28 research outputs found

    Design and FPGA Implementation of OFDM System with Channel Estimation and Synchronization

    Get PDF
    In wireless and mobile communications, multipath fading severely degrades the quality of information exchange. The orthogonal frequency division multiplexing (OFDM) technology is able to provide a high transmission data rate with enhanced communication performance at a relatively small bandwidth cost, together with proper estimation and compensation of channel effects. Therefore, it has been widely applied in many wireless and mobile networks, especially for the state-of-the-art communication standards. The unique structure of OFDM signals and the application of discrete Fourier transform (DFT) algorithm have significantly simplified the digital implementation of OFDM system. Among different kinds of implementations, field programmable gate array (FPGA) is a very cost-effective and highly flexible solution, which provides superior system performance and enables easy system upgrade. In this thesis, a baseband OFDM system with channel estimation and timing synchronization is designed and implemented using the FPGA technology. The system is prototyped based on the IEEE 802.11a standard and the signals is transmitted and received using a bandwidth of 20 MHz. With the help of the quadrature phase shift keying (QPSK) modulation, the system can achieve a throughput of 24 Mbps. Moreover, the least squares (LS) algorithm is implemented and the estimation of a frequency-selective fading channel is demonstrated. For the coarse estimation of timing, a modified maximum-normalized correlation (MNC) scheme is investigated and implemented. Starting from theoretical study, this thesis in detail describes the system design and verification on the basis of both MATLAB simulation and hardware implementation. Bit error rate (BER) verses bit energy to noise spectral density (Eb/N0) is presented in the case of different channels. In the meanwhile, comparison is made between the simulation and implementation results, which verifies system performance from the system level to the register transfer level (RTL). First of all, the entire system is modeled in MATLAB and a floating-point model is established. Then, the fixed-point model is created with the help of Xilinx’s System Generator for DSP (XSG) and Simulink. Subsequently, the system is synthesized and implemented within Xilinx’s Integrated Software Environment (ISE) tools and targeted to Xilinx Virtex-5 board. What is more, a hardware co-simulation is devised to reduce the processing time while calculating the BER for the fixed-point model. The present thesis is an initial work on the implementation part of an collaborative research and development (CRD) project of the Natural Sciences and Engineering Research Council of Canada (NSERC) sponsored by the WiTel Technologies, Ontario. It is the first and foremost step for further investigation of designing innovative channel estimation techniques towards applications in the fourth generation (4G) mobile communication systems

    Single-Frequency Network Terrestrial Broadcasting with 5GNR Numerology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Receiver design for nonlinearly distorted OFDM : signals applications in radio-over-fiber systems

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Universidade do Porto. Faculdade de Engenharia. 201

    Propagation Aspects in Vehicular Networks

    Get PDF

    An investigation into the performance of a power-of-two coefficient transversal equalizer in a 34Mbit/s QPSK digital radio during frequency-selective fading conditions

    Get PDF
    Bibliography: leaves 82-91.Under certain atmospheric conditions, multipath propagation can occur. The interaction of radio waves arriving at a receiver, having travelled via paths of differing length, results in the phenomenon of frequency-selective fading. This phenomenon manifests as a notch in the received spectrum and causes a severe degradation in the performance of a digital radio system. As the total power in the received bandwidth may be unaffected, the Automatic Gain Control is not able to correct for this distortion, and so other methods are required. The dissertation commences with a summary of the phenomenon of multipath as this provides the context for the investigations which follow. The adaptive equalizer was developed to combat the distortion introduced by frequency-selective fading. It achieves this by applying an estimate of the inverse of the distorting channel's transfer function. The theory on adaptive equalizers has been well established, and a summary of this theory is presented in the form of Wiener Filter theory and the Wiener-Hopf equations. An adaptive equalizer located in a 34MBit/s QPSK digital radio is required to operate at very high speed, and its digital hardware implementation is not a trivial task. In order to reduce the cost and complexity, a compromise was proposed. If the tap weights of the equalizer could be represented by power-of-two binary numbers, the equalizer circuitry can be dramatically simplified. The aim of the dissertation was to investigate the performance of this simplified equalizer structure and to determine whether a power-of-two equalizer was a viable consideration

