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We propose a new method for blind source separation of cyclostationary sources, whose cyclic frequencies are unknown and
may share one or more common cyclic frequencies. The suggested method exploits the cyclic correlation function of observation
signals to compose a set of matrices which has a particular algebraic structure.The aforesaid matrices are automatically selected by
proposing two new criteria.Then, they are jointly diagonalized so as to estimate themixingmatrix and retrieve the source signals as
a consequence. The nonunitary joint diagonalization (NU-JD) is ensured by Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
which is the most commonly used update strategy for implementing a quasi-Newton technique. The efficiency of the method is
illustrated by numerical simulations in digital communications context, which show good performances comparing to other state-
of-the-art methods.

1. Introduction

The target of blind source separation (BSS) is to retrieve the
input signals called sources from their mixtures coming to
multiple sensors without any preknowledge about themixing
process. BSS is a major problem of signal processing which
has been addressed in the last three decades (see [1] for a
review). In literature, many approaches have been developed
in order to figure out this issue using statistics of second
and fourth order, namely, Second-Order Blind Identifica-
tion (SOBI) [2] and Joint Approximate Diagonalization of
Eigen matrices (JADE) [3]. These approaches have proved
to establish some limitations in a wide scope of practical
situations where the source signals are nonstationary and
very often cyclostationary such as radiocommunications,
telemetry, radar applications, and mechanics [4]. In fact,
according to Ferreol in [5], the stationarity assumption of
source signals performs ineffectively BSS problem.

Cyclostationarity is a subclass of nonstationarity which
distinguishes stochastic processes whose statistics change
periodically with time. Thus, it is necessary to consider
cyclostationarity to perform BSS. Many methods have been
proposed to blindly achieve the separation for cyclostationary
sources. Brahmi et al. have solved the problem of blind iden-
tification of FIR MIMO systems driven by cyclostationary
inputs whose cyclic frequencies are pairwise distinct using
joint block diagonalization based on BFGS method in [6].
Liang et al. in [7] use the information provided from the
cyclic frequencies so as to separate source signals. Abed-
Meraim et al. [8] address the problem of BSS assuming
that the source signals are cyclostationary based on an
iterative algorithm using the cyclic correlation function of
observation signals. This method is useful when each source
signal has only one cyclic frequency and the number of the
source signals which share a common cyclic frequency is
known. Ghennioui et al. [9] have proposed a new approach
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combining a nonunitary joint diagonalization algorithm to
a general automatic matrices selection procedure for the
case of unknown and different cyclic frequencies. Ghaderi
et al. present in [10] a method for blind source extraction of
cyclostationary sources, whose cyclic frequencies are known
and share some common ones. Jafari et al. in [11, 12]
propose an adaptive blind source separation algorithm for the
separation of convolutive mixtures of cyclostationary signals
based on natural gradient algorithm. The aforementioned
algorithm requires estimating the cycle frequencies of source
signals. Boustany and Antoni [13] propose a method for
blind extraction of one cyclostationay signal using a subspace
decomposition of the observation signals via their cyclic
statistics. Capdessus et al. [14] propose an algorithm for the
extraction a signal of interestwhich is cyclostationary one and
its cyclic frequency is a priori known.This algorithm relies on
second-order statistics of the observation signals. Rhioui et al.
propose in [15] a method for the mixing matrix identification
for underdeterminedmixtures of cyclostationary signals with
different cyclic frequencies. Jallon and Chevreuil [16] have
come up with a justification for using the common algorithm
for the cyclostationary context despite the fact that it has been
originally developed for the stationary one. Pham [17] has
proposed a new approach based on joint diagonalization of
a set of cyclic spectral density of observation matrices. The
two last approaches are addressed in the simplest mixture
model (noise-free data). Despite the fact that these algorithms
are successful under assumed conditions, they have diverse
limitations, since, in front of real situations, the cyclic
frequencies in most of cases are unknown and may be shared
by source signals.

The main purpose of this work is to perform blind sep-
aration of instantaneous mixtures of cyclostationary source
signals which may share one or more common cyclic fre-
quencies whose preknowledge is not needed. By exploiting
the particular structure of cyclic correlation matrices of
source signals, we show that the considered problem can be
rephrased as a problem of joint diagonalization of matrices
that have been automatically selected using a new procedure.
Then, the joint diagonalization algorithm based on BFGS
method [18] is applied on this set of matrices. The rest of
this paper is organized as follows. Section 2 formulates the
problem of interest. Section 3 puts forward some theoretical
preliminaries related to cyclostationarity and NU-JD. Sec-
tion 4 describes the proposed method for BSS. In Section 5,
the performances of the proposed method are numerically
evaluated and compared with other existing methods in
digital telecommunications context. Finally, in the Section 6,
conclusions are drawn.

