfy (5.4) and (5.4), respectively, for some 0 ≤ α ≤ 1.
The region of corresponding distortion points is illustrated by the shaded area in
Figure 5.5.

On the other hand, it is immediately clear from Example 2.2 that uncoded
transmission (or more precisely, a single-letter code) achieves optimal perfor-
mance. More precisely, consider the system illustrated by Figure 5.6, and take
the single-letter “decoders” to be β1 = P/(P + σ2

1) and β2 = P/P + σ2
2), re-

spectively. It is clear that this achieves optimal single-user performance on each
channel individually as if the other was not there, i.e., ∆u,1 = Pσ2

1/(P + σ2
1)
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Figure 5.5: The distortion achievable by uncoded transmission (circle) versus the
distortion region achievable by a transmission scheme based on the separation
principle for Example 5.1. Parameters are P = 1, σ2

1 = 0.1 and σ2
2 = 0.2.

and ∆u,2 = Pσ2
2/(P +σ2

2). This is illustrated in Fig. 5.5 for a particular choice
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Figure 5.6: Uncoded transmission for the single-source Gaussian broadcast prob-
lem.

of the parameters. We observe that the distortion pair achieved by uncoded
transmission lies strictly outside the distortion region for the separation-based
approach that was described above.

In extension of the results on uncoded transmission of Chapter 2, we defined
a certain universality in Section 3.4. One explanation of the superior perfor-
mance of uncoded transmission in the Gaussian single-source broadcast scenario
is precisely this universality: Uncoded transmission is optimal no matter what
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the variances of the branches of the Gaussian broadcast channel (as in Figure
5.4) are. Hence, we argue in this section that the superior performance of un-
coded transmission (as illustrated by Figure 5.5) is not primarily due to the fact
that all involved statistics are Gaussian, but due to the fact that all involved
measures are matched in the optimal way.

To make this point more explicit, we now formulate a slightly more general
result on single-source broadcast. Consider the single-source broadcast network
depicted in Figure 5.7: one source is transmitted across a broadcast channel
to various destinations. The broadcast channel is specified by a conditional
distribution satisfying

p(y1, y2, . . . , yK |x) = p(y1|x)p(y2|x) · · · p(yK |x), (5.6)

and K potentially different input cost functions ρ1(x), ρ2(x), . . . , ρK(x). The
goal of destination k is to determine an estimate Ŝk of S in such a way as to
minimize Edk(S, Ŝk). Note that our problem allows potentially for a different
distortion measure for each destination.

Source

Destination 1

Destination 2

Destination K

Channel 1

Channel 2

Channel K

S X
F

G1

G2

GK

Ŝ1

Ŝ2

ŜK

Figure 5.7: The considered single-source broadcast network.

With this, our problem can be stated as follows: For a single-source broad-
cast problem specified by a broadcast source (pS , d1, . . . , dK) and a broad-
cast channel (pY1,... ,YK |X , ρ), determine the set of optimal cost-distortion tuples
(Γ, ∆1, . . . , ∆K). This is yet an unsolved problem. However, a partial answer
can be given easily in the following sense.

Lemma 5.3 If for each k ∈ {1, . . . , K}, (Γk, ∆k) is an optimal cost-distortion
tradeoff for the source (pS , dk) and the channel (pYk|X , ρk), then the cost-
distortion tuple (Γ1, . . . , ΓK , ∆1, . . . , ∆K) is optimal for the single-source broad-
cast problem.

Proof. If it was possible to outperform this scheme, then (Γ, ∆k) could not
be an optimal cost-distortion trade-off for the corresponding point-to-point
problem. Hence, (Γ1, . . . , ΓK , ∆1, . . . , ∆K) is optimal. �
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Remark 5.2 The reason why we call Lemma 5.3 a partial answer is that in
many single-source broadcast scenarios, cost-distortion tuples as good as the
ones described by Lemma 5.3 are not achievable. For those cases, the best cost-
distortion tuples are unknown to date.

The separation theorem does not directly permit one to find instances that
satisfy Lemma 5.3. This is due to the fact that there is only one encoder in the
scenario, rather than one per channel. This cannot easily be taken into account
by the separation theorem.

In contrast to this, the results about uncoded transmission for the point-to-
point case established in Chapter 2 can be used to identify examples of single-
source broadcast problems that satisfy the conditions in Lemma 5.3.

Theorem 5.4 For the single-source broadcast network shown in Figure 5.7, the
condition of Lemma 5.3 is satisfied if, for k = 1, . . . , K,

ρk(x) = D(pYk|X(·|x)||pYk
(·)) (5.7)

dk(s, ŝk) = − log2 p(s|ŝk). (5.8)

Proof. The result follows directly from Theorem 2.5. �

Interesting questions in extension of Theorem 5.4 include: Under what con-
ditions are the functions ρk the same, for k = 1, . . . , K? Similarly, under what
conditions are the functions dk the same, for k = 1, . . . , K? These questions
are left as future work, but note that in the Gaussian example (Example 5.1),
they are indeed all the same.

5.3 Multiple Description Networks

The multiple-description source coding problem has been solved only for the
Gaussian case to date. In extension of this solution, a separation theorem was
established in Theorem 1.12 for the communication scenario of Figure 1.12,
hence for that particular scenario, the best possible cost-distortion trade-offs
are known.

In the spirit of Chapter 2 we can ask: Are there instances where a simple
joint source-channel code achieves those optimal cost-distortion trade-offs? For
the special scenario where the two channels in Figure 1.12 are additive white
Gaussian noise channels, it turns out that the answer is yes:

Example 5.2 (Gaussian multiple description coding) An iid Gaussian
source of variance σ2

S is to be transmitted across two AWGN noise variances
σ2

1 and σ2
2, respectively, as illustrated in Figure 5.8. To keep notation simple,

we assume that both channels have power constraint σ2
S, equal to the source

variance. The example can, however, easily be extended to the case where the
two channels have different power constraints P1 and P2.
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Figure 5.8: The multiple description communication scenario.

One strategy is to encode the source into two streams using multiple descrip-
tion source coding [80], and to transmit these two descriptions (without further
losses) across the two AWGN channels. The achievable distortions have been
determined in [80]. We have argued in Theorem 1.12 that this leads to optimal
performance.

Let us now verify that uncoded transmission achieves a point on the boundary
of the distortion region. The two distortions achieved by uncoded transmission
on the two channels separately have been determined earlier in this thesis:

∆1 =
σ2

Sσ2
1

σ2
S + σ2

1

and ∆2 =
σ2

Sσ2
2

σ2
S + σ2

2

.

In order to obtain an estimate based on the outputs of both channels, let us
allow for optimal decoding of block length one. Then, we find

∆0 =
σ2

Sσ2
1σ2

2

σ2
Sσ2

1 + σ2
Sσ2

2 + σ2
1σ2

2

.

The point (∆0, ∆1, ∆2) lies indeed on the boundary of the distortion region cor-
responding to the rates R1 = 1

2 log2(1 + σ2
S/σ2

1) and R2 = 1
2 log2(1 + σ2

S/σ2
2), as

a comparison with [80, Thm. 1] reveals.

It would be interesting to extend this example to a joint source-channel
coding theory of multiple description, just like the examples of Section 2.1 were
extended in Chapters 2 and 3. However, since the multiple-description source
coding problem is yet unsolved for all cases but the Gaussian, we do not know
at present how to generalize Example 5.2.

5.4 Gaussian Relay Networks

The relay channel (both with a single relay and with multiple relays) was in-
troduced by van der Meulen in his Ph.D. thesis [103] and in [104]. Key results
for the single-relay channel have been found by Cover and El Gamal [26]. Their
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capacity results are restricted to the so-called degraded relay channel.4 This
restriction is considerably stronger than the common notion of degradedness in
the case of broadcast channels introduced in [22]. For example, it is considered
to be a weak model for the wireless relay channel. In extension of the single-relay
channel, various relay network models have been studied in the literature, some
of the most recent examples being [93, 52, 39, 68]. However, capacity results are
rare. The simple Gaussian relay network studied in this section is illustrated in
Figure 5.9. The corresponding single-relay channel, i.e., the system of Figure
5.9 with M = 1, is not a degraded relay channel according to [26]. Its capacity
is unknown to date. In this section, we derive upper and lower bounds to the

X
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X2

XM

α0

α1

α2

αM

δ1

δ2

δM

f1

f2

fM

Y

Y1

Y2

YM

W

W1

W2

WM

Figure 5.9: The considered Gaussian relay network.

capacity of the system depicted in Figure 5.9. While capacity is not known
for any finite M , we show in this section that for many cases of interest, our
upper and lower bounds coincide in the limit as the number of relays M tends
to infinity, yielding an asymptotic capacity result.

