27 research outputs found

    Improved Hybrid Blind PAPR Reduction Algorithm for OFDM Systems

    Get PDF
    The ever growing demand for high data rate communication services resulted into the development of long-term evolution (LTE) technology. LTE uses orthogonal frequency division multiplexing (OFDM) as a transmission technology in its PHY layer for down-link (DL) communications. OFDM is spectrally efficient multicarrier modulation technique ideal for high data transmissions over highly time and frequency varying channels. However, the transmitted signal in OFDM can have high peak values in the time domain due to inverse fast Fourier transform (IFFT) operation. This creates high peak-to-average power ratio (PAPR) when compared to single carrier systems. PAPR drives the power amplifiers to saturation degrading its efficiency by consuming more power. In this paper a hybrid blind PAPR reduction algorithm for OFDM systems is proposed, which is a combination of distortion technique (Clipping) and distortionless technique (DFT spreading). The DFT spreading is done prior to clipping reducing significantly the probability of having higher peaks in the composite signal prior to transmission. Simulation results show that the proposed algorithm outperforms unprocessed conventional OFDM transmission by 9 dB. Comparison with existing blind algorithms shows 7 dB improvement at error rate 10–3 and 3 dB improvement at error rate 10–1 when operating in flat fading and doubly dispersive channels, respectively.Keywords:    LTE Systems; OFDM; Peak to Average Power Ratio; DFT spreading; Signal to Noise Power Ratio

    Channel Estimation in Uplink of Long Term Evolution

    Get PDF
    Long Term Evolution is considered to be the fastest spreading communication standard in the world.To live up to the increasing demands of higher data rates day by day and higher multimedia services,the existing UMTS system was further upgraded to LTE.To meet their requirements novel technologies are employed in the downlink as well as uplink like Orthogonal Frequency Division Multiple Access (OFDMA) and Single Carrier- Frequency Division Multiple Access (SC-FDMA).For the receiver to perform properly it should be able to recover athe transmittedadata accurately and this is done through channel estimation.Channel Estimation in LTE engages Coherent Detection where a prior knowledge of the channel is required,often known as Channel State Information (CSI).This thesis aims at studying the channel estimation methods used in LTE and evaluate their performance in various multipath models specified by ITU like Pedestrian and Vehicular.The most commonly used channel estimation algorithms are Least Squarea(LS) and Minimum MeanaSquare error (MMSE) algorithms.The performance of these estimators are evaluated in both uplink as well as Downlink in terms of the Bit Error Rate (BER).It was evaluated for OFDMA and then for SC-FDMA,further the performance was assessed in SC-FDMA at first without subcarrier Mapping and after that with subcarrier mapping schemes like Interleaved SC-FDMA (IFDMA) and Localized SC-FDMA (lFDMA).It was found from the results that the MMSE estimator performs better than the LS estimator in both the environments.And the IFDMA has a lower PAPR than LFDMA but LFDMA has a better BER performance

    LMS Based Adaptive Channel Estimation for LTE Uplink

    Get PDF
    In this paper, a variable step size based least mean squares (LMS) channel estimation (CE) algorithm is presented for a single carrier frequency division multiple access(SC-FDMA) system under the umbrella of the long term evolution (LTE). This unbiased CE method can automatically adapts the weighting coefficients on the channel condition. Therefore, it does not require knowledge of channel,and noise statistics. Furthermore, it uses a phase weighting scheme to eliminate the signal fluctuations due to noise and decision errors. Such approaches can guarantee the convergence towards the true channel coefficient. The mean and mean square behaviors of the proposed CE algorithm are also analyzed. With the help of theoretical analysis and simulation results, we prove that the proposed algorithm outperforms the existing algorithms in terms of mean square error (MSE) and bit error rate (BER) by more than around 2.5dB

    Adaptive channel estimation for LTE uplink

    Get PDF
    Third generation partnership project (3GPP) long term evolution (LTE) uses single carrier frequency division multiple access (SC-FDMA) in uplink transmission and orthogonal frequency division multiple access (OFDMA) scheme for the downlink. A variable step size based least mean squares (LMS) algorithm is formulated for a single carrier frequency division multiple access (SC-FDMA) system, in its channel estimation (CE). The weighting coefficients on the channel condition can be updated using this unbiased CE method. Channel and noise statistics information are not essential. Rather, it uses a phase weighting scheme to eliminate the signal fluctuations due to noise and decision errors. The convergence towards the true channel coefficient is guaranteed. The proposed algorithm is compared with the existing algorithms for BER and MSE performance in different channel environments

