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DIRECTION FINDING ESTIMATORS OF
CYCLOSTATIONARY SIGNALS IN ARRAY PROCESSING

FOR MICROWAVE POWER TRANSMISSION

B. Shishkov, K. Hashimoto, H. Matsumoto, N. Shinohara, T. Mitani

A solar power satellite is paid attention to as a clean, inexhaustible large-
scale base-load power supply. The following technology related to beam
control is used: A pilot signal is sent from the power receiving site and after
direction of arrival estimation the beam is directed back to the earth by
same direction. A novel direction-finding algorithm based on linear predic-
tion technique for exploiting cyclostationary statistical information (spatial
and temporal) is explored. Many modulated communication signals exhibit
a cyclostationarity (or periodic correlation) property, corresponding to the
underlying periodicity arising from carrier frequencies or baud rates. The
problem was solved by using both cyclic second-order statistics and cyclic
higher-order statistics. By evaluating the corresponding cyclic statistics of
the received data at certain cycle frequencies, we can extract the cyclic corre-
lations of only signals with the same cycle frequency and null out the cyclic
correlations of stationary additive noise and all other co-channel interfer-
ences with different cycle frequencies. Thus, the signal detection capabil-
ity can be significantly improved. The proposed algorithms employ cyclic
higher-order statistics of the array output and suppress additive Gaussian
noise of unknown spectral content, even when the noise shares common
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cycle frequencies with the non-Gaussian signals of interest. The proposed
method completely exploits temporal information (multiple lag τ), and also
can correctly estimate direction of arrival of desired signals by suppressing
undesired signals. Our approach was generalized over direction of arrival es-
timation of cyclostationary coherent signals. In this paper, we propose a new
approach for exploiting cyclostationarity that seems to be more advanced in
comparison with the other existing direction finding algorithms.

1. Introduction

Radio waves can benefit the welfare of humanity through other purposes than
communications. Microwave Power Transmission (MPT) is one of the new tech-
nological frontiers. Solar Power Satellites (SPS) will provide a clean and limitless
energy resource from space through this technique [20]. However to develop
successfully this new and promising technology we have to rely on the latest
achievements of communications theory.

In [14, 15] a beam-control system for MPT with spread-spectrum pilot signals
is developed for the Space Solar Power Systems (SSPS). The spread-spectrum
modulation is used to differentiate pilot signals sent from power receiving sites
from other interference signals. The arrival direction is estimated from the phase
difference between two antenna elements after dispreading the spread-spectrum
modulation. In these two papers they propose a new system where a single
frequency can be used for both monochromatic power transmission and as a
carrier of the pilot signal. Antennas are shared for both power transmission and
pilot-signal reception. See also [34, 39] about design and optimal beamforming
of large antenna arrays for MPT.

The problem of beam-control in MPT is of paramount importance for this
new and promising technology and in this paper we approach it in another way
than that in [14, 15]. A novel direction-finding algorithm based on linear predic-
tion technique for exploiting cyclostationary statistical information (spatial and
temporal) is explored.

Due to the rapid increase in the number of users of mobile communications in
recent years and limitations of the available frequency bands as a consequence, the
applications of array beamforming techniques have gained attractive attention to
enhance the desired signals and reduce the unavoidable presence of interference.
By using adaptive beamforming one can modify the array outputs to enhance the
desired signal reception and simultaneously suppress the undesired ones. At this
the knowledge of the number of the Signals Of Interest (SOI) and their Direction
Of Arrival (DOA) is of great importance.
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Conventional array processing methods basically rely on the spatial properties
(e.g., spatial delay) of the signals impinging on an array of sensors. The scenario
that most conventional algorithms assume is that the sources under considera-
tion are narrow band having the same center frequency, and that their temporal
samples are uncorrelated. With this assumptions, in the now familiar subspace
formulation (see, e.g., [22, 41, 42]), the data vector from each source spans a
one-dimensional subspace and the DOA estimation problem then becomes one of
finding the signal subspace.

Many algorithms, e.g., MUltiple SIgnal Classification (MUSIC) and Estima-
tion of Signal Parameters via Rotational Invariance Techniques (ESPRIT) [31, 25]
have been proposed to estimate the DOA by searching for the signal subspaces.
One shortcoming of the above approaches is that they ignore the temporal proper-
ties of the SOI. Nevertheless, it is very difficult, in general, to combine efficiently
the temporal and spatial information of the signals in determining the source
DOA.