After precisely defining the considered relay network in Section 5.4.1, we
derive two upper bounds to the capacity in Section 5.4.2. These bounds can
be seen as special cases of the cut-set bound [3, Thm. 14.10.1]. They can
also be understood as the capacities corresponding to two idealizations of the
considered system: the first upper bound is the capacity of a multi-antenna
system with one transmit and M + 1 receive antennas, and the second upper
bound is the capacity of a multi-antenna system with M + 1 transmit and one
receive antenna.

4To our knowledge, there are only two other non-trivial capacity results: for the semi-

deterministic relay channel [31], and for the case where the link from the relay to the desti-

nation is a separate point-to-point channel of fixed capacity C [116].



116 Chapter 5.

In Section 5.4.3, we determine a lower bound to the capacity of the relay
network of Figure 5.9. More precisely, we analyze a particular communication
strategy for the relay channel in which the relays use uncoded forwarding as a
strategy. This should be expected to be suboptimal in general.

Then, in Section 5.4.4, we show that upper and lower bounds coincide as
the number of relays M tends to infinity, at least under certain conditions. We
illustrate these conditions by a number of examples.

In Section 5.4.5, the results of the previous sections are applied to sensor
networks. In such a network, the relevant trade-off is between the power used
by the sensors, and the fidelity (or distortion) at which the interested party can
reconstruct the object of interest. While in general, the optimal such trade-off
is not known to date, we show that for one particular sensor network situation,
the arguments developed in this section lead to a definite result.

Section 5.4.6 provides a new example of the fact that the source-channel
separation paradigm does not extend to networks. This example follows from
the comparison of the result of Section 5.4.5 with the CEO problem [21, 110].

In Section 5.4.7, the results of the previous sections are extended to wireless
ad-hoc networks, operated in relay mode. To this end, the simple relay network
model considered in this earlier sections is slightly extended, and it is shown
that our results permit to bound capacity to within a factor of two. A slightly
different interpretation of this result was discussed in [46].

5.4.1 Definitions and notations

There is one input to our network, denoted by X . This input is complex-valued
and has to satisfy the power constraint E|X |2 ≤ P . The M relays are the square
boxes in Figure 5.9. At time n, relay k observes a noisy version of the input
X [n] at time n,

Yk[n] = αkX [n] + Wk[n], (5.9)

where {Wk[n]} is a sequence (in n, for n = 1, 2, 3, . . . ) of independent and identi-
cally distributed (iid) circularly symmetric complex Gaussian random variables
of mean zero and variance N . Moreover, we also assume that Wk and Wl are
independent for all k �= l. The assumption that all noise processes are of the
same variance is made without loss of generality: different noise variances can
be taken care of by appropriately adjusting the coefficients αk. Using the se-
quence of observations {Yk[n]}, the relay k produces suitable outputs5 {Xk[n]}
that must satisfy two constraints: First, they must be causal, that is

Xk[n] = fk(Yk[n − 1], Yk[n − 2], . . . , Yk[1]). (5.10)

5In [32], Elias studies a similar Gaussian network topology. The difference lies precisely in

the fact that we allow for arbitrary recoding functions, while the analysis in [32] is restricted

to uncoded forwarding.
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Second, they must satisfy a power constraint. We consider power constraints of
the form

M∑
k=1

E|Xk|2 ≤ c(M). (5.11)

This means that our model allows power allocation among the relays. The
destination observes the sum of the signals transmitted by the source and the
relays, and additive white noise,

Y [n] = α0X [n] +
M∑

k=1

δkXk[n] + W [n], (5.12)

where W [n] is a sequence of iid circularly symmetric complex Gaussian random
variables of mean zero and variance N .

The significance and values of the coefficients αk and δk is left open at
present. We assume these coefficients to be known throughout the network for
the scope of the present chapter. We also assume that α0 is real, which is made
without loss of generality: if it is not real, we can simply change the phase of
X , which is equivalent to changing the phases of the transmitted signals Xk, for
all k, by the same amount. The coefficients αk and δk may represent the path
loss of the signal and hence be related to the geometry of the network as

αk =
1

dr
0k

, and δk =
1

dr
kd

, (5.13)

for k = 1, . . . , M , where d0k is the distance from the source to relay k and dkd is
the distance from relay k to the destination. They can as well represent fading
effects and hence be random variables.

For notational convenience, we define the following functions:

a(M) =
M∑

k=0

|αk|2 (5.14)

d(M) = α2
0 +

M∑
k=1

|δk|2 (5.15)

b(M) =
M∑

k=1

|αk|2 |αk|2P + N

|δk|2 . (5.16)

Recall that the function c(M) denotes the total available relay power. All of
our results can be stated in terms of these auxiliary functions.

5.4.2 Upper bounds to capacity

An upper bound to the capacity of the network of Figure 5.9 can be found from
the weak cut-set bound, Corollary 5.2. From Figure 5.9, it is clear that our
relay network model consists of a broadcast section and a multi-access section.
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Hence, there are two natural cuts to consider first, the “broadcast cut” and the
“multi-access cut.” One way to visualize this is suggested in Figure 5.10: The
black dots represent the terminals, i.e., the source, the destination, and the M

relay nodes. The dotted lines suggest the connections that determine the bound
resulting from the broadcast cut.

Source Destination

Relay 1

Relay k

Relay M

Broadcast Cut Multi-access Cut

Figure 5.10: Two natural cuts through the considered Gaussian relay network.

For the broadcast cut, the mutual information expression to be maximized
is

I(X ; Y, Y1, . . . YM |X1, . . .XM ), (5.17)

subject to the constraints

E|X |2 ≤ P and
M∑

k=1

E|Xk|2 ≤ c(M). (5.18)

Under the assumption that the receiver knows the coefficients δk, we find

I(X ; Y, Y1, . . . YM |X1, . . . XM ) = I(X ; Ỹ , Y1, . . . YM ), (5.19)

where

Ỹ = Y −
M∑

k=1

δkXk. (5.20)
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Hence, whether or not the receiver knows the coefficients δk, the capacity C of
the relay network can be bounded by

C ≤ CBC
def
= max

pX :EX2≤P
I(X ; Ỹ , Y1, . . . YM ). (5.21)

The right hand side can be evaluated using the results about Gaussian vector
channels (see e.g. [101]), i.e., channels of the form Y = AX + W , where Y ,
X and W are vectors and A is generally a matrix. For the broadcast cut, the
matrix A is simply the vector (α0, α1, . . . αM ). It has only one singular value,
namely a(M). Hence, CBC is found to be

CBC = log2

(
1 +

P

N
a(M)

)
. (5.22)

We comment on the tightness of this bound, which was essentially found under
the additional hypothesis that the relays do not send anything, but are just the
multiple antennae of the destination. However, under the hypothesis that the
relays do not send anything, it is easy to find the true capacity from the source
to the destination: log2(1 + α2

0P/N). Hence, the bound should not be expected
to be tight.

The second cut for which we evaluate Corollary 5.2 is the multi-access cut,
as drawn in Figure 5.10. This gives the bound

C ≤ CMAC
def
= max I(X, X1, . . .XM ; Y ). (5.23)

where the maximization is over all p(x, x1, . . . xM ) that satisfy

E|X |2 ≤ P and
M∑

k=1

E|Xk|2 ≤ c(M). (5.24)

To obtain a simple expression for the bound, we relax the power constraint
to be E|X |2 +

∑M
k=1 E|Xk|2 ≤ P + c(M), which can only make the bound

looser. Then, we can again use the results from [101] about Gaussian vector
channels. Now, the matrix A is the vector (α0, δ1, . . . , δM ), with one singular
value, namely d(M). With this, we find

CMAC ≤ log2

(
1 +

P + c(M)
N

d(M)
)

. (5.25)

The capacity must be smaller than either one of these two bounds. Hence,
we have proved the following proposition.

