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ABSTRACT 

A normalised natural gradient algorithm (NGA) for the sep- 
aration of cyclostationary source signals is proposed in this 
paper. It improves the convergence properties of the cyclo- 
stationary natural gradient algorithm (CSNGA) by employ- 
ing a gradient adaptive learning rate whose value changes 
in response to some change in the filter parameters. Exper- 
imental results demonstrate the improved behaviour of the 
approach. 

1 .  INTRODUCTION 

The objective of blind source separation (BSS) is to recover 
the original independent source signals given only a set of 
observations which arise when the sources are mixed by 
passage through some unknown medium. Although the term 
blind indicates that no knowledge is available about either 
the sources or the mixing channel, to make the problem 
more tractable, several assumptions are typically made re- 
garding both. In this paper, we assume that the source sig- 
nals are wide sense cyclostationary, which implies that the 
mean and autocorrelation function of the data vary periodi- 
cally with time, and arise when the underlying process gen- 
erating the signal has oscillatory behaviour, as does biomed- 
ical data, which frequently originate from breathing or con- 
traction ofthe cardiac muscle, or due to modulation in man- 
made signals. In particular, we propose a normalised ver- 
sion ofthe CSNGA approach [ I ] ,  a sequential algorithm for 
the separation of cyclostationary sources, based on NGA 

Thus, we begin with stating the BSS problem in Section 2 ,  
followed by a brief description of the CSNGA algorithm in 
Section 3. The normalised cyclostationary NGA algorithm 
is presented in Section 4, where it is also generalised to the 
case of complex valued sources. The performance of the 
proposed approach for real and complex data is shown by 
simulation in section 5, while conclusions are drawn in sec- 
tion 6. 
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2. PROBLEM STATEMENT 

T h e m  observed signals generated when n sources are mixed 
by a time-invariant instantaneous channel, and no noise is 
present, are given by [2]  

x ( k )  = As(k) (1 )  

where x ( k )  E @" is the vector of observed signals, and 
s ( k )  E @" is the vector of source signals, assumed to be 
zero-mean and mutually independent. A E e"'"' is an un- 
known, full column rank mixing matrix, and typically it is 
assumed that there are at least as many sensors as sources, 
that is m 2 n. The sources are recovered using the follow- 
ing linear separating system 

Y ( k )  = W(k)x(k) ( 2 )  

where y ( k )  E @" is an estimate of s ( k ) ,  and W(k) E 
Cnxm is the separating matrix. The sources can only be re- 
covered up to a multiplicative constant, and their order can- 
not be pre-determined, so that perfect separation is achieved 
when the global mixing-separating matrix, defined as 

P(k) = W(k)A (3) 

tends toward a matrix with only one non-zero term in each 
row and column [2], and is given by 

P(k) = JD (4) 

where J t UTxn is a permutation matrix modeling the or- 
dering ambiguity, and D E Cnxn is a diagonal matrix ac- 
counting for the scaling indeterminacy. The performance 
of a BSS method can be assessed by plotting the following 
performance index (PI) 
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where P(k) = bij], and 771 is the number ofsource signals. 
Thus, the performance index is a measure of the closeness 
between W(k) and the pseudo-inverse of the mixing ma- 
trix, taking into account the scaling and ordering ambigui- 
ties. Generally, a low PI indicates better performance. Con- 
ventional BSS assumes that at most one source has Gaussian 
distribution because, for Gaussian random variables, uncor- 
relatedness corresponds to independence. In this paper wz 
further assume that the sources are cyclostationary. 

3. CYCLOSTATIONARY NATURAL GRADIENT 
ALGORITHM 

The cyclostationary natural gradient algorithm attempts to 
minimise the following cost function [I] 

1 
+?Tr (Rt ( k ) )  - f logdet (R; ( k ) )  - (6) 

where Tr (.) and det (.) are respectively the trace and deter- 
minant operators, and q, (yi Lk)) is an appropriately chosen 
independent pdf. The term R; ( k )  is defined as R; ( k )  = 
C,"==, R P  (k), where Rip ( k )  = E {ei"vky ( k )  yT ( k ) }  
represents the output cyclic correlation matrix for the p-th 
cycle frequency which is required to satisfy 

where the elements of 1', [I'lt,, are defined by 

(8) 
1, 
0, otherwise 

i f l  E {I,'&. . . ,m},g = l = p 

Then, in the limit as k - m, each ofthe output cyclic corre- 
lation matrices converges to a matrix with only one non-zero 
entry, situated at_the p-th position along the main diagonal, 
giving limk+m R; ( k )  = I. When the source signals and 
the mixing matrix are real valued, the update equation for 
the cyclostationary natural gradient algorithm is given by 

w ( k  + 1) = w ( k )  +/I ( k )  [I - f (Y(k))YT(k) 

+I - R; (")I w ( k )  (9) 

where p ( k )  is the learning rate. Reasoning along the lines 
of [3], the learning rule (9) effectively represents a single 
stage sequential algorithm performing second- and higher- 
order conventional decorrelation simultaneously, as well as 
second-order cyclic decorrelation. 