In this paper, we attempt to solve the problem of estimating the DOA of sig-
nals exhibiting cyclostationarity or periodic correlation and that generate spectral
lines when they pass through certain nonlinear transformations [10]. By exploit-
ing this special temporal property of the signals, we can null out or greatly reduce
the effect of other co-channel jammers and background noise [9, 10].The cyclo-
stationarity concept was first introduced into array signal processing by Gardner
[8] and Schell et al. [26]. In their approaches, the correlation matrix estimate
used in the general subspace algorithms is replaced by a Cyclic AutoCorrelation
Matrix (CACM) estimate, based on Cyclic Second-Order Statistics (CSOS). The
cyclic correlation function is evaluated at one lag-parameter τ and then used to
estimate the DOA. But we don’t know the optimal lag τ at which correlation
function achieves it maximum. In reality this lag-parameter is rarely available.
An alternative approach is to use larger temporal information or cyclic corre-
lation function with τ = 0,±1, . . . ,±(Q − 1), but then cyclic MUSIC is not so
computationally efficient. Another opportunity to exploit cyclostationarity is the
family of Self-COherence REstoral (SCORE) methods proposed by Agee et al.
[1]. Specifically, these methods are based on a property termed spectral correla-
tion in which a signal is correlated with a frequency-shifted, possibly conjugated,
version of itself and that arises as a consequence of the periodic fluctuations of
the autocorrelation function. The presence of noise and interferences at the array
input distorts the self-coherence of the SOI. The ultimate objective of SCORE
methods is to restore the self-coherence of the SOI. Nevertheless SCORE methods
suffer from diverse limitations – see [4]. The algorithm suggested in [51] unlike
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our method, doesn’t regard such an important information, containing in Cyclic
Cross-Correlation Function (CCCF) between sensor outputs. It seems that the
algorithm suggested in [51] is based on Cyclic Autocorrelation Function (CACF)
of sensors, containing insufficient spatial information and requires to turn to con-
jugate CACF. Our algorithm is based on Linear Prediction (LP) technique and
exploiting all temporal information, is simpler and more convenient than other
cyclic subspace methods known until now [8, 26, 51].

Since multipath propagation is often encountered in variety of communication
systems due to various reflections, with the results that the signals are coherent
and cyclic matrix becomes singular, DOA estimation of signals has received much
attention in last decade [22, 27, 50]. We have developed the spatial smoothing
technique [22, 17] for the cyclostationary coherent signals.

In array signal processing there are, however, cases involving non-Gaussian
random processes where second moment analysis does not provide all of the
needed information. One example is when phase of communication signals is
important (second moment quantities suppress phase information). Some types
of modulated signals like Quaternary Phase-Shift Keyed (QPSK) and digital
Quadrature-Amplitude Modulated (QAM) can not be processed adequately by
using second-order statistics that are appropriate when the signals are Gaussian.
In other words higher-order time products are needed. So, this field is cur-
rently an area of intense research and new results are constantly being reported
[12, 13, 52]. By exploiting the higher-order temporal properties of communica-
tion signals, many algorithms for Direction Finding (DF) have been proposed
for narrow-band non-Gaussian signals. However, conventional cumulants based
algorithms [23] become very complicated and are computationally intensive when
more than the third-order cumulant is used. The reference sources [32, 33, 40] are
based on the fundamental properties of cyclostationarity concept and discussed
the problem of estimating the DOA of cyclostationary signals by using Cyclic
Higher-Order Statistics (CHOS), where cyclic MUSIC was generalized by using
fourth-order cumulant for one lag τ .

In this paper, by utilizing a LP model of the sensor outputs, new DF HOS
algorithms that exploit the non-Gaussian and cyclostationary nature of commu-
nication signals are explored.

2. Problem Statement

Several important problems in the signal processing field, among them direction
finding with narrowband sensor arrays can be reduced to estimating the parame-
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ters in the following model (discrete time):

(1) x (n) = A (θ) s (n) + i (n) , n = 0, 1, 2, . . . , N − 1,

where x (n) ∈ CM×1 is complex observation vector, s (n) ∈ CL×1 is complex
signal vector, i (n) ∈ CM×1 is complex additive noise vector, and A (θ) ∈ CM×L
(
θ ∈ RL×1

)
is matrix in which the kth column depends from an unknown bounded

parameter of the kth signal and any l columns having different parameters are
independent as long as l ≤ M . In DF, L is the number of signals and M is the
number of sensors.

There are three main problems associated with fitting models of the form (1)
to the data set

{x (0) , x (1) , . . . , x (N − 1)} .

1. Estimation of the number of signals L.

2. Estimation of the signal amplitudes {sk (n)}.

3. Estimation of the vector parameter θ.

Methods for accomplishing this last task, and their performance, are the main
topics to be dealt with in this paper.

The following notations will be used:
b, b and B stand for scalar, vector and matrix in that order. Similarly B∗, BT ,
BH , tr(B) and det(B) = |B| represent the complex conjugate, transpose, complex
conjugate transpose, trace and determinant of B respectively. By notation E (·)
will denote the expectation operator.

3. Data Model and Cyclostationarity (Conventional and Cyclic
MUSIC)

A random process {x (n) , n = 0, 1, 2, . . . } is called wide-sense cyclostationary
if its mean-value mx (n) = E {x (n)} and autocorrelation function Rx (n, l) =
E {x (n)x∗ (l)} are periodic with some period say 1/α (see e.g. [10]):

(2) mx (n+ k/α) = mx (n)

(3) Rx (n+ k/α, l + k/α) = Rx (n, l) ,

where k is an integer and asterisk denotes complex conjugation. Such signals
are common in communication applications, where the period arises from carrier
frequencies or baud rates.
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In MPT antennas are shared for both power transmission and pilot-signal
reception. We consider a uniform linear array (ULA) with a big amount of
elements in transmitting part [34], which shares a small amount of elements
for receiving the pilot signals [14, 15]. The receiving part consists of M iden-
tical isotropic sensors with separation distance d and receiving signals from L
narrowband “sources” s1 (n) , . . . , sL (n) that arrive at the array from directions
θ1, θ2, . . . , θL and measured clockwise from the normal of the array.