    Low-Complexity Algorithms for Channel Estimation in Optimised Pilot-Assisted Wireless OFDM Systems

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) has recently become a dominant transmission technology considered for the next generation fixed and mobile broadband wireless communication systems. OFDM has an advantage of lessening the severe effects of the frequency-selective (multipath) fading due to the band splitting into relatively flat fading subchannels, and allows for low-complexity transceiver implementation based on the fast Fourier transform algorithms. Combining OFDM modulation with multilevel frequency-domain symbol mapping (e.g., QAM) and spatial multiplexing (SM) over the multiple-input multiple-output (MIMO) channels, can theoretically achieve near Shannon capacity of the communication link. However, the high-rate and spectrumefficient system implementation requires coherent detection at the receiving end that is possible only when accurate channel state information (CSI) is available. Since in practice, the response of the wireless channel is unknown and is subject to random variation with time, the receiver typically employs a channel estimator for CSI acquisition. The channel response information retrieved by the estimator is then used by the data detector and can also be fed back to the transmitter by means of in-band or out-of-band signalling, so the latter could adapt power loading, modulation and coding parameters according to the channel conditions. Thus, design of an accurate and robust channel estimator is a crucial requirement for reliable communication through the channel, which is selective in time and frequency. In a MIMO configuration, a separate channel estimator has to be associated with each transmit/receive antenna pair, making the estimation algorithm complexity a primary concern. Pilot-assisted methods, relying on the insertion of reference symbols in certain frequencies and time slots, have been found attractive for identification of the doubly-selective radio channels from both the complexity and performance standpoint. In this dissertation, a family of the reduced-complexity estimators for the single and multiple-antenna OFDM systems is developed. The estimators are based on the transform-domain processing and have the same order of computational complexity, irrespective of the number of pilot subcarriers and their positioning. The common estimator structure represents a cascade of successive small-dimension filtering modules. The number of modules, as well as their order inside the cascade, is determined by the class of the estimator (one or two-dimensional) and availability of the channel statistics (correlation and signal-to-noise power ratio). For fine precision estimation in the multipath channels with statistics not known a priori, we propose recursive design of the filtering modules. Simulation results show that in the steady state, performance of the recursive estimators approaches that of their theoretical counterparts, which are optimal in the minimum mean square error (MMSE) sense. In contrast to the majority of the channel estimators developed so far, our modular-type architectures are suitable for the reconfigurable OFDM transceivers where the actual channel conditions influence the decision of what class of filtering algorithm to use, and how to allot pilot subcarrier positions in the band. In the pilot-assisted transmissions, channel estimation and detection are performed separately from each other over the distinct subcarrier sets. The estimator output is used only to construct the detector transform, but not as the detector input. Since performance of both channel estimation and detection depends on the signal-to-noise power vi ratio (SNR) at the corresponding subcarriers, there is a dilemma of the optimal power allocation between the data and the pilot symbols as these are conflicting requirements under the total transmit power constraint. The problem is exacerbated by the variety of channel estimators. Each kind of estimation algorithm is characterised by its own SNR gain, which in general can vary depending on the channel correlation. In this dissertation, we optimise pilot-data power allocation for the case of developed low-complexity one and two-dimensional MMSE channel estimators. The resultant contribution is manifested by the closed-form analytical expressions of the upper bound (suboptimal approximate value) on the optimal pilot-to-data power ratio (PDR) as a function of a number of design parameters (number of subcarriers, number of pilots, number of transmit antennas, effective order of the channel model, maximum Doppler shift, SNR, etc.). The resultant PDR equations can be applied to the MIMO-OFDM systems with arbitrary arrangement of the pilot subcarriers, operating in an arbitrary multipath fading channel. These properties and relatively simple functional representation of the derived analytical PDR expressions are designated to alleviate the challenging task of on-the-fly optimisation of the adaptive SM-MIMO-OFDM system, which is capable of adjusting transmit signal configuration (e.g., block length, number of pilot subcarriers or antennas) according to the established channel conditions
    corecore