2. Problem Statement

TheBSS problem can bemodelled in a simple linear instanta-
neousmixture of 𝑛 emitted source signals that are received by𝑚 sensors (see Figure 1). The relationship of mixing system is
given by

x (𝑡) = As (𝑡) + b (𝑡) , (1)
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Figure 1: The relationship between sources and observations.

where x(𝑡) ∈ C𝑚 is the observations vector, s(𝑡) ∈ C𝑛 is the
vector of unknown source signals, b(𝑡) ∈ C𝑚 is the additive
noise vector, and A ∈ C𝑚×𝑛 is the unknown mixing matrix.
The purpose of BSS is to find an estimate Ã of A and retrieve
s(𝑡) from x(𝑡) only, as

s̃ (𝑡) = Ã#x (𝑡) = PΔ diag (𝑒−𝑗Φ) s (𝑡) , (2)

where 𝑗2 = −1, (⋅)# denotes pseudoinverse matrix, P is a
permutation matrix (corresponding to an arbitrary order
of restitution of the sources), Δ is a diagonal matrix (cor-
responding to arbitrary scaling for the recovered sources),
Φ = [𝜙1, . . . , 𝜙𝑛]𝑇, ∀𝜙𝑖 ∈ R represents the phase vector
(corresponding to phase shift ambiguity in complex domain
of the source signals), and diag(a) is square diagonal matrix
containing the elements of the vector a.Thus, one should look
for a separating matrix Ã# such that

Ã#A = PΔ diag (𝑒−𝑗Φ) . (3)

The following assumptions are held in this paper:

(A1) The mixing matrix A has full column rank (𝑚 ≥ 𝑛).
(A2) The source signals are zero-mean, cyclostationary,

andmutually uncorrelated andmay share one ormore
common cyclic frequencies.

(A3) The noise signals b(𝑡) are stationary, zero-mean
random signals, and mutually uncorrelated with the
source signals.

3. Some Recalls

3.1. Cyclostationary Signals. Cyclostationary signals are fre-
quent random signals with statistical parameters that alter in
periodic manner in time. A coupling of stationary random
process with a deterministic periodic one gives rise to a
cyclostationary process (see Figure 2).

A time process {𝑥(𝑡)} is first-order cyclostationary, if its
first-order moment is 𝑇 periodic:

m𝑥 (𝑡) = E {𝑥 (𝑡)} = E {𝑥 (𝑡 + 𝑇)} . (4){𝑥(𝑡)} is second-order cyclostationary, if its second-order
moments are 𝑇 periodic:

R𝑥 (𝑡, 𝜏) = E {𝑥 (𝑡 + 𝜏2) 𝑥∗ (𝑡 − 𝜏2)} = R𝑥 (𝑡, 𝜏 + 𝑇) , (5)
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Figure 2: Cyclostationary process.

where E{⋅} is themathematical expectation and the (∗) stands
for complex conjugation. In this case, the correlation function
is decomposed into Fourier series as follows:

R𝑥 (𝑡, 𝜏) = ∑
𝜉

R𝜉𝑥 (𝜏) 𝑒𝑗2𝜋𝜉𝑡, (6)

with

R𝜉𝑥 (𝜏) = lim
𝑇→∞

1𝑇 ∫𝑇/2−𝑇/2 R𝑥 (𝑡, 𝜏) 𝑒−𝑗2𝜋𝜉𝑡d𝑡, (7)

where R𝜉𝑥(𝜏) is the cyclic autocorrelation function with 𝜏 as
the time lag and 𝜓 = {𝜉 = 𝑞/𝑇, 𝑞 ∈ Z} as the cyclic
frequencies set. In the frequency domain, cyclostationary
signals are characterised by the spectral correlation density
(SCD), which is nothing but the Fourier transform of the
cyclic autocorrelation function defined as

S𝜉x (𝑓) = ∑
𝜏

R𝜉x (𝜏) 𝑒−𝑗2𝜋𝑓𝜏. (8)

We note a spectral repetition of cyclostationary signals due
to the correlation between their spectral components at a
specified frequency from each other which is the cyclic
frequency.