The narrowband model (1) can be presented as follows

(4) x (n) = A (θ) s (n) + i (n) =

L∑

k=1

a (θk) sk (n) + i (n) , n = 0, 1, . . . , N − 1,

where data vector x (n), the steering matrix A (θ), signal vector s (n) and noise
vector i (n)are defined by

x (n) = [x1 (n) , . . . , xM (n)]T

A (θ) = [a (θ1) , . . . ,a (θL)]

θ = [θ1, θ2, . . . , θL]T(5)

s (n) = [s1(n), . . . , sL(n)]T

i(n) = [i1(n), . . . , iM (n)]T

and the array response vector (or steering vector, direction vector) a(θk) is given
by

(6) a(θk) =

[
1, exp

(
−j2πfc

d

c
sin θk

)
, . . . , exp

(
−j2πfc (M − 1)

d

c
sin θk

)]T

,

where fc is the carrier frequency and c is the speed of propagation. The signal
xi (n) received by the ith array sensor can be expressed by the following way

(7) xi(n) =

L∑

k=1

sk(n) exp

(
−j2πfc (i− 1)

d

c
sin θk

)
+ ii (n) .

It should be mentioned our narrowband model (7) is derived under the as-
sumption that carrier frequency is fairly large compared to the bandwith of the
modulating signal. The last can be treated as quasistatic during the time intervals

(8) τik = (i− 1)
d

c
sin θk
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Generally in conventional algorithms the L SOI are assumed to be

Uncorrelated rkl = 0

Correlated 0 < |rkl| < 1(9)

Coherent |rkl| = 1,

where rkl is correlation coefficient of the two jointly stationary signals sk (n) and
sl (n). The noise i (n) is assumed to be Gaussian distributed, with zero-mean
and uncorrelated both temporally and spatially with themselves and with other
source signals.

In cyclic algorithms it is assumed that there are Lα ≤ L SOI sharing the same
cycle frequency α, where α is either known or estimated from the data. So s (n)
in (4) contains only the Lα signals that have cycle frequency α, and all of the
remaining signals (of which there are L−Lα) and the noise are lumped into i (n).
The signals sk (n) are mutually not cyclically correlated, and only Lα sources are
self cyclically correlated with cycle frequency α. This condition is weaker than
the one requiring that the sources be mutually uncorrelated. The additive noises
ii (n) are assumed to be cyclically uncorrelated with themselves and with other
source signals at the same cycle α. The cycle frequency α can be determined
from the carrier frequency and baud rate. In this paper suppose that it is known.

The CACF and CCCF for discrete time processing will be expressed as follows
[9, 10]:

(10) Rα
xixi

(τ) =
〈
xi(n)x∗i (n − τ)e−j2πα(n−τ/2)

〉
N→∞

(11) Rα
xixmi

(τ) =
〈
xi(n)x∗m(n− τ)e−j2πα(n−τ/2)

〉
N→∞

,

where i,m = 1, 2, . . . ,M ;n = 0, 1, . . . , N−1; τ = 0,±1, . . . ,±(Q−1) and notation
〈·〉N→∞

denotes discrete-time averaging

(12) 〈z (n)〉N→∞
= lim

N→∞

1

N

∑

n

{z (n)} .

The CACF and CCCF are components of cyclic autocorrelation matrix
(CACM),

(13) Rxx
α(τ) =

〈
x (n)xH (n− τ) e−j2πα(n−τ/2)

〉
N→∞

= A (θ)Rss
α (τ)AH (θ)

The CACM is evaluated at one lag-parameter τ and then used to estimate the
DOA. In the signal subspace fitting (SSF) interpretation of the cyclic MUSIC, it
is noted that

(14) Rxx
α(τ) = A(θ)Rss

α (τ)AH (θ)
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has the same column space as A(θ) and its left null space is orthogonal to A(θ).
As a result: 1) Rii need not be known or estimated; 2) the number Lα of DOA’s
estimate is never larger than the number L of DOA’s for MUSIC to estimate (and
Lα〈〈L in some cases); 3) the need for postprocessing and classification of DOA’s
is inherently reduced by signal selectivity. For a finite number of time samples
the algorithm can be implemented by estimating CACM

(15) R̂α
xx(τ) =

〈
x(n)xH (n− τ) e−j2πα(n−τ/2)

〉
N

=
1

N

N−1∑

n=0

x(n)xH (n− τ) e−j2πα(n−τ/2)

at one lag-parameter τ and then used to estimate the DOA. The CACM Rxx
α(τ)

has rank Lα, the number of desired signals. In particular, if only one signal
exhibits spectral correlation at the chosen α, then Rxx

α(τ) is a rank-one matrix

(16) Rxx
α(τ) = a(θ1)a

H(θ1)R
α
s1s1

(τ), for Lα = 1.

In general the CACM has contributions for Lα〉1 signals that exhibit spectral
correlation at the chosen α. To view this geometrically, the columns of M − Lα

eigenvectors of Rxx
α(τ) that correspond to its zero eigenvalues span a null space

EN,α of H. Since the Lα direction vectors a(θ1),a(θ2), . . . ,a(θLα
) are themselves

linearly independent, the Lα dimensional “signal” subspace S spanned by this
actual direction vectors is orthogonal to the subspace EN,α. Thus EN,α is the
“noise” subspace. More over, since H can always be written as the direct sum of
any finite dimensional subspace and its orthogonal complement [42], we have

(17) H = S ⊕ EN,α.