4. ADAPTIVE STEP-SIZE PARAMETER 

The use of a fixed step-size parameter generally leads to 
slow convergence speed and poor tracking performance. Al- 

ternatively, a time-varying step-size parameter can be em- 
ployed, which changes in response to some change in the 
filter parameters. Hence, based on the method outlined in 
[4], a gradient adaptive step-size algorithm is derived, which 
updates the learning rate so that at every iteration it attempts 
to minimise the CSNGA cost function (6). Thus, the leam- 
ingrate at time k is evaluated recursively according to [4] 

where p is a step-size parameter. As in [4], we assume for 
the sake of clarity that there are as many source as there are 
mixtures m = n, and that, for small learning rates 

w ( k ) x ( k +  1) zz y (I; + 1) (1 1) 

Differentiating (6) with respect to p ( k )  gives 

aIcL (w ( k  + 1)) - a l o g d e t  (w ( k  + 1)) - - 
aP ( k )  ap ( k )  

-E z = 1  a y , ( k +  1) ap(q  
a1ogq* (Y, ( k  + 1)) OYt ( k  + 1) 

m 

aTr (R; ( k  + 1)) a l o g d e t  (R; ( k  + 1)) 
_ -  

2 aP ( k )  
+- 

2 +(I;) 
(12) 

Substituting (9) into the first term on the right-hand side of 
(1 2) we have 

a l o g d e t W ( k + l )  a l o g d e t  
ap ( k )  {I + !J (/E) I1 - - 

aP (I;) 

(13) 

To compute the differential in (13), the determinant of the 
matrix must be evaluated [I  + p ( k )  [I - f ( y ( k ) ) y T ( k )  + 
I- R; ( k ) ]  }. This can be achieved using the result that the 
determinant of an m x m matrix equals the product of its m 
eigenvalues [5]. Then {I + p ( k )  [I - f ( y ( k ) ) y T ( k )  + I  - 
R; ( k ) ]  } has m - 1 eigenvalues equal to 1 + 2 p ( k ) ,  and 

oneequa i to l+p(k )  [ Z - ~ ~ ( k ) f ( y ( k ) ) - C p m , ~ e 3 " , ~ x  
zT (k) y ( k ) ]  [4], because the matrices f ( y ( k ) ) y T ( k )  and 
R; ( k )  are rank deficient, both of rank 1. Thus, letting 
elak =Cm *=1 e 3 a , k , ( 1 3 )  becomes 

a l o g d e t  W ( k  + 1) ~ 2 (m - 1) - 
8P ( k )  (1 + 

(2 - YT ( k )  f (Y ( k ) )  - ( k )  Y ( k ) )  
+ 1 + p ( 2  - y~ f ( y  ( k ) )  - e3akyT ( k )  y ( k ) )  

(14) 
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which holds for 0 < p (12) << 12- yT ( k )  f ( y  ( k ) )  

A similar approach is followed to evaluate the fourth term of 
(12), in which, from (2), R; ( k  + 1) can be replaced with 
W ( k  + 1) RE ( k  + 1) WT ( k  + 1).  Also, assuming that, 
for small learning rates 

-gakyT ( k )  Y (k)l [41. 

W ( k ) R z ( k + l ) W T ( k + l )  = R ; ( k + 1 )  (15) 

the derivative of logdet ( k  + 1) is given bq ) ,  

To evaluate the second term on the right-hand side of (12), 
we use f t  (y%) = -- 121 giving 

From (2) and (9), and using the approximation ( 1  1 )  we have 

y ( k t 1 )  -W(k)x(k+l)+p[I-f(y(k))yT(k)  

+ I  - R; ( k ) ]  Y ( k  + 1) (18) 

Differentiating and pre-multiplying by fT ( y  ( k  + l)), gives 

size algorithm is given by 

36 ( k  - 1) 1 
+ Z [ l  + p ( k ) b ( k  - 111 2 

- -Tr ([I - f ( y ( k  - 1)) 

x y T ( k  - 1) + I  - R; ( k  - 1)] R; ( k ) ) }  (21) 

As in [4], p ( k )  E [6,p,,], where 5 is a small positive 
constant preventing the adaptation of the learning rate from 
terminating entirely, and pmu represents an upper bound, 
controlling the size of p (k), thus ensuring stability of(21). 
Moreover, it is reported in [4] that, as with all gradient step- 
size methods, the greatest disadvantage of the above algo- 
rithm is the need to select an appropriate step-size parameter 
p. although simulations have shown in general that gradient 
step-size algorithms are relatively insensitive to its value. 
This applies also to (21). 

