190 research outputs found

    Spectrum Sensing Framework based on Blind Source Separation for Cognitive Radio Environments

    Get PDF
    El uso eficiente del espectro se ha convertido en un área de investigación activa, debido a la escasez de este recurso y a su subutilización. En un escenario en el que el espectro es un recurso compartido como en la radio cognitiva (CR), los espacios sin uso dentro de las bandas de frecuencias con licencia podrían ser detectados y posteriormente utilizados por un usuario secundario a través de técnicas de detección y sensado del espectro. Generalmente, estas técnicas de detección se utilizan a partir de un conocimiento previo de las características de canal. En el presente trabajo se propone un enfoque de detección ciega del espectro basado en análisis de componentes independientes (ICA) y análisis de espectro singular (SSA). La técnica de detección se valida a través de simulación, y su desempeño se compara con metodologías propuestas por otros autores en la literatura. Los resultados muestran que el sistema propuesto es capaz de detectar la mayoría de las fuentes con bajo consumo de tiempo, un aspecto que cabe resaltar para aplicaciones en línea con exigencias de tiempo.The efficient use of spectrum has become an active research area, due to its scarcity and underutilization. In a spectrum sharing scenario as Cognitive Radio (CR), the vacancy of licensed frequency bands could be detected by a secondary user through spectrum sensing techniques. Usually, this sensing approaches are performed with a priori knowledge of the channel features. In the present work, a blind spectrum sensing approach based on Independent Component Analysis and Singular Spectrum Analysis is proposed. The approach is tested and compared with other outcomes. Results show that the proposed scheme is capable of detect most of the sources with low time consumption, which is a remarkable aspect for online applications with demanding time issues

    A new approach to blind separation of cyclostationary sources

    Full text link

    Blind source separation of convolutive mixtures of non circular linearly modulated signals with unknown baud rates

    Get PDF
    International audienceThis paper addresses the problem of blind separation of convolutive mixtures of BPSK and circular linearly modulated signals with unknown (and possibly different) baud rates and carrier frequencies. In previous works, we established that the Constant Modulus Algorithm (CMA) is able to extract a source from a convolutive mixture of circular linearly modulated signals. We extend the analysis of the extraction capabilities of the CMA when the mixing also contains BPSK signals. We prove that if the various source signals do not share any non zero cyclic frequency nor any non conjugate cyclic frequencies, the local minima of the constant modulus cost function are separating filters. Unfortunately, the minimization of the Godard cost function generally fails when considering BPSK signals that have the same rates and the same carrier frequencies. This failure is due to the existence of non-separating local minima of the Godard cost function. In order to achieve the separation, we propose a simple modification of the Godard cost function which only requires knowledge of the BPSK sources frequency offsets at the receiver side. We provide various simulations of realistic digital communications scenarios that support our theoretical statements

    Blind Identification of Underdetermined Mixtures Based on the Hexacovariance and Higher-Order Cyclostationarity

    Get PDF
    International audienceIn this work, we consider the problem of blind identification of underdetermined mixtures in a cyclostationary context relying on sixth-order statistics. We propose to exploit the cyclostationarity at higher orders by taking into account the knowledge of source cyclic frequencies in the sample estimator of the observation hexacovariance. Two blind identification algorithms based on the proposed estimator are considered and their performances are tested by means of computer simulations. Our simulation results show that significant improvements can be obtained when both second and fourth-order cyclo-stationarities are exploited

    Normalised natural gradient algorithm for the separation of cyclostationary sources

    Get PDF
    A normalised natural gradient algorithm (NGA) for the separation of cyclostationary source signals is proposed in this paper. It improves the convergence properties of the cyclostationary natural gradient algorithm (CSNGA) by employing a gradient adaptive learning rate whose value changes in response to some change in the filter parameters. Experimental results demonstrate the improved behaviour of the approach

    Blind Separation of Cyclostationary Sources Sharing Common Cyclic Frequencies Using Joint Diagonalization Algorithm