Since none of the signals sk (n) are perfectly correlated with each other, then
Rss

α(τ) has full rank equal to Lα. Further more since the columns of A(θ) are
linearly independent, then (14) and (17) imply that the null space is orthogonal
to the direction vectors of the desired signals,

(18) EH
N,αa(θk) = 0, k = 1, . . . , Lα.

This fact can be used to form a measure of orthogonality PCM (θ) (also referred
to as the spatial spectrum) similar to that used by MUSIC and other algorithms:

(19) PCM (θ) =
‖a(θ)‖2

∥∥∥EH
N,αa(θ)

∥∥∥
2 .
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The DF algorithm must search over θ for the Lα highest peaks in PCM (θ) and
is referred to as the Cyclic MUSIC algorithm (modified and simplified MUSIC
algorithm) [8, 9, 10, 26, 28, 30, 31].

4. Linear Prediction Method for DOA Estimation

Let suppose that one of the sensor outputs is predicted as a linear combination
of the remaining (M -1) sensor outputs at any instant and cyclic frequency α,
and the predictor coefficients are selected so as to minimize the prediction error.
Letting the component xM (n) of x̃M

x̃M = (xM (n) , xM−1 (n) , . . . , x1 (n))T

stand for the M sensor output at any time ”n” and x̂M (n) the predictor for
xM (n), we have

(20) x̂M (n) = −
M−1∑

i=1

aixM−i(n),

where by xM = (x1 (n) , . . . , xM (n))T is denoted array sensors’ vector and by
x̃M - its reversal version. This gives the error as

(21) εM (n) = xM (n) − x̂M (n) =

M−1∑

i=0

aixM−i(n), a0 = 1

and LP error εM (n) is assumed to be spatially and temporally white Gaussian
noise. The equation (21) can be written as follows

(22) xM (n) +

M−1∑

i=1

aixM−i(n) = εM (n).

The prediction error filter with coefficients a = (a1, a2, . . . , aM−1)
T minimizes the

prediction error variance σ2
ε or the mean-square error (MSE) – σ2

ε=E
{
|εM (n)|2

}
,

if the filter coefficients are chosen such that E {xM−i (n) ε∗M (n)} = 0, i =
1, 2, . . . ,M − 1, that is, if the error is orthogonal to the x̃M (principal of or-
thogonality). Note that our LP model is spatially oriented.

By multiplying the equation (22) by x∗M (n− τ) and taking expectations, it is
not difficult to show that CSOS satisfy the above difference equation

(23) Rα
xMxM

(τ) +

M−1∑

i=1

aiR
α
xM−ixM

(τ) = σ2
εM
δ(τ),
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where δ (·) is discrete unit impulse equal 0 for τ 6= 0. They use equation (23) for
τ = 0 in conventional algorithms to determine mean-square error σ2

εM
. We will

disregard its right side’s influence in our cyclic algorithms. If CSOS of the process
{xM (n)} are known or estimated for various lag τ, (τ = 0,±1, . . . ,±(Q − 1)) it
is possible to obtain linear equations to solve for the coefficients {ai}. In matrix
notations this leads to
(24)




RxM−1xM
(−Q+ 1) · · ·Rx1xM

(−Q+ 1)
RxM−1xM

(−Q+ 2) · · ·Rx1xM
(−Q+ 2)

...
RxM−1xM

(0) · · · · · · · · ·Rx1xM
(0)

...
RxM−1xM

(+Q− 2) · · ·Rx1xM
(+Q− 2)

RxM−1xM
(+Q− 1) · · ·Rx1xM

(+Q− 1)







a1

a2
...
...
...
...
...
aM−1




= −




RxMxM
(−Q+ 1)

RxMxM
(−Q+ 2)

...

...

...

...

...
RxMxM

(+Q− 1)




,

where

(25) Rα
xM−ixM

(τ) =
〈
xM−i(n)x∗M (n− τ)e−j2πα(n−τ/2)

〉
N→∞

=

〈
(

L∑
k=1

sk(n) exp

(
−j2πfc(M − i− 1)

d

c
sin θk

)
+ iM−i(n)

)
·

(
L∑

l=1

s∗l (n− τ) exp

(
j2πfc(M − 1)

d

c
sin θl

)
+ i∗M (n− τ)

)
e−j2πα(n−τ/2)

〉

N→∞

i = 0, 1, . . . ,M − 1; τ = 0 ± 1, . . . ,±(Q− 1)

or their estimates

(26) R̂α
xM−ixM

(τ) =
1

N

N−1∑

n=0

xM−i (n)x∗M (n− τ) e−j2πα(n−τ/2)

i = 0, 1, . . . ,M − 1; τ = 0 ± 1, . . . ,±(Q− 1).

Since the signals sk (n) are mutually not cyclically correlated, and since only
Lα sources are self cyclically correlated with cycle frequency α, the double sum-
mation reduces to a single sum. Further the additive noises do not have cycle
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frequency α and therefore make no contribution to Rα
xM−ixM

(τ) and the last
reduces to:

(27) Rα
xM−ixM

(τ) =

Lα∑

k=1

Rα
sksk

(τ) exp

(
j2πfci

d

c
sin θk

)

i = 0, 1, . . . ,M − 1; τ = 0 ± 1, . . . ,±(Q− 1).

