962 research outputs found

    An Efficient Data-aided Synchronization in L-DACS1 for Aeronautical Communications

    Full text link
    L-band Digital Aeronautical Communication System type-1 (L-DACS1) is an emerging standard that aims at enhancing air traffic management (ATM) by transitioning the traditional analog aeronautical communication systems to the superior and highly efficient digital domain. L-DACS1 employs modern and efficient orthogonal frequency division multiplexing (OFDM) modulation technique to achieve more efficient and higher data rate in comparison to the existing aeronautical communication systems. However, the performance of OFDM systems is very sensitive to synchronization errors. L-DACS1 transmission is in the L-band aeronautical channels that suffer from large interference and large Doppler shifts, which makes the synchronization for L-DACS more challenging. This paper proposes a novel computationally efficient synchronization method for L-DACS1 systems that offers robust performance. Through simulation, the proposed method is shown to provide accurate symbol timing offset (STO) estimation as well as fractional carrier frequency offset (CFO) estimation in a range of aeronautical channels. In particular, it can yield excellent synchronization performance in the face of a large carrier frequency offset.Comment: In the proceeding of International Conference on Data Mining, Communications and Information Technology (DMCIT

    Blind block synchronization algorithms in cyclic prefix systems

    Get PDF
    In orthogonal frequency division multiplexing (OFDM) systems, symbol synchronization is a critical step for successful data transmission. While this task is done in most current systems by using training symbols, a few studies have been dedicated to solving the problem blindly, that is, where training symbols are not available. Blind symbol synchronization problem is especially important in many blind channel estimation algorithms in the literature which assume that OFDM symbol synchronization is perfect. In this paper, a broader version of the blind symbol synchronization problem is studied, namely, blind block synchronization in cyclic-prefix (CP) systems. The proposed algorithm for this broader problem covers the blind symbol synchronization problem in OFDM systems. Unlike previously reported algorithms which are based on obtaining sufficient statistics of received samples, the proposed algorithm is capable of identifying the correct block boundaries using much less received data in absence of noise. Simulation results of the proposed algorithm not only verify the declared property but also demonstrate improvement in accuracy of symbol synchronization over previously reported algorithms in presence of noise

    Blind symbol synchronization based on cyclic prefix for OFDM systems

    Get PDF
    In this paper, a blind symbol synchronization algorithm is presented for orthogonal frequency-division multiplexing (OFDM) systems, and a new timing function based on the redundancy of the cyclic prefix (CP) is introduced. It proves that the maximum of this function necessarily points to the correct timing offset, irrespective of channel conditions when the signal-to-noise ratio is high. Using the timing function, the timing offset is estimated through a searching algorithm. Channel power profile and channel length information are unnecessary. Simulation results show that the proposed algorithm is robust and outperforms the existing CP-based algorithms, particularly in frequency-selective fading channels. © 2008 IEEE.published_or_final_versio

    New Blind Block Synchronization for Transceivers Using Redundant Precoders

    Get PDF
    This paper studies the blind block synchronization problem in block transmission systems using linear redundant precoders (LRP). Two commonly used LRP systems, namely, zero padding (ZP) and cyclic prefix (CP) systems, are considered in this paper. In particular, the block synchronization problem in CP systems is a broader version of timing synchronization problem in the popular orthogonal frequency division multiplexing (OFDM) systems. The proposed algorithms exploit the rank deficiency property of the matrix composed of received blocks when the block synchronization is perfect and use a parameter called repetition index which can be chosen as any positive integer. Theoretical results suggest advantages in blind block synchronization performances when using a large repetition index. Furthermore, unlike previously reported algorithms, which require a large amount of received data, the proposed methods, with properly chosen repetition indices, guarantee correct block synchronization in absence of noise using only two received blocks in ZP systems and three in CP systems. Computer simulations are conducted to evaluate the performances of the proposed algorithms and compare them with previously reported algorithms. Simulation results not only verify the capability of the proposed algorithms to work with limited received data but also show significant improvements in the block synchronization error rate performance of the proposed algorithms over previously reported algorithms

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    Analysis and Performance Comparison of DVB-T and DTMB Systems for Terrestrial Digital TV

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is the most popular transmission technology in digital terrestrial broadcasting (DTTB), adopted by many DTTB standards. In this paper, the bit error rate (BER) performance of two DTTB systems, namely cyclic prefix OFDM (CP-OFDM) based DVB-T and time domain synchronous OFDM (TDS-OFDM) based DTMB, is evaluated in different channel conditions. Spectrum utilization and power efficiency are also discussed to demonstrate the transmission overhead of both systems. Simulation results show that the performances of the two systems are much close. Given the same ratio of guard interval (GI), the DVB-T outperforms DTMB in terms of signal to noise ratio (SNR) in Gaussian and Ricean channels, while DTMB behaves better performance in Rayleigh channel in higher code rates and higher orders of constellation thanks to its efficient channel coding and interleaving scheme
    corecore