3.2. Nonunitary Joint Diagonalization of Matrices. We con-
sider a set of𝐾 (𝐾 ≥ 2) real or complex squarematrices sized(𝑚 ×𝑚),M = {Λ1, . . . ,Λ𝐾} which are decomposed such that

Λ𝑖 = AD𝑖A
𝐻,

or D𝑖 = BΛ𝑖B
𝐻, (9)

where (⋅)𝐻 stands for the transpose conjugate operator. The
matrices D𝑖 sized (𝑛 × 𝑛) are diagonal ones, A is a (𝑚 ×𝑚) full column rank matrix, and B is its Moore-Penrose
pseudoinverse. The NU-JD problem consists of estimating
the matrix A from only the matrix set M. It is worth noting
that, in practice, the set of matrices is built by some sample
estimated statistics that are corrupted by estimation errors
due to noise and finite sample size effects.Thus, they are only
approximately jointly diagonalizable. The NU-JD problem

could be solved by considering the following cost function
introduced in [19]:

Fjd (B) = 𝐾∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩Off diag {BΛ𝑖B𝐻}󵄩󵄩󵄩󵄩󵄩2𝐹 , (10)

where ‖ ⋅ ‖2𝐹 stands for the Frobenius norm and Off diag{⋅}
denotes the zero-diagonal operator (see Appendix).

4. Suggested Method

4.1. Our Approach. From (1), it can be easily shown that the
cyclic correlation matrix of observation signals x(𝑡) has the
following decomposition:

R𝜉x (𝜏) = AR𝜉s (𝜏)A𝐻 + R𝜉b (𝜏) , (11)

where (⋅)𝐻 is the conjugate transpose operator and R𝜉s(𝜏)
(resp.,R𝜉b(𝜏)) is the cyclic correlationmatrix of source signals
(resp., noise signals). The expression of R𝜉b(𝜏) can be further
developed. Knowing that the noise is stationary and using (7),
we have

R𝜉b (𝜏) = Rb (𝜏) 𝛿 (𝜉) , (12)

where

𝛿 (𝜉) = lim
𝑇→∞

1𝑇 ∫𝑇/2−𝑇/2 𝑒−𝑗2𝜋𝜉𝑡d𝑡. (13)

This implies that

𝛿 (𝜉) = {{{1 if 𝜉 = 00 else. (14)

Therefore, if 𝜉 ̸= 0, then
R𝜉x (𝜏) = AR𝜉s (𝜏)A𝐻. (15)

Practically, the matrix R𝜉s(𝜏) has one of the following struc-
tures:

(a) If the source signals have pairwise distinct cyclic
frequencies, then R𝜉s(𝜏) is a diagonal matrix with
only one nonnull element corresponding to the 𝑖th
source at 𝜉𝑖 (for this kind of structure, using R𝜉x(𝜏),
a detection procedure has been proposed in [20]).

(b) If the source signals share one or more cyclic fre-
quencies, then R𝜉s(𝜏) at these shared frequencies is a
diagonal matrix with 𝑛 nonnull elements which is our
case of interest.

Thus, we propose to diagonalize jointly the set of cyclic
correlation matrices of observation signals R𝜉x(𝜏) at different
time lags and cyclic frequencies (𝜉 ̸= 0). The question now
being asked is the following: how to compose the matrices set
Mjd to be joint diagonalized?
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4.2. New Criteria for Set Construction. It has to be noted
that the preknowledge of the cyclic frequencies of source
signals s(𝑡) is not required even if such a thing facilitates
the resolution of BSS issue. As a matter of fact, we could
take advantage of the particular algebraic structure of the
matrix R𝜉s(𝜏) to perform BSS. When the cyclic frequencies
are unknown, we calculate R𝜉x(𝜏) for an enough number
of frequency bins in order to ensure sweeping almost all
the cyclic frequencies of source signals; then, we use a
new detection procedure to select the matrices R𝜉x(𝜏) which
correspond to the structure (b). In otherwords, the procedure
has to detect matrices R𝜉x𝑏(𝜏) = WR𝜉x(𝜏)W𝐻 (W is 𝑛 × 𝑚
whitening matrix such that WAA𝐻W𝐻 = I𝑛) which have
the same number 𝑛 of eigenvalues as R𝜉s(𝜏) since all source
signals are present at a given common cyclic frequency. One
possible way to blindly access to diagonal terms of R𝜉s(𝜏)
consists in computing the eigenvalues ofR𝜉x𝑏(𝜏). In fact, using
the whitening matrix definition in [3], we have