Proposition 5.5 The capacity of the Gaussian relay network of Figure 5.9 is
upper bounded by

C ≤ log2

(
1 +

min {Pa(M), (P + c(M))d(M)}
N

)
. (5.26)

Tighter bounds can be obtained by evaluating [3, Thm. 14.10.1]. For the
scope of this chapter, however, we will use only the upper bound given by
Proposition 5.5.
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5.4.3 Lower bound to capacity

Lower bounds to capacity are found by analyzing transmission strategies. Such
transmission strategies are usually set up in the following way: A code of 2nR

codewords of length n is proposed, and it is shown that the error probability
goes to zero as n → ∞. This means that the capacity of the considered channel
is at least C ≥ R. The art consists in cleverly choosing the 2nR codewords.

However, whenever the separation theorem applies (e.g., for ergodic point-
to-point channels), there is an alternative approach that also leads to lower
bounds on capacity. We select any source (with any distortion measure). Then,
we propose a transmission strategy for that source across the channel at hand
(i.e., a joint source-channel code). Finally we evaluate the performance of that
communication strategy; that is, we compute the achieved distortion ∆. By the
separation theorem [98, Thm. 21],

R(∆) ≤ C, (5.27)

where R(·) denotes the rate-distortion function of the source with respect to
the selected distortion measure (see e.g. [3, Thm. 13.2.1]). In other words, the
capacity of the channel cannot be smaller than the rate necessary to encode the
source at distortion ∆. Clearly, the art consists in selecting the right source
with the right distortion measure to get the best lower bound.6 The drawback
of this approach is that we have to know the rate-distortion function of that
source with respect to the selected distortion measure, or at least a lower bound
to this function.

In this section, we use this approach to determine a lower bound to the
capacity of the relay network. We start by fixing the functions according to
which the relays operate. These functions must be chosen to satisfy the power
and causality constraints. Once they are fixed, the relay network is turned
into a point-to-point channel. Clearly, the capacity C′ of this point-to-point
channel cannot be larger than the capacity C of the relay network. The goal is
to determine the capacity C′ of this point-to-point channel.

In particular, for the Gaussian relay network of Figure 5.9, we propose the
following joint source-channel coding problem: Suppose that an iid Gaussian
source of variance P is transmitted without coding on the broadcast section
of the relay channel. The relays simply delay the input by one time unit to
satisfy causality, and scale it (up or down) to their power level. This coding
technique is certainly suboptimal, but its complexity is the absolute minimum.
Moreover, we will see later that this coding technique is sufficient to achieve the
right scaling behavior in the number of relays M for a large class of Gaussian
relay networks of the type depicted in Figure 5.9.

The goal is therefore to determine the distortion D1 achieved by the sug-
gested coding scheme when the source is zero-mean iid Gaussian of variance P .

6Note that with this insight, it becomes very simple to prove a lower bound to the capacity

of the standard additive white Gaussian noise channel, i.e., Figure 5.9 with M = 0. See also

Example 2.2.
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The input of relay k at time n is

Yk[n] = αkX [n] + Wk[n]. (5.28)

The strategy of the relay is simply to scale this received value to meet its own
power constraint Pk, and to transmit this result onwards. Hence, the output of
relay k at time n + 1 is

Xk[n + 1] = eiθk

√
Pk

|αk|2P + N
Yk[n], (5.29)

where θk is an appropriately chosen phase. There is a power allocation Pk that
results in the following distortion:

Proposition 5.6 The achievable distortion for the transmission of a Gaussian
source across the Gaussian relay network of Figure 5.9 with M relays and power
constraints E|X |2 ≤ P and

∑M
k=1 E|Xk|2 ≤ c(M) is not larger than D1, where

D1 is given by

D1 = P
Nc(M)a(M)−

Pc(M)a2(M) + (N − 2α2
0P )c(M)a(M)+

−α2
0Nc(M)+

+2α0P
√

c(M)a(M)
√

b(M) + (α3
0P − α2

0N)c(M)−
+α2

0P + N

−2α4
0P
√

c(M)b(M) + PN(α2
0P + N)b(M)

. (5.30)

Proof. The proof is given in Appendix 5.A.
As discussed above, this implies a lower bound to capacity through the

separation theorem. For the case at hand, the following statement can be made:

Corollary 5.7 The capacity of the Gaussian relay network of Figure 5.9 with
M relays and power constraints E|X |2 ≤ P and

∑M
k=1 E|Xk|2 ≤ c(M) is at

least

C ≥ R1
def
= log2

P

D1
, (5.31)

with D1 given by Equation (5.30).

Proof. By the separation theorem [98, Thm. 21], any ergodic point-to-point
communication system satisfies R(∆) ≤ C, where ∆ is the distortion achieved
by that communication system. �

The above transmission strategy is very simple, yet it is a genuine network
coding strategy in a sense that we now clarify. In the first step (the broadcasting
from the source node to the relays), a “code” is used that permits every relay
to decode at its particular level of fidelity, or more precisely, the relays do
not decode at all. This is clearly related to the fact that when one Gaussian
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source is sent across a Gaussian broadcast channel to multiple destinations,
then uncoded transmission is an optimal strategy and actually outperforms any
approach based on capacity-achieving codes. Extensions of this behavior were
presented in [44]. In the second step (the multi-accessing from the relays to
the destination), cooperative transmission is used to boost transmit power: the
signals transmitted by the relays are all correlated.

5.4.4 Scaling behavior and asymptotic capacity

In this section, we compare the upper bounds derived in Section 5.4.2 to the
lower bound found in Section 5.4.3. We split the main result of this section into
two parts. In Theorem 5.8 below, we characterize the asymptotic difference
between the lower bound R1 and the upper bound that follows from the broad-
cast cut, CBC . Thereafter, in Theorem 5.10, we characterize the asymptotic
difference between R1 and the upper bound that follows from the multi-access
cut, CMAC .

Theorem 5.8 (broadcast cut) The capacity C of the Gaussian relay network
of Figure 5.9 subject to the power constraints E|X |2 ≤ P and

∑M
k=1 E|Xk|2 ≤

c(M) is bounded between CBC ≥ C ≥ R1. Since a(M) is a nondecreasing
function of M , limM→∞ 1/a(M) = θa < ∞. If moreover

lim
M→∞

b(M)
a(M)c(M)

= τ < ∞, (5.32)

then

lim
M→∞

(CBC − R1) = γBC . (5.33)

The constant γBC takes the following values:

(i) If θa = 0, then

γBC = log2

(
1 +

α2
0P + N

N
τ

)
, (5.34)

which means that when τ = 0, then γBC = 0.

(ii) In general,

γBC = log2

(
1 + α2

0P+N
N τ+

1 + N−2α2
0P

P θa + 2α0

√
θaτ +

(
α3

0 − α2
0

N
P

)
θ2

a−
+N

P θa − α2
0

N
P θ2

a + α2
0P+N

P θaτ

−2α4
0θa

√
θaτ + α2

0P+N

P θaτ

)
. (5.35)

Proof. The proof is given in Appendix 5.A.
Theorem 5.8 gives general conditions for the convergence of CBC and R1.

The following is a simple concrete illustration.
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Example 5.3 (no attenuation, increasing total relay power) To illus-
trate the conditions of Theorem 5.8, we now study the concrete example where
|αk| = |δk| = 1 for all k, and the power constraint on the relays is c(M) = MuQ

for some constant Q and some u > 0. Hence, a(M) = M + 1 and

b(M) =
M∑

k=1

|αk|2 |αk|2P + N

|δk|2 = M(P + N). (5.36)

Substituting, we find (using a(M) ≥ M)

lim
M→∞

b(M)
a(M)c(M)

≤ lim
M→∞

M(P + N)
Mu+1Q

= lim
M→∞

P + N

MuQ
= 0, (5.37)

since u > 0 by assumption. Hence, in Theorem 5.8, we have θ = τ = 0, which
yields

lim
M→∞

(CBC − R1) = 0, (5.38)

which means that the capacity of this network behaves asymptotically like

CBC = log2

(
1 +

(M + 1)P
N

)
. (5.39)

In this example, Theorem 5.8 is asymptotically tight, i.e., it leads to a capacity
result.