Clearly the contributions from the interferences and noise to the CACF and
CCCF (25)–(27) vanish, by selecting the cyclic frequency αappropriately. It
should be noticed that CACF and CCCF will be different for the different lag
parameter τ [3, 10]. The equation (24) can be rewritten more compactly as
follows

(28) Ra = y

where the matrix R is the pseudodata Cyclic Cross-Correlation Matrix (CCCM)
– (2Q− 1) × (M − 1); a = (a1, a2, . . . , aM−1)

T is the LP vector-coefficient to
be estimated; y = − [RxMxM

(−Q+ 1) , · · · , RxM xM
(0) , · · · , RxM xM

(Q− 1)]T is
CACM – 1×(2Q− 1). As discussed below, finding LP vector-coefficient’s estimate
or solving equation (28) on the base of CSOS estimates depends upon a number
of factors including the relative size of Q and M and the rank of matrix R.

Let (2Q− 1) ≥ (M −1). If the columns of R are linearly independent (R has
full rank), then the matrix RHR is invertible and the least square (LS) solution
of equation (28) is [42]

(29) âLS =
(
R̂HR̂

)
−1

R̂H ŷ.

The matrix R+ =
(
RHR

)
−1

RH is known as the Moore-Penrose pseudoinverse
of the matrix R for the overdetermined problem. Now let’s take singular value
decomposition (SVD) of R = Rα

(30) R = UΛVH ,

where U is the (2Q− 1)× (2Q− 1) unitary matrix of left singular vectors and V

is the (M − 1)× (M − 1) unitary matrix of right singular vectors. The matrix Λ

is the (2Q− 1) × (M − 1) matrix of non-negative real singular values, which is
written here in block partitioned form as

(31) Λ =

[
S1 0

0 0

]
,

where S1 is a diagonal matrix of the nonzero singular values

(32) S1 = diag [λ1, λ2, . . . , λLα
]
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and Lα is the rank of R under cyclostationarity. Rank(R) < M − 1. The Moore-
Penrose pseudoinverse is defined as

(33) R+ = VΛ+UH ,

where the positions of U and V have been interchanged and where Λ+, the
pseudoinverse of Λ, is (M − 1) × (2Q− 1) matrix.

(34) Λ+ =

[
S1

−1 0

0 0

]

The expression (29) where R+ is defined by (33) is the unique minimum norm
(MN) least square solution of the equation (28) [42]

(35) âMNLS = VΛ+UH

=

Lα∑

i=1

1

λ̂i

(
ûH

i ŷ
)
v̂i,

where Lα is the rank of R and ui and vi are the singular vectors of U and V

respectively, that can be written also in block partitioned form. The second form
of âMNLS in (35) is the alternative one and easiest to use from computational
viewpoint than in (29). The signal xM (n) at theMth sensor output, so described,
presents by itself autoregressive (AR) process of order (M − 1) or Gauss-Markov
process. The transfer function of LP filter will be “all poles type model”

(36) G (z) =
1

H (z)
=

1

1 + a1z−1 + · · · + aM−1z−(M−1)
.

Turn to array response vector (6) let introduce λ as the associated carrier
wavelength and D as the normalized distance between the reference element and
the second sensor D1 = D = d/ (λ/2). Then substituting ωk = π sin θk array
response vector will be modified as follows

(37) a (ωk) = [1, exp (−jD1ωk) , . . . , exp (−jDM−1ωk)]
T .

The power spectral density SxM
(ω) of the output process xM (n) is related to

the system transfer function as follows

(38) SxM
(ω) =

σ2
εM∣∣1 + a1z−1 + · · · + aM−1z−(M−1)

∣∣2 ,

where z = e−jω. After the parameters {ai} have been estimated their DOA can
be found by searching for the positions of peaks of the spectrum (38).
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In our algorithm, we can choose between that based on R̂α
xM−ixM

(τ) or its

conjugate counterpart R̂α
xM−ix

•

M

(τ). Really we use cyclic information of all sen-

sors but in shorter way in comparison with the cyclic subspace methods, such as
the cyclic MUSIC and ESPRIT algorithms, where the cyclic correlation matrix
of all sensors is required [8]. At this we exploit the whole temporal information
(multiple lags τ) containing in cyclic correlation functions avoiding some draw-
backs of existing cyclic algorithms. Our algorithm is simpler and more convenient
than other cyclic subspace methods known until now [8, 51]. We will call this
algorithm Linear Prediction – Signal Subspace Fitting (LP-SSF).

5. DOA Estimation of Coherent Signals

Let now suppose that the correlation coefficient of two jointly stationary signals
sk (n) and sl(n) is |rkl| = 1, sk (n) , sl (n) are coherent – see (9).

This case arises in a variety of communication systems due to various reflec-
tions in multipath propagation, with the result that the cyclic matrix becomes
singular and previous cyclic techniques perform poorly. In that case at any instant
for the basic model (1),(4) signals s1 (n) , . . . , sL (n) are phase delayed, amplitude
weighted replicas of one of them – say the first and hence

(39) sk(n) = µks1(n), µ1 = 1, for k = 1, 2, . . . , Lα, . . . , L

where µk represent the complex attenuation of the kth signal with respect to the
first signal s1 (n) with µk = ρk exp (jϕk). We also assume that only Lα sources
are coherent with the cycle frequency α. Then equation (4) will be modified

(40) x (n) = s1 (n)
L∑

k=1

µka (θk) + i (n) = s1 (n)b + i (n)

where b =
∑L

k=1 µka(θk). Let turn to CACM (14) and take eigenvalue decom-
position (EVD)

(41) Rxx
α(τ) = A(θ)Rss

α(τ)AH(θ) = UΛVH

where U = [u1,u2, . . . ,uM ] and

(42) Λ = diag
[
λ1, λ2, . . . , λLα

, λLα+1
, . . . , λM

]

λ1 ≥ λ2 ≥ · · · ≥ λLα
≥ λLα+1 = · · · = λM = 0.