eig (R𝜉x𝑏 (𝜏)) = eig (WAR𝜉s (𝜏)A𝐻W𝐻)= eig (R𝜉s (𝜏)) = [𝜃1, . . . , 𝜃𝑛]𝑇 , (16)

where the vector eig(M) contains the eigenvalues of the
square matrix M, WA is an unitary matrix, and 𝜃𝑖, for 𝑖 =1, . . . , 𝑛 are the eigenvalues of R𝜉s(𝜏). Therefore, we propose
the following new criteria:

C1 = ∑𝑛𝑖=1 (𝜃𝑖)2󵄩󵄩󵄩󵄩󵄩R𝜉x𝑏 (𝜏)󵄩󵄩󵄩󵄩󵄩2𝐹 ≥ 1 − 𝜀, (17)

where 𝜀 is positive constant. One can note using the invari-
ance property of the Frobenius norm under an unitary
transformation that ‖R𝜉x𝑏(𝜏)‖2𝐹 = ‖R𝜉s(𝜏)‖2𝐹. IdeallyC1 equals 1.
However, in practice, the matrices R𝜉s(𝜏) can never be strictly
diagonal. Thus, matrices R𝜉x𝑏(𝜏) should be selected as C1 ≥1 − 𝜀 with 𝜀 close to zero. Furthermore, in order to detect the
matrices where all source signals are present inmain diagonal
of R𝜉s(𝜏) and to avoid the low energy matrices R𝜉x𝑏(𝜏), we add
to C1:

C2 = det (R𝜉x𝑏 (𝜏)) = det (R𝜉s (𝜏)) ≥ 𝜂, (18)

where det(⋅) denotes the matrix determinant and 𝜂 is a small
positive constant. Finally, if a givenR𝜉x𝑏(𝜏) satisfiesC1 andC2,
then it is retained. Once the matrices set is built, it is directly
joint diagonalized. The set size of the selected matrices is
related to the choice of the threshold values of 𝜀 and 𝜂 and
affects directly the separation quality. However, when the
cyclic frequencies are a priori known, the operation is much
more easier; it is reduced to computing R𝜉x(𝜏) at different
time lags for each cyclic frequency {𝜉𝑖/ 𝑖 = 1, . . . , 𝑛} then to
diagonalize simultaneously the set built

Mjd = {R𝜉𝑖x (𝜏1) , . . . ,R𝜉𝑖x (𝜏max)} . (19)

The joint diagonalization is ensured by the BFGS method
which will be detailed in the following subsection.

4.3. BFGS Based NU-JD Algorithm. We use the coming cost
function to figure out the NU-JD problem:

Fjd (B) = 𝐾∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩Off diag {BR𝜉𝑖x (𝜏𝑖)B𝐻}󵄩󵄩󵄩󵄩󵄩2𝐹 , (20)

where R𝜉𝑖x (𝜏𝑖) is the 𝑖th matrix which belongs to the set Mjd
to be joint diagonalized. We propose an approach based on
a BFGS method with an exact computation of the optimal
step-size. It estimates the joint diagonalizer matrix B ∈ C𝑛×𝑚
by minimizing problem given in (20). The BFGS method
requires the gradient and the Hessian of the cost function to
be computed at each iteration.

4.3.1. Algorithm Principle. From initial guesses B(0) and
He(0) and a given number of iterations 𝑛iter, the following
instructions are iterated until B(𝑘) converges to the solution.