    Get PDF
    We propose a new method for blind source separation of cyclostationary sources, whose cyclic frequencies are unknown and may share one or more common cyclic frequencies. The suggested method exploits the cyclic correlation function of observation signals to compose a set of matrices which has a particular algebraic structure. The aforesaid matrices are automatically selected by proposing two new criteria. Then, they are jointly diagonalized so as to estimate the mixing matrix and retrieve the source signals as a consequence. The nonunitary joint diagonalization (NU-JD) is ensured by Broyden-Fletcher-Goldfarb-Shanno (BFGS) method which is the most commonly used update strategy for implementing a quasi-Newton technique. The efficiency of the method is illustrated by numerical simulations in digital communications context, which show good performances comparing to other stateof-the-art methods

    Adaptive-FRESH Filtering

    Get PDF

    Signal processing techniques for extracting signals with periodic structure : applications to biomedical signals

    Get PDF
    In this dissertation some advanced methods for extracting sources from single and multichannel data are developed and utilized in biomedical applications. It is assumed that the sources of interest have periodic structure and therefore, the periodicity is exploited in various forms. The proposed methods can even be used for the cases where the signals have hidden periodicities, i.e., the periodic behaviour is not detectable from their time representation or even Fourier transform of the signal. For the case of single channel recordings a method based on singular spectrum anal ysis (SSA) of the signal is proposed. The proposed method is utilized in localizing heart sounds in respiratory signals, which is an essential pre-processing step in most of the heart sound cancellation methods. Artificially mixed and real respiratory signals are used for evaluating the method. It is shown that the performance of the proposed method is superior to those of the other methods in terms of false detection. More over, the execution time is significantly lower than that of the method ranked second in performance. For multichannel data, the problem is tackled using two approaches. First, it is assumed that the sources are periodic and the statistical characteristics of periodic sources are exploited in developing a method to effectively choose the appropriate delays in which the diagonalization takes place. In the second approach it is assumed that the sources of interest are cyclostationary. Necessary and sufficient conditions for extractability of the sources are mathematically proved and the extraction algorithms are proposed. Ballistocardiogram (BCG) artifact is considered as the sum of a number of independent cyclostationary components having the same cycle frequency. The proposed method, called cyclostationary source extraction (CSE), is able to extract these components without much destructive effect on the background electroencephalogram (EEG

    Direction Finding Estimators of Cyclostationary Signals in Array Processing for Microwave Power Transmission

    Get PDF
    A solar power satellite is paid attention to as a clean, inexhaustible large- scale base-load power supply. The following technology related to beam control is used: A pilot signal is sent from the power receiving site and after direction of arrival estimation the beam is directed back to the earth by same direction. A novel direction-finding algorithm based on linear prediction technique for exploiting cyclostationary statistical information (spatial and temporal) is explored. Many modulated communication signals exhibit a cyclostationarity (or periodic correlation) property, corresponding to the underlying periodicity arising from carrier frequencies or baud rates. The problem was solved by using both cyclic second-order statistics and cyclic higher-order statistics. By evaluating the corresponding cyclic statistics of the received data at certain cycle frequencies, we can extract the cyclic correlations of only signals with the same cycle frequency and null out the cyclic correlations of stationary additive noise and all other co-channel interferences with different cycle frequencies. Thus, the signal detection capability can be significantly improved. The proposed algorithms employ cyclic higher-order statistics of the array output and suppress additive Gaussian noise of unknown spectral content, even when the noise shares common cycle frequencies with the non-Gaussian signals of interest. The proposed method completely exploits temporal information (multiple lag ), and also can correctly estimate direction of arrival of desired signals by suppressing undesired signals. Our approach was generalized over direction of arrival estimation of cyclostationary coherent signals. In this paper, we propose a new approach for exploiting cyclostationarity that seems to be more advanced in comparison with the other existing direction finding algorithms
    corecore