Example 5.3 is the simplest possible (non-trivial) case of a network according
to Figure 5.9. In spite of this fact, the example generalizes in a straightforward
manner to cover a large class of interesting cases: Whenever the total avail-
able power increases and the fading coefficients are lower and upper bounded
(strictly larger than zero, strictly smaller than infinity), then Theorem 5.8 yields
a capacity result. We formulate this in the shape of the following corollary:

Corollary 5.9 (bounded fading coefficients) In the setup of Theorem 5.8,
suppose that the fading coefficients are strictly bounded, 0 < |αk|, |δk| < ∞, for
all k, and that the power constraint is c(M) = MuQ, with u > 0 and Q some
constant. Then,

lim
M→∞

(CBC − R1) = 0, (5.40)

i.e., in this case, the capacity behaves asymptotically like

CBC = log2

(
1 +

a(M)P
N

)
. (5.41)

Proof. Since the fading coefficients are strictly bounded, we can upper bound
b(M) ≤ Mb2

max and lower bound a(M) ≥ Ma2
min, and hence,

b(M)
a(M)c(M)

≤ Mb2
max

Ma2
minMuQ

=
b2
max

a2
minQ

1
Mu

. (5.42)



124 Chapter 5.

Since u > 0 by assumption, this implies that in Theorem 5.8, τ = 0. By the
same token,

1
a(M)

≤ 1
Ma2

min

, (5.43)

and hence, θa = 0. But then, Theorem 5.8 asserts the claim. �

This corollary also shows that there is a number of very natural scenarios for
which the strategy of uncoded forwarding used to obtain Proposition 5.6 is an
optimal strategy (asymptotically as M tends to infinity). To make a stronger
point, suppose now that only point-to-point coding is used, as e.g. in [51].
Then, it is easy to see that the achievable rate remains constant, independent
of M : The bottleneck is the source node; under the point-to-point constraint,
it can only transmit to one relay node at a time. Hence, for the Gaussian relay
network as considered here, network coding significantly changes the asymptotic
behavior. This conclusion is certainly of interest in the interpretation of the
result of [51]: it suggests the possibility that the asymptotic behavior of capacity
does change when network coding rather than only point-to-point coding is
allowed.

We now proceed to the examination of the asymptotic difference between
the upper bound stemming from the multi-access cut (Equation (5.25)) and
the achievable rate R1. The main result is the following theorem, which is the
analog of Theorem 5.8:

Theorem 5.10 (multi-access cut) The capacity C of the Gaussian relay
network of Figure 5.9 subject to the power constraints E|X |2 ≤ P and∑M

k=1 E|Xk|2 ≤ c(M) is bounded between CMAC ≥ C ≥ R1. Since a(M), c(M)
and d(M) are nondecreasing functions of M , limM→∞ 1/a(M) = θa < ∞,
limM→∞ 1/c(M) = θc < ∞, and limM→∞ 1/d(M) = θd < ∞ If moreover

lim
M→∞

c(M)d(M)
a(M)

= τ1 < ∞, and lim
M→∞

b(M)d(M)
a2(M)

= τ2 < ∞, (5.44)

then

lim
M→∞

(CMAC − R1) = γMAC . (5.45)

The constant γMAC takes the following values:

(i) If θa = θd = 0, then

γMAC = log2

(
τ1θc +

τ1

P
+

(α2
0P + N) (1 + Pθc)

PN
τ2

)
. (5.46)

Note that the bound is tight if the argument of the logarithm is 1.
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(ii) In general,

γMAC =

log2

(
Nτ1 − Nα2

0τ1θa + PNτ1θc − PNα2
0τ1θcθa+

PN − 2PNα2
0θa + 2PNα4

0θ
2
a + 2α0PN

√
τ2θcθd−

+N2θa − N2α2
0θ

2
a + (α2

0P + N) (τ2 + Pτ2θc + Nτ2θcθd)
−2α3

0N
√

τ2θcθdθa + N2θa − α2
0N

2θ2
a + (α2

0PN + N2)τ2θcθd

)
.

(5.47)

Proof. The proof is given in Appendix 5.A.

Example 5.4 Consider again the setup of Example 1. Theorem 5.10 is of no
value here: bounding a(M) ≤ 2M , we find

c(M)d(M)
a(M)

≥ Mu+1Q

2M
= Mu Q

2
, (5.48)

which does not converge as M tends to infinity. In other words, the multi-access
cut leads to a very loose upper bound to capacity in this example.

Example 5.5 (no attenuation, constant total relay power) As in Ex-
ample 5.3, suppose that |αk| = |δk| = 1. However, let the power constraint for
the present example be c(M) = Q, where Q is some constant. Like in Example
5.3, a(M) = M + 1 and

b(M) =
M∑

k=1

|αk|2 |αk|2P + N

|δk|2 = M(P + N). (5.49)

First, consider Theorem 5.8. Substituting, we find

lim
M→∞

b(M)
a(M)c(M)

= lim
M→∞

M(P + N)
(M + 1)Q

=
P + N

Q
. (5.50)

Hence, in Theorem 5.8, we have θ = 0, but τ = (P + N)/Q, which yields

lim
M→∞

(CBC − R1) = log2

(
1 +

(P + N)2

NQ

)
. (5.51)

Hence, R1 is asymptotically only a constant additive term away from CBC ; and
thus, it also grows like log M . Since the capacity lies between CBC ≥ C ≥ R1, we
conclude that C grows like log M as well. We also briefly discuss the difference
CBC − R1. It is seen that this difference decreases with Q, but increases with
P . This is due to the fact that for our decoding scheme, the original signal of
power P is an interferer at the destination.

In order to apply Theorem 5.10 to this example, we first have to determine
τ1 and τ2 in (5.44), as follows:

τ1 = lim
M→∞

c(M)d(M)
a(M)

= lim
M→∞

QM

M + 1
= Q, (5.52)
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and

τ2 = lim
M→∞

b(M)d(M)
a2(M)

= lim
M→∞

(P + N)M2

(M + 1)2
= P + N. (5.53)

Since they are both finite, Theorem 5.10 does apply to this example. We evaluate
moreover θa = 0 and θd = 0, and hence, the value of the bound supplied by
Theorem 5.10 is determined by (5.46). With θc = 1/Q, we find

lim
M→∞

(CMAC − R1) = log2

(
1 +

Q

P
+

(α2
0P + N)(P + N)(1 + P/Q)

PN

)
.

(5.54)

This bound is always weaker than (5.51). To verify this, note that in the present
example, the broadcast bound CBC is asymptotically always smaller than the
multi-access bound CMAC , which follows immediately from a comparison of
Equations (5.21) and (5.25),

lim
M→∞

2CMAC−CBC = 1 +
Q

P
. (5.55)

Example 5.6 In this example, we study the scenario where |αk|2 = k and
|δk| = 1. We can bound a0M

2 ≤ a(M) ≤ a1M
2, b0M

3 ≤ b(M) ≤ b1M
3, and

d(M) = M . Moreover, suppose a constant total power c(M) = Q. Then,

b(M)
a(M)c(M)

≥ b0M
3

a1M2Q
, (5.56)

which diverges, and hence, Theorem 5.8 does not apply.
As for Theorem 5.10, we find

c(M)d(M)
a(M)

≤ QM

a0M2
, (5.57)

which tends to zero (and hence, τ1 = 0), and

b(M)d(M)
a2(M)

≤ b1M
3M

a2
0M

4
=

b1

a0
, (5.58)

which converges. This means that in this example, Theorem 5.10 yields a tighter
bound than Theorem 5.8. In fact, plugging into Equation (5.46), we find

lim
M→∞

(CMAC − R1) ≤ log2

(
(α2

0P + N) (1 + P/Q)
PN

τ2

)
. (5.59)

It is also clear from this expression that a capacity result is obtained if it is
possible to slightly alter αk and δk in such a way as to make τ2 = PN

(α2
0P+N)(1+P/Q)

(while keeping all the limits fixed as in this example).
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5.4.5 Application: Gaussian sensor network

The topology of our network model, Figure 5.9, also resembles a particular
sensor network situation: in that case, X is the physical phenomenon to be
measured, Wk are due to the fact that the phenomenon cannot be measured
directly as well as due to measurement noise, and the relays are the sensors
themselves. For the sensor network situation, we take α0 = 0. The goal is for a
central unit to learn about the physical phenomenon X . The sensors communi-
cate to the central unit over a common wireless channel, and their transmitted
powers have to satisfy a sum power constraint. This is clearly a source-channel
communication problem; the relevant trade-off is between the total power of the
sensors and the fidelity at which the central unit can reconstruct X .