4.1. Complex CSNGA (CCSNGA) 

Extension ofthe cyclostationary NGA algorithm to the com- 
plex case is readily achieved by modifying (9), such that 
the transpose operator is replaced by the Hermitian trans- 
pose operator, and an appropriate phase preserving com- 
plex activation function g ( y  ( k ) )  is selected [6].  A common 
strategy is to employ so called split-complex non-linearities, 
suchasgi(yi(k))  = tanh(yifi(k))+jtanh(yi,(k))where 
y i ~  ( k )  and y i ~  (k) denote respectively the real and imagi- 
nary parts of yi ( k ) ,  when the sources are super-Gaussian, 
or as [3] gi (yi (k)) = yi ( k )  Iyi12 for the sub-Gaussian case. 
Thus, the leaming rule (9) becomes 

W ( k + l )  = w ( k ) + P ( k )  [ I - d Y ( k ) ) Y H ( k )  

+ I - R; ( k ) ]  w ( k )  (22) 

Extension ofthe adaptive step-size algorithm to the complex 
case follows from the same rules as above 

where (9) and (IS)  have been used. Substituting back into 
(IO), and letting b ( k  - 1) = ( 2  - YT ( k  - 1) f (Y ( k  - 1)) 
- P k y *  ( k  - 1) y ( k  - l)), the new gradient adaptive step- 

where Re {U} represents the real part of U .  The leaming 
rate must remain real valued to ensure the descent direction 
is not modified. 

V - 303 

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 7, 2010 at 10:28 from IEEE Xplore.  Restrictions apply. 



1 1  

1 2 -  

m Adaptive p(kI 
Fixed p 
Adapuve u(k) 

- 

02- 1m 2wo 3m 4 w o  5wo 

Sample number 
00 

16 

1~ 

EO8 

0 6  

0 4  

0 2  

- 

~ 

- 

- .  

Fig. 1. Average PIS obtained with CSNGA, for real sources 
and mixing matrix, and with fixed and adaptive leaming 
rate. adaptive leaming rate. 

Fig. 2. Average PIS obtained with CSNGA, for complex 
sources and a real mixing matrix, together with fixed and 

5. SIMULATIONS 6. CONCLUSIONS 

The behaviour ofthe CSNGA algorithm with gradient adap- 
tive step-size is illustrated by computer simulation. The 
sources are a sinusoidal noise signal ofnormalised frequency 
(407r-’, and two BPSK signals canying independent bi- 
nary data, and using sinusoidal carriers of frequencies Z(5n)- 
and (47r-’, The sources are mixed by a real matrix A for 
0 5 k < 2500, and by its transpose AT for k 2 2500, 
and zero mean white Gaussian noise is added, so that the 
SNR is I O  dB. Since the source signals and mixing matrix 
are real, the exponential function in equation (9) simplifies 
to a cosine function. The resulting mixtures are separated 
using CSNGA with fixed step-size parameter fi  equal to 
0.001, and with the adaptive Ieaming rate in (21), where 

Figure 1 shows that the average performance ofthe CSNGA 
algorithm improves considerably when the adaptive step- 
size method is employed, since the algorithm reacts quickly 
to the changes in the mixing channel. 

Next, two QPSK signals modulated by sinusoids of carrier 
frequencies Z(57r-I and (47r-’, and one complex sinu- 
soid offrequency (407r-I aremixed by areal instantaneous 
mixing channel which changes abruptly after 2500 samples. 
Complex valued circular zero mean white Gaussian noise 
is added such that the SNR is 10 dB. Separation is carried 
out using the complex CSNGA method, when the leaming 
rate is fixed p = 0.002, and when the adaptive step-size 
(23) is used, with p(0 )  = 0.002, p = 
and pmax = 0.005. Figure 2 shows that the adaptive step- 
size method tracks the changes in the mixing channel more 
quickly than the fixed step-size approach. In particular, the 
initial convergence speed, as well as the speed of conver- 
gence following the abrupt change, is found to increase. 

p(0 )  = 0.001, p = 1r7,  6 = and pmax = 0.005. 

6 = 

A normalised natural gradient algorithm for the separation 
of real and complex valued cyclostationary sources has been 
presented. Simulation results have shown that the algorithm 
leads to fast speed of convergence for both real and com- 
plex valued sources, and when the mixing matrix changes 
abruptly, and in general it improves the convergence prop- 
erties of the CSNGA approach. 

.’ 
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