As the Rxx
α (τ) has the same column space as A(θ) the last equation is

equivalent to

(43) a(θk)ui = 0, for i = Lα + 1, . . . ,M.
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When the source signals are coherent, due to the new signal presentation (40)
the Cyclic Signal Correlation Matrix (CSCM) Rss

α(τ) in (41) becomes singular,
i.e. rank (Rss

α(τ)) = 1. Therefore the relations (42), (43) can not be applied
directly, so that it will be impossible to estimate any true arrival angle θk by us-
ing the cyclic MUSIC or LP-SSF. The crucial role that plays the matrix Rss

α(τ)
requires to introduce preprocessing scheme [22] which guarantees full rank con-
dition for the equivalent Rss

α(τ). We consider a new cyclic DOA estimation by
utilizing the Spatial Smoothing (SS) technique (see [22, 50, 52] and references
there), which uses a spatial averaging technique to decorrelate the coherent sig-
nals. This preprocessing spatial smoothing scheme starts by dividing the total
array with M sensors into P overlapping sub-arrays of size m, (m > Lα +1), with
sensors {1, b2, b, . . . ,m}, forming the first sub-array, sensors {2, 3, . . . ,m + 1}
forming the second sub-array, etc up to the last sub-array formed by sensors
{M −m+ 1,M −m+ 2, . . . ,M}. This is the forward spatial smoothing scheme.

Let xp (n) = [xp (n) , xp+1 (n) , . . . , xp+m−1 (n)]T stand for the output of the
pth forward sub-array for p=1,2,. . . ,P, where P=M-m+1. Then it can be ex-
pressed by virtue of this preprocessing as follows

(44) xp(n) = Am(θ)Bp−1s(n) + ip(n), p = 1, 2, . . . , P

where Bp−1 denotes the (p− 1) power of the L× L diagonal matrix [22] and

B = diag [ψ1, ψ2, . . . , ψL]

ψk = exp (−jωk) ; ωk = π sin θk; k = 1, 2, . . . , L

Am(θ) = [am(θ1), . . . ,am(θL)]

am(θk) = [1, exp (−jD1ωk) , . . . , exp (−jDm−1ωk)]
T (see (37))

ip(n) = [ip (n) , . . . , ip+m−1 (n)]T .

From (39) and (44), we can obtain the CACM for the pth sub-array

(45)

Rα
xP xP

(τ) =
〈
xp(n)xH

p (n− τ)e−j2πα(n−τ/2)
〉
N→∞

= Am(θ)Bp−1Rss
α(τ)(Bp−1)HAH

m(θ)

where Rss
α(τ) = µRα

s1s1
(τ)µH , Rα

s1s1
(τ) is the CACF of the signal s1 (n) , µ =

[µ1, µ2, . . . , µL]T and µk = 0 for k = Lα + 1, . . . , L. Hence the SS CACM is given
by [22]
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(46) R̄α
xx(τ) =

1

P

P∑

p=1

Rα
xP xP

(τ) = Am(θ)R̄α
ss(τ)A

H
m(θ),

where

(47) R̄α
ss(τ) =

1

P

P∑

p=1

Bp−1µRα
s1s1

(τ)µH(Bp−1)H = Rα
s1s1

(τ)
1

P
CCH

and
(48)

C =




µ1

µ2

. . .
. . .

µLα







1 ψ1 ψ2
1 · · · ψP−1

1

1 ψ2 ψ2
2 · · · ψP−1

2

1 ψLα
ψ2

Lα
· · · ψP−1

Lα




= DV.

Clearly the rank of R̄α
ss(τ) is equal to the rank of C. Since C=DV and the

square matrix D is of full rank, the rank of C is the same as that of V . Now
the rank of the Lα × P Vandermonde matrix V is rank(V ) = min (Lα, P ) and
hence rank(V) = Lα if and only if P ≥ Lα. Thus, if P = M −m + 1 ≥ Lα or
equivalently M ≥ m+Lα−1, the smoothed CACM R̄α

ss(τ) is nonsingular and the
equations (42), (43) hold. However, in this case the number of sensor elements
M must be at least m+Lα − 1, and recalling that size m of each sub-array must
be also at least Lα + 1. It follows that the minimum number of sensors needed
is 2Lα.

However, the choice of the statistically significant lag parameter τ is very
crucial [3, 10]. As the cyclic correlation function is dependent on the lag τ , if
the cyclic correlation of one source is zero or insignificant for a given τ , then
the signal will not be resolved. For exploiting the cyclic statistical information
sufficiently, we choose again τ as τ = 0± 1, . . . ,±(Q− 1). Then second temporal
averaging was applied to R̄α

xx(τ)

(49) ¯̄Rxx

α
(τ) =

1

2Q− 1

∑

τ

R̄α
xx(τ)

and therefore the effectiveness of algorithm was improved.