The optimal such trade-off is not known to date. Note that the separa-
tion paradigm does not extend to this case: compressing the sources (using the
concepts of Slepian and Wolf [100], and their extension to the case of lossy com-
pression [17]) and transmitting the source codewords using a capacity-achieving
code on the multi-access channel is a suboptimal strategy. A simple illustration
of this can be found in [3, p. 448]. We address this problem below in Section
5.4.6.

The results of this section permit one to determine the optimal trade-off for
one special case, namely when X as well as the noises Wk are Gaussian (and in
the limit as M → ∞). We report our result in the following corollary:

Corollary 5.11 Consider a physical phenomenon characterized by the sequence
of complex-valued random variables {X [n]}. Suppose that X [n] are iid cir-
cular complex Gaussian random variables of variance P . Sensor k measures
Yk[n] = αkX [n] + Wk[n], where Wk[n] is iid circular complex Gaussian noise
of variance N . Sensor k is allowed to get to know the entire sequence {Yk[n]}
before transmitting a sequence {Xk[n]} = fk({Yk[n]}) at power E|Xk|2 ≤ Pk.
There are M sensors, and their total power is constrained to be

M∑
k=1

Pk ≤ MQ. (5.60)

The final destination receives

Y [n] =
M∑

k=1

δkXk[n] + W [n], (5.61)

where W [n] is iid circular complex Gaussian noise of variance N . The final
destination is allowed to get to know the entire sequence {Y [n]} before producing
the sequence of estimates {X̂[n]} = g({Y [n]}). If the conditions of Theorem 5.8
are satisfied with θa = 0 and τ = 0, then (for each n)

lim
M→∞

min
f1,... ,fM ,g

E
∣∣∣X [n] − X̂ [n]

∣∣∣2 =
PN

a(M)P + N
, (5.62)

and the minimum is achieved when the sensors use a simple scaling, Xk[n] =
γkYk[n], and the final destination uses X̂ [n] = γY [n].
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Remark 5.3 The encoding functions fk are much more general here than in the
capacity consideration for the relay channel: there is no causality constraint like
(5.10) in the considered sensor network model. This means that there are more
degrees of freedom in choosing the encoding functions fk in the present scenario.
Nevertheless, our result says that the optimum (asymptotically as M → ∞) can
be achieved, without exploiting these additional degrees of freedom, by simple
causal encoding functions respecting the constraint (5.10). More explicitly, in
this example, the global optimum can be achieved by real-time processing.

Proof. Suppose that the physical phenomenon X [n] itself uses optimal cod-
ing. This is clearly an idealization, and hence leads to a lower bound to the
distortion. For a given source, the achievable end-to-end distortion certainly
cannot be smaller than the rate-distortion function of the source, evaluated at
the capacity upper bound CBC . This is immediate since the multi-antenna ide-
alization of the multiple-relay channel is a simple ergodic point-to-point channel,
hence the separation theorem applies. The distortion for this idealized system
can be calculated as

D ≥ DBC
def
= DN (CBC) =

PN

a(M)P + N
, (5.63)

where DN (·) denotes the distortion-rate function of the iid circularly complex
Gaussian source. An achievable distortion D1 has been found in Proposition
5.6. Now consider the quotient D1/DBC , for which (by substitution)

D1

DBC
= 2CBC−R1 . (5.64)

The convergence of the latter is established in the proof of Theorem 5.8. Hence,
as M tends to infinity, the smallest achievable distortion behaves like the DBC .

�

5.4.6 Application: The CEO problem

The problem studied in Section 5.4.5 resembles the CEO problem, proposed
and solved in [21]. The difference is that the problem of Section 5.4.5 is a joint
source-channel coding problem, while the CEO problem is purely a source cod-
ing problem. For the problem considered in Section 5.4.5, we can compare the
performance of two different modes of operation for the sensors: The first scheme
is when the sensors perform simply uncoded transmission, leading to Corollary
5.11. In the second scheme, the sensors apply the best possible distributed com-
pression, and send their respective codewords across the multi-access channel
using capacity-achieving codes. That is, they apply the source-channel separa-
tion paradigm.

The performance of the first scheme, employing uncoded transmission, has
been analyzed in Corollary 5.11. The coefficients are α0 = 0, and αk = δk = 1,
for k = 1, . . . , M . Hence, a(M) = M and b(M) = M(P + N). From (5.60),
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c(M) = MQ, and hence, θa = 0 and τ = 0. Therefore, the asymptotic behavior
(as M → ∞) of the distortion achieved by the uncoded strategy is found from
Corollary 5.11 as

D =
PN

MP + N
. (5.65)

Recall that this scheme satisfies an additional property of causality and real-time
processing, as described in Corollary 5.11.

To analyze the performance of the second scheme, we use a result from [110].
Let R be the total rate available to encode M correlated sources Y1, Y2, . . . , YM .
The compression must be performed in a distributed fashion: Every source Yk is
encoded separately. A central decoder receives all M codewords, and produces
an estimate X̂(R). In [110], it is shown that the smallest achievable distortion
behaves like E|X − X̂(R)|2 ∼ R−1, in the limit as R → ∞. The full rate-
distortion function has subsequently been determined in [79], confirming the
R−1 behavior for large R. To complete the example, the available rate R has to
be calculated. It is determined by the channel characteristics: The maximum
sum rate R on the additive white Gaussian multi-access channel specified by
(5.60) and (5.61), even if cooperation between the terminals is allowed, is upper
bounded by

R ≤ log2

(
1 +

M2Q

N

)
, (5.66)

which can be inferred from Equation (5.25). Hence, the distortion achieved by
the second scheme behaves at best like

D ∼ 1

log2

(
1 + M2Q

N

) . (5.67)

The comparison of (5.65) with (5.67) reveals that the joint source-channel coding
scheme clearly outperforms the scheme using separate source and channel codes,
illustrating again that the separation paradigm does not extend to network
situations in general, see also [3, p. 448].

5.4.7 Extension: Wireless networks

It is clear that the network of Figure 5.9 does not well model a wireless situ-
ation. Rather, we now consider the following extended network model: Relay
k does not only receive the transmission from the source node, but also the
transmissions from all other relay nodes. We replace (5.9) by

Yk[n] = αkX [n] +
M∑

j=1,j 	=k

αjkXk[n] + Wk[n]. (5.68)

The network model considered by Gupta and Kumar in [51] is of this kind. Their
network is discussed in more detail below in Section 5.4.7. The upper bound
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formulated in Proposition 5.5 applies unchanged: the cut-set idealization still
yields upper bounds to capacity. The lower bound, however, is changed since
there are many more interfering terms at the input of the relays, as a comparison
of (5.9) with (5.68) reveals. One way to obtain a simple lower bound is to apply
the same strategy, but to split it into two time slots: in the first time slot,
the source sends to the relays, in the second time slot, the relays send to the
destination. That is, a factor of two in rate is lost due to this time-multiplexing.
Apart from that, the same rate is achievable as for the network specified by
(5.9).7 In the notation of Corollary 5.7, a rate of R′

1
def
= R1/2 is achievable.

Hence, Theorems 5.8 and 5.10 apply almost unchanged, but they now give the
asymptotic value of the difference CBC − 2R′

1 and CMAC − 2R′
1, respectively.

In other words, capacity is determined up to a factor of two.

Corollary 5.12 For the relay network model defined by Equation (5.68) and
with the power constraints E|X |2 ≤ P and

∑M
k=1 E|Xk|2 ≤ c(M), suppose that

the conditions of Theorem 5.8 are satisfied with θa = 0 and τ = 0. Then,

lim
M→∞

CBC − 2R′
1 = 0, (5.69)

i.e., the capacity C is bounded by CBC/2 ≤ C ≤ CBC as M → ∞.