    Adaptive implementation of turbo multi-user detection architecture

    Get PDF
    MULTI-access techniques have been adopted widely for communications in underwater acoustic channels, which present many challenges to the development of reliable and practical systems. In such an environment, the unpredictable and complex ocean conditions cause the acoustic waves to be affected by many factors such as limited bandwidth, large propagation losses, time variations and long latency, which limit the usefulness of such techniques. Additionally, multiple access interference (MAI) signals and poor estimation of the unknown channel parameters in the presence of limited training sequences are two of the major problems that degrade the performance of such technologies. In this thesis, two different single-element multi-access schemes, interleave division multiple access (IDMA) and code division multiple access (CDMA), employing decision feedback equalization (DFE) and soft Rake-based architectures, are proposed for multi-user underwater communication applications. By using either multiplexing pilots or continuous pilots, these adaptive turbo architectures with carrier phase tracking are jointly optimized based on the minimum mean square error (MMSE) criterion and adapted iteratively by exchanging soft information in terms of Log-Likelihood Ratio (LLR) estimates with the single-user’s channel decoders. The soft-Rake receivers utilize developed channel estimation and the detection is implemented using parallel interference cancellation (PIC) to remove MAI effects between users. These architectures are investigated and applied to simulated data and data obtained from realistic underwater communication trials using off-line processing of signals acquired during sea-trials in the North Sea. The results of different scenarios demonstrate the penalty in performance as the fading induces irreducible error rates that increase with channel delay spread and emphasize the benefits of using coherent direct adaptive receivers in such reverberant channels. The convergence behaviour of the detectors is evaluated using EXIT chart analyses and issues such as the adaptation parameters and their effects on the performance are also investigated. However, in some cases the receivers with partial knowledge of the interleavers’ patterns or codes can still achieve performance comparable to those with full knowledge. Furthermore, the thesis describes implementation issues of these algorithms using digital signal processors (DSPs), such as computational complexity and provides valuable guidelines for the design of real time underwater communication systems.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Adaptive implementation of turbo multi-user detection architecture

    Get PDF
    MULTI-access techniques have been adopted widely for communications in underwater acoustic channels, which present many challenges to the development of reliable and practical systems. In such an environment, the unpredictable and complex ocean conditions cause the acoustic waves to be affected by many factors such as limited bandwidth, large propagation losses, time variations and long latency, which limit the usefulness of such techniques. Additionally, multiple access interference (MAI) signals and poor estimation of the unknown channel parameters in the presence of limited training sequences are two of the major problems that degrade the performance of such technologies. In this thesis, two different single-element multi-access schemes, interleave division multiple access (IDMA) and code division multiple access (CDMA), employing decision feedback equalization (DFE) and soft Rake-based architectures, are proposed for multi-user underwater communication applications. By using either multiplexing pilots or continuous pilots, these adaptive turbo architectures with carrier phase tracking are jointly optimized based on the minimum mean square error (MMSE) criterion and adapted iteratively by exchanging soft information in terms of Log-Likelihood Ratio (LLR) estimates with the single-user’s channel decoders. The soft-Rake receivers utilize developed channel estimation and the detection is implemented using parallel interference cancellation (PIC) to remove MAI effects between users. These architectures are investigated and applied to simulated data and data obtained from realistic underwater communication trials using off-line processing of signals acquired during sea-trials in the North Sea. The results of different scenarios demonstrate the penalty in performance as the fading induces irreducible error rates that increase with channel delay spread and emphasize the benefits of using coherent direct adaptive receivers in such reverberant channels. The convergence behaviour of the detectors is evaluated using EXIT chart analyses and issues such as the adaptation parameters and their effects on the performance are also investigated. However, in some cases the receivers with partial knowledge of the interleavers’ patterns or codes can still achieve performance comparable to those with full knowledge. Furthermore, the thesis describes implementation issues of these algorithms using digital signal processors (DSPs), such as computational complexity and provides valuable guidelines for the design of real time underwater communication systems.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    On receiver design for an unknown, rapidly time-varying, Rayleigh fading channel

    Get PDF

    Geometry-Based Channel Models for Car-to-Car Communication Systems and Applications

    Get PDF
    In last two decades, intelligent transportation systems (ITS) have received considerable attention due to new road traffic safety applications that significantly improve the efficiency of traffic flow and reduce the number of road accidents. Consequently, there has been an increased interest in studying and developing car-to-car (C2C) communication systems, which play a key role in ITS. C2C communications has also gained the attention of standardization bodies, such as the IEEE1 and 3GPP LTE2, which aim to provide improvements in C2C communication systems. As it follows from the title, in this dissertation, we present the state-of-the-art regarding the modeling and analysis of different C2C channels in C2C communication systems. In C2C communication systems, the underlying radio channel differs from the conventional fixed-to-mobile (F2M) and fixed-to-fixed (F2F) channels in the way that both the mobile transmitter and the mobile receiver are in motion. In this regard, reliable and robust traffic telematic systems have to be designed, developed and tested. This leads to a demand for new radio channel models for C2C communication systems. Therefore, this dissertation is devoted to design, develop and validate new geometry-based channel models for C2C communication systems. In particular, two goals are aimed, which are study and investigation of the propagation characteristics of C2C fading channels and analyzing the performance of C2C communication systems over those fading channels correlated in time and space.publishedVersio
    corecore