6. Linear Prediction Modeling for Signal Selective DOA
Estimation Based on Cyclic Higher-Order Statistics

In communications, however, there are cases involving non-Gaussian random
processes and second moment analysis performs poorly. Since computing the en-
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tire density function for the random process is usually impractical or impossible,
a compromise is to deal with the Higher-Order Statistics (HOS). This approach
not only provides tractable analysis methods in the signal domain, but also leads
to frequency-domain methods through suitable extensions of Fourier analysis for
stationary random processes. More over, for certain signals (e.g., QAM) while
the Second-Order Statistics (SOS) are time-invariant, the higher-order cumulants
display the cyclostationary property.

In this paper novel DF algorithms that exploit the non-Gaussian and cyclo-
stationary nature of communication signals are proposed.

Will be used again the narrowband model (4), (7) under the following as-
sumptions:

[A1] sk (n) is non-Gaussian, mth-order cyclostationary with a common cycle
frequency and with absolutely summable cumulants ∀m and non-zero cumulants
of order m.

[A2] ii (n) in (4), (7) are zero-mean, either stationary or Gaussian, and inde-
pendent of the source signals, or non-Gaussian with different cyclostationarity to
the source signals.

6.1. Cyclic Moments and Cumulants

We next provide a brief introduction to Cyclic Higher-Order Statistics (CHOS)
and establish notation along with some useful properties [32]. For a more com-
plete treatment of CHOS, see [40].

A process {x (n) , n = 0, 1, . . .} is said to exhibit mth-order cyclostationarity
when its time-varying cumulants up to order m are periodic (almost periodic)
functions of time. The mth-order cyclic cumulant with cycle frequency α of
{x (n) , n = 0, 1, . . .} is the Fourier series coefficient of its time-varying cumulant

(50) Cα
mx (τ1, τ2, . . . , τm−1) = cum

{
x (n) , x(•) (n+ τ1) , . . . , x

(•) (n+ τm−1)
}

and is given by [32, 33, 40]

(51) Cα
mx (τ1, τ2, . . . , τm−1) = lim

N→∞

1

N

N−1∑

n=0

Cmx (n; τ1, τ2, . . . , τm−1) e
−j2παn,

where (•)
r(r = 0, 1, . . . ,m−1) is either a conjugate manipulation or nothing, that

is, (•)
r is an optional conjugation of the rth lag factor x (n+ τr) [21, 40].

Specifically form = 3, 4 when E {x (n)} = 0 we have for the complex processes
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[19, 32, 33, 40]

(52) Cα
3x (τ1, τ2) = lim

N→∞

1

N

N−1∑

n=0

E {x (n)x (n+ τ1) x
• (n+ τ2)} e

−j2παn

(53)

Cα
4x (τ1, τ2, τ3) = lim

N→∞

1

N

N−1∑

n=0

[E {x (n)x (n+ τ1)x
• (n+ τ2) x

• (n+ τ3)} e
−j2παn

−E {x (n)x• (n+ τ2)}E {x (n+ τ1) x
• (n+ τ3)}

−E {x (n)x• (n+ τ1)}E {x (n+ τ2) x
• (n+ τ3)}

−E {x (n)x• (n+ τ3)}E {x (n+ τ1) x
• (n+ τ2)}]e

−j2παn.

The third- and fourth-order cumulants and corresponding spectral quantities
have been used in a number of applications dealing with non-Gaussian processes.
Cumulants and spectra of order higher than the fourth are difficult to compute
reliably and so far have found limited [practical use. It should be noted, however,
that when the random process has a density that is symmetric about the mean,
the third-order cumulant and the bispectrum are identically zero and it is nec-
essary to consider fourth-order quantities to perform any higher-order statistical
analysis.

For stationary process {x (n)}, the cyclic cumulant is time invariant, and
hence Cα

mx (τ1, τ2, . . . , τm−1) = 0, for all m,α 6= 0, whereas for Gaussian (cyclo-
stationary or not) {x (n)} , Cα

mx (τ1, τ2, . . . , τm−1) = 0,m ≥ 3, for all α. Conse-
quently, CHOS can distinguish between stationary/cyclostationary and Gaussian/
non-Gaussian processes. With the finite data and under absolute cumulant sum-
mability (i.e. mixing) the estimate

(54) Ĉα
mx (τ1, τ2, . . . , τm−1) =

1

N

N−1∑

n=0

[x (n) x• (n+ τ1) · · · x
• (n+ τm−1)] e

−j2παn

is consistent and asymptotically normal. In this paper will be assumed that the
cycle frequencies α in sk (n) and thus, in Cα

ms,k are known and that sk (n) and
sl (n) are mutually not cyclically correlated. For the applications of cumulants
in coherent signals environment see for example [12, 13]. Will be used all the
properties of cumulants (see [2, 19, 21, 32]).
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6.2. CHOS DOA Estimation Exploiting Linear Prediction Model

Let suppose that the received data xM (n) is predicted as a linear combination of
the remaining (M − 1) sensor outputs by using again linear difference equation
(22). By multiplying this equation by appropriate delayed versions of the random
process {xM (n)} and taking expectations, it is not difficult to show that the
third- and fourth-order cumulants satisfy this difference equation and one can be
written

(55) Cα
xMxMx•

M

(τ1, τ2) +

M−1∑

i=1

aiC
α
xM−ixMx•

M

(τ1, τ2) = 0

(56) Cα
xMxMx•

M
x•

M

(τ1, τ2, τ3) +

M−1∑

i=1

aiC
α
xM−ixMx•

M
x•

M

(τ1, τ2, τ3) = 0

i = 1, 2, . . . ,M − 1.