Proof. The proof follows from the proof of Proposition 5.6. The exact
same strategy is used, except that the input to the network is nonzero only
during the even time slots. With this, the received value at the destina-
tion, during the odd time slots, is given by Equation (5.78), but without
the first term, α0X [n + 1]. This additional interference is eliminated be-
cause the network is used only in the even time slots. Hence, the achieved
rate in two time slots cannot be smaller than R1, and the achieved rate per
time slot is at least R′

1 = R1/2. The corollary now follows from Theorem 5.8. �

Clearly, Corollary 5.12 can be extended by taking into account the remaining
cases covered by Theorem 5.8 as well as the ones covered by Theorem 5.10. We
do not discuss this explicitly here.

Instead, the result of Corollary 5.12 is illustrated for two special classes of
networks: For networks similar to the ones studied in [51], where the nodes are
randomly placed except for certain dead zones, and for networks whose source
node transmits only half of the time.8

Random node placement with dead zones

Consider the following network, illustrated in Figure 5.11: M + 2 nodes are
placed arbitrarily in a disk of unit area, and the coefficients αjk characterize the

7In fact, a slightly higher rate can be achieved since there is no interference between

subsequent source symbols.
8The capacity result for the case of dead zones and the half-time source was presented at

the 2001 IMA “Hot Topics” Workshop on Wireless Networks, August 8-10, 2001, Minneapolis,

MN, and appeared in [46].
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path losses, i.e.,

αjk =
1

dr
jk

, (5.70)

where djk is the Euclidean distance between nodes j and k, and r is the path
loss exponent.9 These networks are sometimes called dense networks since, as

Source

Destination

Figure 5.11: A wireless relay network model, based on [51].

the number of nodes n tends to infinity, the distance between adjacent nodes
vanishes.

In [51], the nodes are partitioned into pairs (uniformly at random), each
pair consisting of a source and a destination, and the goal of the analysis is to
characterize the maximum throughput per pair. The analysis presented in [51]
is limited to the case where all transmissions are carried out in a point-to-point
fashion, considering simultaneous transmissions purely as noise.10 In contrast
to this, our argument considers the traffic scenario where two special nodes are
selected, namely a source and a destination, and all other nodes serve purely as
relays (see Figure 5.11), and all possible coding schemes are allowed, not only
those satisfying the point-to-point coding hypothesis mentioned above.

To apply Corollary 5.12 to the network of Figure 5.11, we have to compute
the values of θa and τ . To make a simple, but precise statement, suppose that
there are “dead zones” around the source and the destination nodes: inside such
a dead zone of radius ε > 0, no other node can be placed.11 This is suggested in
Figure 5.11 by the dotted circles. Notice that the remaining area of the network
is unconstrained — the relay nodes can be placed as close to each other as

9In [51], this exponent is denoted by α.
10More general results beyond this restriction on the coding scheme were recently presented

in [114]. However, those results do not seem to apply to dense networks; rather, they impose

a lower bound on the distance between any two nodes.
11A more restrictive dead zone assumption, not leading to dense networks, has recently been

studied in [114].
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desired. Using the dead zone assumption, the distance from the source to relay
k cannot be smaller than ε, and since the network is on a disk of unit area, it
cannot be larger than its diameter 2√

π
. Hence, αk can be bounded as

1(
2√
π

)r ≤ αk ≤ 1
εr

. (5.71)

By analogy, the same bounds apply to δk. But then, it follows from the argu-
ments leading to Corollary 5.9 that θa = 0 and τ = 0, and hence, Corollary 5.12
applies. This argument is true for all node placements that respect the dead
zone assumption.

Suppose for example that the node placement is random according to some
law that respects the dead zones. The expected asymptotic capacity is deter-
mined by E[CBC ] in the sense of Corollary 5.12, i.e., up to a factor of two,
since

E[CBC − 2R′
1] = 0, (5.72)

where the expectation is over all node placements. More particularly, the law
for the node placement may be uniform like in [51] (except that it respects the
dead zones). E[CBC ] only depends on α1, . . . , αM , and since the nodes are
placed independently of one another, it is given by

E[CBC ] =
∫

α1

· · ·
∫

αM

(
M∏

k=1

p(αk)

)
log2

(
1 +

P

N

M∑
k=1

α2
k

)
dα1 · · ·dαM .

Without calculating this explicitly, we can use (5.71) to bound the expected
capacity as

log2

(
1 +

P

N

(π

4

)r

M

)
≤ log2

(
1 +

P

N

M∑
k=1

α2
k

)
≤ log2

(
1 +

P

N

1
ε2r

M

)
,(5.73)

showing that the scaling behavior of capacity as a function of M is log M (at
large M).

Half-time source

Corollary 5.12 determines the capacity up to a factor of two. For a special class
of networks, Corollary 5.12 can be modified to avoid the factor of two, and hence
to determine the asymptotic capacity precisely. In particular, consider the class
of networks that observe the following additional constraint: the source node
sends only half of the time. Under this hypothesis, the broadcast bound can
be strengthened; it is easily verified that C′

BC = CBC/2 is an upper bound to
the capacity of the networks in this special class. The scheme used to prove the
achievability in Corollary 5.12 satisfies the additional constraint, hence the rate
R′

1 is still achievable. Therefore, for the considered special class of networks,
Corollary 5.12 can be strengthened to yield

lim
M→∞

C′
BC − R′

1 = 0, (5.74)
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i.e., capacity behaves asymptotically like

C′
BC =

1
2

log2

(
1 +

P

N
a(M)

)
. (5.75)

5.5 Summary and Conclusions

This chapter discussed some of the potential of uncoded transmission and, more
generally, joint source-channel codes in networks. After a brief review of some of
the fundamentals of information-theoretic network performance analysis, it was
shown that the results of Chapter 2 can be used to determine the optimal cost-
distortion trade-off for certain single-source broadcast situations. This optimal
trade-off cannot be determined using extensions of the separation theorem.

A short section then presented a certain Gaussian multiple description net-
work for which it turned out that uncoded transmission is an optimal source-
channel coding strategy.

Thereafter, the Gaussian relay network of Figure 5.9 was studied. Capacity
is not known to date, not even for M = 1. In this chapter, we determined the
asymptotic capacity in the limit as the number of relays M tends to infinity. For
many interesting relay networks, we determined an exact asymptotic capacity
result, most notably for all cases where the fading coefficients are strictly larger
than zero and strictly smaller than infinity.

Beyond the exact capacity results, we show for a larger class of Gaussian relay
networks that the typical scaling behavior of capacity is log M , where M is the
number of relay nodes. This is demonstrated even for network models beyond
Figure 5.9, including certain wireless scenarios. In contrast to this, the point-to-
point coding hypothesis of [51] leads only to a constant rate, independent of the
number of relays. This shows that at least in certain situations, genuine network
coding can alter the scaling behavior of the capacity of wireless networks.

Finally, we also demonstrate how our results can be applied to sensor net-
works. There, the trade-off is between sensor power and reconstruction fidelity,
and is generally unknown to date. For a particular sensor network situation, we
determine the optimal trade-off using the arguments developed in this chapter.
We also demonstrate that this optimal trade-off cannot be achieved by sepa-
rate source and channel code design, illustrating the fact that the separation
paradigm does not extend to such sensor networks.

One potential extension of our work is to fading channels, and general situ-
ations with limited knowledge of the parameters of the network.