(S1) Look for a search direction d(𝑘−1) by solving

d(𝑘−1) = −He−1(𝑘−1)∇𝑎Fjd (B(𝑘−1)) . (21)

(S2) Perform a line search to find the optimal step-size𝛼 (positive, a small enough number) in the previous
direction (found in the first step).
(S3) Update

B(𝑘) = B(𝑘−1) + 𝛼d(𝑘−1). (22)

(S4) Set

s(𝑘−1) = 𝛼d(𝑘−1);
y(𝑘−1) = ∇𝑎Fjd (B(𝑘)) − ∇𝑎Fjd (B(𝑘−1)) . (23)

(S5) Using the rank-one updates using gradient eval-
uations, the Hessian matrix is estimated as follows:

He(𝑘) = He(𝑘−1) + y(𝑘−1)y𝑇(𝑘−1)
y𝑇(𝑘−1)s(𝑘−1)

− He(𝑘−1)s(𝑘−1)s𝑇(𝑘−1)He(𝑘−1)
s𝑇(𝑘−1)He(𝑘−1)s(𝑘−1)

,
𝑘 = 1, . . . , 𝑛iter.

(24)

[⋅]−1 and [⋅]𝑇 denote the inverse and transpose of a matrix,
respectively, ∇𝑎Fjd(B) is the complex absolute gradient
matrix of the cost function given in (20) which is defined as
(see [21])

∇𝑎Fjd (B) = 2𝜕Fjd (B)𝜕B∗ , (25)

where B∗ stands for the complex conjugate of the com-
plex matrix B and 𝜕/𝜕B∗ is the partial derivative operator.
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∇𝑎Fjd(B) was calculated earlier in [19] and found to be equal
to∇𝑎Fjd (B)

= 2 𝐾∑
𝑖=1

[Off diag {BR𝜉𝑖x (𝜏𝑖)B𝐻}BR𝜉𝑖x (𝜏𝑖)𝐻]
+ 2 𝐾∑
𝑖=1

[(Off diag {BR𝜉𝑖x (𝜏𝑖)B𝐻})𝐻 BR𝜉𝑖x (𝜏𝑖)] ,
(26)

where 𝐾 is the number of selected matrices to be block
joint diagonalized. It is worth mentioning that He(0) can be
initializedwith the identitymatrix andB(0) has to be full-rank
matrix chosen differently from the zeromatrix as it is a trivial
solution of (20).

4.3.2. Seek the Optimal Step-Size. It is taken for granted that
finding a good step-size 𝛼 in search direction is critical issue
for decreasing the total number of iterations to reach con-
vergence. The enhanced line search consists of minimization
Fjd(B(𝑘)) with respect to 𝛼. For simplicity, we prefer to hide
the dependency upon the iteration 𝑘. It is amatter of standard
algebraic manipulations to show that Fjd(B(𝑘)) is a 4th-
degree polynomial in 𝛼 whose expression is

Fjd (B) = 𝑎𝛼4 + 𝑏𝛼3 + 𝑐𝛼2 + 𝑑𝛼 + 𝑒, (27)

where its coefficients are given by

𝑎 = 𝐾∑
𝑖=1

tr [M3Off diag {M𝐻3 }] ,
𝑏 = − 𝐾∑
𝑖=1

tr [M0Off diag {M𝐻3 }] − tr [M3M2] ,
𝑐 = 𝐾∑
𝑖=1

tr [M𝐻1 Off diag {M𝐻3 } +M3Off diag {M1}]
+ tr [M0M2] ,

𝑑 = − 𝐾∑
𝑖=1

tr [M𝐻1 M2] − tr [M0Off diag {M1}] ,
𝑒 = 𝐾∑
𝑖=1

tr [M𝐻1 Off diag {M1}] ,
M0 = R𝜉𝑖x (𝜏𝑖)𝐻 Γ𝐻B + R𝜉𝑖x (𝜏𝑖)𝐻 B𝐻Γ,
M1 = BR𝜉𝑖x (𝜏𝑖)B𝐻,
M2 = Off diag {ΓR𝜉𝑖x (𝜏𝑖)B𝐻}+Off diag {BR𝜉𝑖x (𝜏𝑖) Γ𝐻} ,
M3 = ΓR𝜉𝑖x (𝜏𝑖)𝐻 ΓH,

(28)

Table 1: The gradient matrix computational cost.

Case Cost per iteration𝑚 ̸= 𝑛 4𝐾𝑛𝑚(𝑚 + 𝑛) + 2𝐾𝑛2𝑚 ≫ 𝑛 4𝐾𝑛𝑚2𝑚 = 𝑛 8𝐾𝑛3 + 2𝐾𝑛2
Table 2: The computational cost of the optimal step-size.