Recall the narrowband signal model (4), (7) and consider the third-order
and fourth-order cyclic cumulants of the Mth sensor output and corresponding
cross cumulants, which under assumptions [A1],[A2] and properties of cumulants
[2, 19, 21, 32] are respectively

(57) Cα
xM−ixMx•

M

(τ1, τ2) =

Lα∑

k=1

Cα
3sk

(τ1, τ2) e
−j2πfc(M−i−1) d

c
sin θk

(58) Cα
xM−ixMx•

M
x•

M

(τ1, τ2, τ3) =

Lα∑

k=1

Cα
4sk

(τ1, τ2, τ3) e
j2πfci d

c
sin θk

i = 1, 2, . . . ,M − 1, where Cα
3sk

(τ1, τ2) and Cα
4sk

(τ1, τ2, τ3) are third-order and
fourth-order cyclic cumulant slice of the signal sk (n).

If CHOS of the process {xM (n)} are known or estimated for various lag
τr (r = 0, 1, 2, 3) it is possible in general to solve equations (55), (56) and find the
coefficients {ai}.
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Letting for simplicity τ1 = τ2 = τ3 = 0 ± 1, · · · ,±(Q− 1) yields

(59)




Cα
xM−1xMx•

M

(−Q+1,−Q+1) · · · Cα
x1xMx•

M

(−Q+1,−Q+1)

Cα
xM−1xMx•

M

(−Q+2,−Q+2) · · · Cα
x1xMx•

M

(−Q+2,−Q+2)
...

. . .
...

Cα
xM−1xMx•

M

(0, 0) · · · Cα
x1xMx•

M

(0, 0)
...

. . .
...

Cα
xM−1xMx•

M

(+Q−2,+Q−2) · · · Cα
x1xMx•

M

(+Q−2,+Q−2)

Cα
xM−1xMx•

M

(+Q−1,+Q−1)
... Cα

x1xMx•

M

(+Q−1,+Q−1)







a1

a2
...
...
...
...

aM−1




=

= −




Cα
xMxMx•

M

(−Q+ 1,−Q+ 1)

Cα
xMxMx•

M

(−Q+ 2,−Q+ 2)
...
...
...
...

Cα
xMxMx•

M

(+Q− 1,+Q− 1)




(60)


Cα
xM−1xMx•

M
x•

M

(−Q+1,−Q+1,−Q+1) · · · Cα
x1xMx•

M
x•

M

(−Q+1,−Q+1,−Q+1)

Cα
xM−1xMx•

M
x•

M

(−Q+2,−Q+2,−Q+2) · · · Cα
x1xMx•

M
x•

M

(−Q+2,−Q+2,−Q+2)
...

. . .
...

Cα
xM−1xMx•

M
x•

M

(0, 0, 0) · · · Cα
x1xMx•

M
x•

M

(0, 0, 0)
...

. . .
...

Cα
xM−1xMx•

M
x•

M

(+Q−2,+Q−2,+Q−2) · · · Cα
x1xMx•

M
x•

M

(+Q−2,+Q−2,+Q−2)

Cα
xM−1xMx•

M
x•

M

(+Q−1,+Q−1,+Q−1)
... Cα

x1xMx•

M
x•

M

(+Q−1,+Q−1,+Q−1)




×




a1

a2
...
...
...
...

aM−1




= −




Cα
xMxMx•

M
x•

M

(−Q+ 1,−Q+ 1,−Q+ 1)

Cα
xMxMx•

M
x•

M

(−Q+ 2,−Q+ 2,−Q+ 2)
...
...
...
...

Cα
xMxMx•

M
x•

M

(+Q− 1,+Q− 1,+Q− 1)



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Clearly the contributions from the interferences and the noise to the cross-
cumulants for i = 1, 2, . . . ,M − 1 (see equations (57)-(60) vanish, by selecting
the cycle frequency α appropriately. Equations (59), (60) can be rewritten more
compactly as follows

(61) Ca = y,

where C is the pseudodata Cyclic Cross-Cumulant Matrix (CCCM) – (2Q−1)×
(M − 1); a = (a1, . . . , aM−1)

T is the LP vector-coefficient to be estimated; y is
Cyclic Auto-Cumulant Matrix (CACM) – (2Q − 1) × 1. Further the problem
of finding minimum norm least square solution for the LP vector-coefficient is
completely referred to section 4. This algorithm will be called again LP-SSF.

7. Conclusions

Most of existing conventional approaches to the direction of arrival problem ig-
nore the temporal characteristics of the signals [25, 31]. In cyclic MUSIC and
ESPRIT [8] the temporal information of signals does not exploit completely. We
have shown that cyclostationarity of the signals, a situation common in many
communications problems, can be exploited to considerable advantages.

The new LP-SSF method in this research effectively combines temporal and
spatial properties in either CSOS and CHOS and it compares very favorably
with earlier methods with respect to performance, ease of implementation, and
applicability, to both correlated and coherent signals.

It seems that this approach can be useful in various problems of the control
of beam in MPT, where the accurate determination of DOA of pilot signal is of
paramount importance.
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