A more fundamental extension of our work is to cases beyond the Gaussian:
Is it possible to again give a matching condition, in the spirit of Theorem 3.3?
As we explained in this chapter, if the relays apply a separation-based strategy,
suboptimal performance results. But there may be a measure-matching condi-
tion providing an insightful operating criterion for the relays such that optimal
performance in achieved.
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Appendix 5.A Proofs

Proof of Proposition 5.6. The relay receives

Yk[n] = αkX [n] + Wk[n], (5.76)

and transmits in the next time slot

Xk[n + 1] = eiθk

√
Pk

|αk|2P + N
Yk[n], (5.77)

where i is the imaginary unit (the square root of −1), θk ∈ [0, 2π) an appropri-
ately chosen phase, and Pk an appropriately chosen nonnegative real constant.
Note that this recoding coefficient makes the expected power of relay k equal
to Pk. The received random variable at time n + 1 is therefore

Y [n + 1] = α0X [n + 1] +
M∑

k=1

βk (αkX [n] + Wk[n]) + W [n + 1], (5.78)

where βk is defined as

βk = δkeiθk

√
Pk

|αk|2P + N
. (5.79)

Suppose that we use γY [n + 1] as the estimate of X [n]. Then,

E |X [n] − γY [n + 1]|2 =

E

∣∣∣∣∣X [n]

(
1 − γ

M∑
k=1

βkαk

)
− γα0X [n + 1] − γ

M∑
k=1

βkWk[n] − γW [n + 1]

∣∣∣∣∣
2

which can be evaluated to yield

E |X [n] − γY [n + 1]|2 =

P

∣∣∣∣∣1 − γ

M∑
k=1

βkαk

∣∣∣∣∣
2

+ |γ|2|α0|2P + |γ|2N
(

1 +
M∑

k=1

|βk|2
)

. (5.80)

Recall that α0 is real by assumption, hence |α0|2 = α2
0. The optimal single-

letter decoding function γ can be found by taking the derivative of Expression
(5.80) with respect to γ and setting this derivative equal to zero. This yields

γopt =
P
∑M

k=1 αkβk

P |∑M
k=1 αkβk|2 + α2

0P + N(1 +
∑M

k=1 |βk|2)
, (5.81)

where x denotes the complex conjugate of x. The minimum achievable distortion
becomes

Dopt = E|X [n] − γoptY [n + 1]|2

= P

∣∣∣∣∣1 − γopt

M∑
k=1

βkαk

∣∣∣∣∣
2

+ |γopt|2
(

α2
0P + N

(
1 +

M∑
k=1

|βk|2
))

=
P
(
α2

0P + N
(
1 +
∑M

k=1 |βk|2
))

P
∣∣∣∑M

k=1 αkβk

∣∣∣2 + α2
0P + N

(
1 +
∑M

k=1 |βk|2
) . (5.82)
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The next goal is to find suitable βk’s, i.e., to find a good power allocation
between the relays. To this end, we may rewrite Dopt using vector notation.
Define the two vectors α = (α0, α1, . . . , αM ) and β = (1, β1, . . . , βM ). Then,

Dopt = P
α2

0P + 〈β, β〉N
|〈α, β〉|2P + 〈β, β〉N = P

α2
0

||β||2P + N

|〈α,β〉|2
||β||2 P + N

. (5.83)

Minimizing this expression over all vectors β under the given power constraint
does not seem to have a simple solution. However, a good (but generally sub-
optimal) solution is found by recalling that

max
β:||β||2=const

〈α, β〉2
||β||2 = 〈α, α〉 = ||α||2 (5.84)

and that the maximum is achieved when β = Bα, for a scalar B.
For the purposes of this section, this relay coding strategy is sufficient. That

is, we pick the recoding function given by Equation (5.77) such that βk = Bαk,
for k = 1, . . . , M , which makes the phase θk in Equation (5.77)

θk = − argαk − arg δk, (5.85)

and the power Pk of relay k

Pk = B2|αk|2 |αk|2P + N

|δk|2 , (5.86)

where B must be chosen to satisfy the power constraint
∑M

k=1 Pk ≤ c(M), i.e.,
B2 can be determined as

B2 =
c(M)∑M

k=1 |αk|2 |αk|2P+N
|δk|2

. (5.87)

To simplify the expression for the distortion, we first point out that

〈α, β〉 = Ba(M) − Bα2
0 + α0

〈β, β〉 = B2a(M) − B2α2
0 + 1.

Using this in Equation (5.83), the distortion can be expressed as

D1
def
= P

B2(a(M) − α2
0)N + α2

0P + N

B2(a(M) − α2
0)2P + (a(M) − α2

0)B(2α0P + BN) + α2
0P + N

.

(5.88)

Plugging in B from above yields the claimed result. �

Remark 5.4 (optimal (multi-letter) decoding) The two transmission
steps of our coding scheme take place simultaneously. This acts like a con-
volutional code. Hence, the optimum decoder must consider all outputs Y [n]
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simultaneously; it cannot operate on a single-letter basis. This does not seem
to lead to simple expressions for the achieved distortion, and asymptotically,
the improvement of the optimal decoder over the single-letter decoder should
not be expected to be large: For many cases, the interfering term α0X [n + 1] in
Equation (5.78) does not influence the asymptotic behavior.

Proof of Theorem 5.8. Recall

CBC = log2

(
1 +

a(M)P
N

)
. (5.89)

We compare this to R1. Let us write out as follows:

2CBC−R1 =
B2(a(M) − α2

0)N + α2
0P + N

B2(a(M) − α2
0)2P + 2B(a(M) − α2

0)α0P + B2(a(M) − α2
0)N + α2

0P + N
·

·a(M)P + N

N

=
PNB2a2(M) + N2B2a(M) + (α2

0P + N)Pa(M)−
PNB2a2(M) + (N − 2α2

0P )NB2a(M) + 2α0PNBa(M)+
−α2

0N
2B2 + N(α2

0P + N)
+(α4

0PN − α2
0N

2)B2 − 2α3
0PNB + N(α2

0P + N)
.

Plugging in from the power allocation, Equation (5.87), we can replace B2 =
c(M)/b(M). Let us then multiply both numerator and denominator by b(M)
to obtain

2CBC−R1

=
P 2Nc(M)a2(M) + PN2c(M)a(M)+

P 2Nc(M)a2(M) + (N − 2α2
0P )PNc(M)a(M)+

+(α2
0P + N)P 2a(M)b(M)−

+2α0P 2N
√

c(M)a(M)
√

b(M) + (α3
0P

2N − α2
0PN2)c(M)−

−α2
0PN2c(M) + PN(α2

0P + N)b(M)
−2α4

0P
2N
√

c(M)b(M) + PN(α2
0P + N)b(M)

(5.90)

=
1 + N

P
1

a(M) + α2
0P+N

N
b(M)

a(M)c(M) − α2
0

N
P

1
a2(M)+

1 + N−2α2
0P

P
1

a(M) + 2α0

√
b(M)

a(M)
√

c(M)
+
(
α3

0 − α2
0

N
P

)
1

a2(M)−

+α2
0P+N

P
b(M)

a2(M)c(M)

−2α4
0

√
b(M)

a2(M)
√

c(M)
+ α2

0P+N

P
b(M)

a2(M)c(M)

. (5.91)

Next, we argue that under the stated assumptions, each summand both in the
numerator as well as in the denominator of M in Equation (5.91) converges.
By assumption, 1/a(M) → θa, and hence 1/a2(M) → θ2

a. This implies the
following:

lim
M→∞

b(M)
a2(M)c(M)

=
(

lim
M→∞

1
a(M)

)(
lim

M→∞
b(M)

a(M)c(M)

)
= θaτ.