Case Cost per iteration𝑚 ̸= 𝑛 24𝐾𝑚𝑛(𝑚 + 𝑛) + 9𝐾𝑛2(1 + 𝑛)𝑚 ≫ 𝑛 24𝐾𝑚2𝑛𝑚 = 𝑛 57𝐾𝑛3 + 9𝐾𝑛2
Table 3: The BFGS algorithm computational cost.

Case Cost per iteration𝑚 ̸= 𝑛 24𝐾𝑚𝑛(𝑚 + 𝑛) + 9𝐾𝑛2(1 + 𝑛)𝑚 ≫ 𝑛 24𝐾𝑚2𝑛𝑚 = 𝑛 57𝐾𝑛3 + 9𝐾𝑛2
with tr[⋅] denoting the trace operator and Γ = He−1∇𝑎Fjd(B).
The optimal 𝛼 can be found by polynomial rooting of the
derivative third-order polynomial, namely, by solving with
respect to 𝛼,𝜕Fjd (B)𝜕𝛼 = 0 ⇐⇒ 4𝑎𝛼3 + 3𝑏𝛼2 + 2𝑐𝛼 + 𝑑 = 0, (29)

to which there is three roots, the true minimum can be found
by substituting each root back into the polynomial given in
(27) and selecting the solution that gives the littlest value.

4.3.3. Algorithmic Complexity. For the gradientmatrix whose
expression is given in (26), the computational cost is given
by Table 1. The computational cost of the optimal step-
size is ruled by the computation of the five coefficients of
the 4th-degree polynomial; its amount is shown in Table 2.
Therefore, the computational cost of BFGS algorithm is given
by Table 3. Finally, notice that the global complexity of the
BFGS algorithm has to be multiplied by the overall iterations
number 𝑁𝑖 required to attain the convergence. In practical
applications, the computational time necessary to build the
set of the𝐾matrices should be counted too.

4.4. Summary. The principle proposed is summarized in
Algorithm 1.

5. Numerical Simulations

We present simulations to illustrate the effectiveness of the
proposed method in the BSS context. We consider two
amplitude-modulated source signals defined as

s𝑖 (𝑡) = ∑
𝑘∈Z

a𝑖 (𝑘) g (𝑡 − 𝑘𝑇𝑖) cos (2𝜋𝑓𝑖𝑡 + 𝜙𝑖) , (30)
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Set building:
(i) Detect the useful matrices R𝜉𝑋(𝜏) using the selection procedure;
(ii) Compute the set matricesMjd for each cyclic frequency 𝜉𝑖:
Mjd = {R𝜉𝑖x (𝜏1), . . . ,R𝜉𝑖x (𝜏max)};
Initialization:
(i) Given an initial guess B(0) and an approximate HessianHe(0);
(ii) Given the number of iterations 𝑛iter;
(iii) Given a small positive threshold 𝜖;
for 𝑘 ← 1, 𝑛iter do
Compute ∇𝑎Fjd(B) whose expression is given by Eq. (26);
Perform a line search to find the optimal step-size 𝛼;
Set B(𝑘) ← B(𝑘−1) − 𝛼He−1(𝑘−1)∇𝑎Fjd(B(𝑘−1));
ComputeHe(𝑘) whose expression is given by Eq. (24);
if |B(𝑘) − B(𝑘−1)| ≤ 𝜖 then
break;

end if
end for

Algorithm 1: Summary of the proposed method.

where a𝑖=1,2(𝑘) are i.i.d and zero-mean random binary
sequences, 𝑇𝑖=1,2 represent the symbol periods, they are,
respectively, equal to 𝑇1 = 10 and 𝑇2 = 8, 𝑓𝑖=1,2 = 0.2 are the
normalized carrier frequencies, 𝜙𝑖=1,2 are the carrier phases,
they, respectively, equal 𝜙1 = 𝜋/6 and 𝜙2 = 𝜋/8, and g(𝑛) is a
triangular waveform such that

g (𝑛) = {{{{{{{{{{{{{
2𝑇𝑛 if 0 ≤ 𝑛 ≤ 𝑇2− 2𝑇𝑛 + 2 if 𝑇2 + 1 ≤ 𝑛 ≤ 𝑇 − 10 else. (31)

The source signals share the cyclic frequencies 𝑓1 = 𝑓2 = 0.2,5𝑓1 = 10/𝑇1 = 8/𝑇2 = 1, and their multiples. The mixing
matrices were randomly generated.We useA1 in the first two
simulations and A2 in the last one:

A1 = (0.5599 0.40700.2899 0.84310.9415 0.3397) ,
A2 = (0.8400 0.99710.7035 0.1965) .