(5.92)
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Similarly,

lim
M→∞

√
b(M)

a(M)
√

c(M)
=

(
lim

M→∞

√
1

a(M)

)(
lim

M→∞

√
b(M)

a(M)c(M)

)
(5.93)

=
√

θaτ , (5.94)

which also implies that
√

b(M)/(a2(M)
√

c(M)) → θa

√
θaτ . Finally,

lim
M→∞

α2
0P + N

N

b(M)
a(M)c(M)

= τ
α2

0P + N

N
, (5.95)

leading to the following relationship:

lim
M→∞

2CBC−R1 = log2

(
1 + α2

0P+N
N τ+

1 + N−2α2
0P

P θa + 2α0

√
θaτ +

(
α3

0 − α2
0

N
P

)
θ2

a−
+N

P θa − α2
0

N
P θ2

a + α2
0P+N

P θaτ

−2α4
0θa

√
θaτ + α2

0P+N
P θaτ

)
(5.96)

which concludes the proof. �

Proof of Theorem 5.10. Recall that

CMAC = log
(

1 +
(P + c(M))d(M)

N

)
. (5.97)

We now compare this to R1. Let us write out as follows:

2CMAC−R1 =

=
B2N(a(M) − α2

0) + α2
0P + N

B2(a(M) − α2
0)2P + (a(M) − α2

0)B(2α0P + BN) + α2
0P + N

·

· (P + c(M))d(M) + N

N

Plugging in again from the power allocation, Equation (5.87), we can replace
B2 = c(M)/b(M). Let us then multiply both numerator and denominator by
b(M)/c(M) to obtain

2CMAC−R1 =
Na(M)c(M)d(M) − Nα2

0c(M)d(M) + PNa(M)d(M) − PNα2
0d(M)+

PNa2(M) − 2PNα2
0a(M) + 2PNα4

0 + 2α0PNa(M)
√

b(M)
c(M)−

+N2a(M) − N2α2
0 + (α2

0P + N)
(
b(M)d(M) + P b(M)d(M)

c(M) + N b(M)
c(M)

)
−2α3

0N
√

b(M)
c(M) + N2a(M) − α2

0N
2 + (α2

0PN + N2) b(M)
c(M)

Dividing both the numerator and the denominator by a2(M) yields the desired
form. By assumption,

lim
M→∞

c(M)d(M)
a(M)

= τ1 < ∞, and lim
M→∞

b(M)d(M)
a2(M)

= τ2 < ∞. (5.98)
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Under these assumptions, we find that

lim
M→∞

√
b(M)
c(M)

1
a(M)

=
√

τ2θcθd. (5.99)

Finally,

2CMAC−R1 =
Nτ1 − Nα2

0τ1θa + PNτ1θc − PNα2
0τ1θcθa+

PN − 2PNα2
0θa + 2PNα4

0θ
2
a + 2α0PN

√
τ2θcθd−

+N2θa − N2α2
0θ

2
a + (α2

0P + N) (τ2 + Pτ2θc + Nτ2θcθd)
−2α3

0N
√

τ2θcθdθa + N2θa − α2
0N

2θ2
a + (α2

0PN + N2)τ2θcθd

.

which concludes the proof. �



Conclusion

Denn das Gemeine geht klanglos zum Orkus hinab.

– FRIEDRICH SCHILLER, Nänie (1799)

To code, or not to code: that is the question.

Undoubtedly, “not to code” is very appealing when it leads to an optimal cost-
distortion trade-off: it involves the smallest possible delay and complexity. For
two examples, it has long been known that “not to code” is the answer: The
transmission of an iid Gaussian source across an additive white Gaussian noise
channel, and the transmission of a binary uniform source across a binary sym-
metric channel.

In this thesis, we have shown that there are many more communication
systems where “not to code” is the answer. For point-to-point source-channel
communication systems, we provide a simple matching condition that identifies
the source/channel pairs for which uncoded transmission is already optimal.
This matching condition can be extended easily to take into account arbitrary
codes: The optimal match then involves, on top of the source/channel pair, also
the encoding and the decoding function. We call this the measure-matching
condition.

“Not to code” is also the answer in certain communication scenarios beyond
the simple point-to-point case. We illustrate this for the case of feedback, and
of simple network topologies, including single-source broadcast and multiple de-
scription networks. For the case of single-source broadcast, when the matching
conditions are satisfied, “not to code” is the answer in a much stronger sense
than in the simple point-to-point scenario since the separation-based design
performs strictly suboptimally.

In the capacity analysis of large Gaussian relay networks, “not to code”
turns out to be the answer, but in a different sense: the relays perform uncoded
forwarding. This is a capacity-achieving mode of operation in the limit as the
number of relays tends to infinity. This result is extended to a sensor network
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situation, illustrating again that the separation-based design performs strictly
suboptimally, while uncoded transmission achieves an optimal cost-distortion
trade-off.

Perspectives

Uncoded transmission turned out to be an interesting tool in the analysis of
a number of communication problems. This is in the first place due to its
simplicity: Its performance and properties can usually be analyzed easily. There
are yet many other communication problems to which uncoded transmission has
not or not sufficiently been applied yet, including:

• Feedback communication systems.

Initial results are presented in Section 3.5, but there is a more general the-
ory. Particularly tempting in this context is the examination of systems
with memory and feedback. There is no general simple expression for the
capacity of a channel with memory and feedback; but it may be feasible
to determine simple cost-distortion results using joint source-channel cod-
ing. More precisely, it may be possible to extend the measure-matching
conditions to general systems with feedback.

• Neural communication.

It seems that information theory is not matched to natural communica-
tion systems in the first place: information theory studies communication
systems irrespective of delay and complexity, while these issues must be
expected to be crucial in natural systems such as neural communication.
Consequently, these communication systems should not be expected to
perform optimally in the information-theoretic sense. However, as the op-
timality of uncoded transmission illustrates, a system can be information-
theoretically optimal and yet of very low delay and complexity, if only the
involved measures are favorably matched. This argument was outlined
in Chapter 4, and much remains to be done. For example, it seems that
evolution had all the time to implement a favorable match. It will be
very interesting to study the question whether it actually did attempt to
achieve the information-theoretically optimal match.

• Communication networks.

For communication networks, joint source-channel coding is particularly
interesting for two (related) reasons: First, the optimal cost-distortion
trade-off is not known in general. Second, the source/channel separation
theorem does not extend to networks, or joint source-channel coding can
beat capacity in the sense that it may achieve a better cost-distortion
trade-off than the one achievable by combining optimal distributed com-
pression with capacity-achieving (network) channel codes.



Conclusion 141

This thesis shows that the measure-matching conditions can be useful
for both of these questions. First, our results permit us to determine
the optimal cost-distortion trade-off at least for certain simple topologies,
including certain instances of single-source broadcast (Section 5.2) and a
particular Gaussian sensor network topology (Section 5.4.5). Are there
other (simple) network topologies for which the optimal cost-distortion
trade-offs can be determined, potentially by extension of the measure-
matching conditions? Second, we provide concrete illustrations of the fact
that the separate source and channel code design may lead to strictly
suboptimal performance (Section 5.4.6).

More explicitly, for general network situations, designing source and chan-
nel codes jointly, rather than separately from each other, gives strict gains
in terms of the cost-distortion trade-off. However, to harvest these gains,
the source and channel descriptions must be known at the time of code de-
sign, i.e., the modularity of the code design is lost. This modularity is very
interesting for general purpose networks such as the internet; but it may
be less crucial for specialized networks. Rather, in some cases, reducing
the power (at fixed fidelity of the data reconstruction) may be much more
important than having the source-channel modularity. A prime example
is the following:

– Sensor networks. Typically, at the time of code design, the de-
scription of the essential source and channel properties would be
known. Consider e.g. a sensor network that measures environmental
temperature data. Such data has a very particular structure. As
illustrated in Section 5.4.6, sensor networks are a key application of
uncoded transmission as studied in this thesis: it can save power
and/or improve the accuracy of data representation with respect to
applying optimal distributed data compression followed by capacity-
approaching codes.

• Modularization of networks.

It would be tempting to modularize a network of channels: rather than
treating it as one big network, to chop it up into a set of point-to-point
channels. This leads to suboptimal performance, as is well known and
illustrated also in this thesis. Clearly, designing the network codes jointly
for the entire network is a rather involved optimization task; no simple
solutions are known to date. One key question is whether there is a good
(yet simple) criterion by which intermediate nodes recode their received
signal. In the case of the Gaussian relay networks studied in Section 5.4,
it turned out that uncoded transmission was good enough (asymptotically
as the number of relays tends to infinity). In extension of this, is there a
measure-matching condition for intermediate nodes in a network? Or at
least in special classes of networks?

• What is information?
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In the ergodic point-to-point case, information can be associated with
bits in the sense that the capacity-cost and the rate-distortion function
describe the (information-theoretically) optimal system entirely. In that
sense, any question can be answered in terms of bits. The same does
not hold for networks: There, information cannot simply be identified by
bits. This was revisited in various places in this thesis, including Sections
1.6, 5.1, and 5.4.6. Certain new results were found in this thesis; but the
question remains: If it is not bits, what is information in networks? It
remains to be seen whether the concept of measure-matching can help to
resolve this question.

If the goal of a thesis was to produce just one piece of advice, ours should
probably be to always keep in mind that question: “To code, or not to code?”
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