(32)

The signal-to-noise ratio (SNR) is computed as SNR =−10 log10(𝜎2𝑏). We assume that the source cyclic frequencies
are unknown and consequently we use the detection pro-
cedure described in (17) and (18) with 𝜀 = 10−3 and 𝜂 =10−1 for all simulations to construct the set of matrices to
be joint diagonalized which correspond to the source cyclic
correlationmatricesR𝜉s(𝜏)with a diagonal structure. In order

to evaluate the quality of the estimation, one can measure the
Moreau-Amari index presented in [22] defined as

𝐼perf = 1𝑛 (𝑛 − 1) [[ 𝑛∑𝑖=1( 𝑛∑𝑗=1
󵄩󵄩󵄩󵄩󵄩𝑧𝑖,𝑗󵄩󵄩󵄩󵄩󵄩2𝐹

maxℓ
󵄩󵄩󵄩󵄩𝑧𝑖,ℓ󵄩󵄩󵄩󵄩2𝐹 − 1)

+ 𝑛∑
𝑗=1

( 𝑛∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝑧𝑖,𝑗󵄩󵄩󵄩󵄩󵄩2𝐹
maxℓ

󵄩󵄩󵄩󵄩󵄩𝑧ℓ,𝑗󵄩󵄩󵄩󵄩󵄩2𝐹 − 1)]] ,
(33)

where 𝑧𝑖,𝑗 is the (𝑖, 𝑗)th element of Z = BA. The closer to
zero in linear scale (−∞ in logarithmic scale), the higher
the separation accuracy. Regarding the charts, 𝐼perf (⋅) is
given in decibel and estimated by averaging 100 independent
trials. The proposed method JDBFGS is compared to two
types of methods. The first one is based on unitary joint
diagonalization algorithms: JADE, while the second one is
based on the nonunitary joint diagonalization using the
optimal gradient descent JDGRAD [9]. Figures 3 and 4 show
that the proposed algorithm takes the lead ahead of its
competitors in all two cases of the mixing matrix (𝑚 > 𝑛 or𝑚 = 𝑛). In addition, one can notice in Figure 3 that when
the number of selected matrices to be joint diagonalized gets
bigger, the performances are better, while the computational
cost steps up. The performances clearly increase when the
signal-to-noise ratio gets higher.

6. Conclusion

To conclude, we have proposed a new approach dedicated to
blindly separating instantaneous mixtures of cyclostationary
sources. It operates into three steps: first, we compute the
cyclic autocorrelation matrices of observation signals, then,
a new detection procedure is used to select specific matrices,
and finally a nonunitary joint diagonalization algorithm
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Figure 3: Performance index versus SNR (a) and versus number of selected matrices (b) with A1.
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Figure 4: Performance index versus SNR with A2.

based on BFGS method is employed to estimate the mixing
matrix and recover the sources. One of the main advantages
of such an approach is that it applies for source signals
which may share one or more common cyclic frequencies.
Extensions for further research would be to undertake the
blind separation of convolutive mixtures of cyclostationary
sources.

Appendix

A. Definitions and Properties

Let us consider three (𝑚×𝑚) square matricesΘ1,Θ2, andΘ3
and two rectangular matricesΘ4 (𝑚×𝑛) andΘ5 (𝑛×𝑚) and a
square 𝑛 × 𝑛matrix Θ6. The following properties introduced
in [21] are used in the coming developments:

(P1) ‖Θ1‖2𝐹 = tr{Θ𝐻1 Θ1}.
(P2) ‖Off diag{Θ1}‖2𝐹 = tr{Θ𝐻1 Off diag{Θ1}}.
(P3) tr{Θ1} = tr{Θ𝑇1 }.
(P4) tr{Θ1 +Θ2} = tr{Θ1} + tr{Θ2}.
(P5) tr{Θ1Θ2Θ3} = tr{Θ3Θ1Θ2} = tr{Θ2Θ3Θ1}.
(P6) tr{Θ𝐻1 Θ2} = (vec{Θ1})𝐻vec{Θ2}.
(P7) vec{Off diag{Θ6}} = TOffvec{Θ6}.
(P8) vec{Θ1Θ2Θ3} = Θ𝑇3 ⊗Θ1vec{Θ2}.(P9) (Θ1 ⊗Θ2)𝐻 = Θ𝐻1 ⊗Θ𝐻2 ,

where ⊗ denotes Kronecker product, vec{⋅} is the vectoriza-
tion operator which when it is applied on a given square
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matrix C ∈ C𝑚×𝑚, it concatenates its columns in a column
vector𝑚2 × 1 such that

C =(
(

𝑐11 𝑐12 ⋅ ⋅ ⋅ 𝑐1𝑚𝑐21 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ...... ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ...𝑐𝑚1 𝑐𝑚2 ⋅ ⋅ ⋅ 𝑐𝑚𝑚
)
)

󳨐⇒ vec (C)

=
((((((((((((
(

𝑐11...𝑐𝑚1𝑐12...𝑐𝑚2...𝑐𝑚𝑚

))))))))))))
)

.
(A.1)

TOff denotes the (𝑛2 ×𝑛2) “transformation” matrix defined as

Tdiag = diag {vec {diag {1𝑛}}} ,
TOff = I𝑛2 − Tdiag, (A.2)

where 1𝑛 is the (𝑛 × 𝑛) matrix whose all elements equal 1, I𝑛2
is the (𝑛2×𝑛2) identity matrix, diag{⋅} and Off diag{⋅} are two
matrix operators defined as

diag {C} =(
(

𝑐11 0 ⋅ ⋅ ⋅ 00 𝑐22 d
...... d d
...0 0 ⋅ ⋅ ⋅ 𝑐𝑚𝑚
)
)

.
Off diag {C} = C − diag {C}

=(
(

0 𝑐12 ⋅ ⋅ ⋅ 𝑐1𝑚𝑐21 d d
...... d d
...𝑐𝑚1 𝑐𝑚2 ⋅ ⋅ ⋅ 0
)
)

,
(A.3)

B. Coefficients of the 4th-Degree Polynomial

As we highlighted previously, we prefer to hide the depen-
dency upon the iteration 𝑘 for simplicity. Using properties P2
and P6, the cost functionFjd(B) is expressed as

Fjd (B) = 𝐾∑
𝑖=1

(vec {BR𝜉𝑖x (𝜏𝑖)B𝐻})𝐻× vec {Off diag {BR𝜉𝑖x (𝜏𝑖)B𝐻}} . (B.1)

From properties P7, P8, and P9, we find that

Fjd (B) = 𝐾∑
𝑖=1

(vec {R𝜉𝑖x (𝜏𝑖)})𝐻 B𝑇 ⊗ B𝐻TOffB
∗

⊗ Bvec {R𝜉𝑖x (𝜏𝑖)} . (B.2)

Let us introduce the four followingmatricesM0,M1,M2, and
M3:

M0 = R𝜉𝑖x (𝜏𝑖)𝐻 Γ𝐻B + R𝜉𝑖x (𝜏𝑖)𝐻 B𝐻Γ,
M1 = BR𝜉𝑖x (𝜏𝑖)B𝐻,
M2 = Off diag {ΓR𝜉𝑖x (𝜏𝑖)B𝐻}+Off diag {BR𝜉𝑖x (𝜏𝑖) Γ𝐻} ,
M3 = ΓR𝜉𝑖x (𝜏𝑖)𝐻 Γ𝐻.

(B.3)

In the same way, we substitute B − 𝛼He−1∇𝑎Fjd(B) for B;
therefore we find that

Fjd (B − 𝛼He−1∇𝑎Fjd (B))
= 𝛼4 𝐾∑
𝑖=1

tr [M3Off diag {M𝐻3 }]
− 𝛼3 𝐾∑
𝑖=1

tr [M0Off diag {M𝐻3 }] − tr [M3M2]
+ 𝛼2 𝐾∑
𝑖=1

tr [M𝐻1 Off diag {M𝐻3 }
+M3Off diag {M1}] + tr [M0M2]
− 𝛼 𝐾∑
𝑖=1

tr [M𝐻1 M2] − tr [M0Off diag {M1}]
+ 𝐾∑
𝑖=1

tr [M𝐻1 Off diag {M1}] = 𝑎𝛼4 + 𝑏𝛼3 + 𝑐𝛼2
+ 𝑑𝛼 + 𝑒.

(B.4)

As a result, (B.4) is nothing but a fourth-degree polyno-
mial in 𝛼.
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