113 research outputs found

    Deep CNN Model for Non-Screen Content and Screen Content Image Quality Assessment

    Get PDF
    In the current world, user experience in various platforms matters a lot for different organizations. But providing a better experience can be challenging if the multimedia content on online platforms is having different kinds of distortions which impact the overall experience of the user. There can be various reasons behind distortions such as compression or minimal lighting condition while taking photos. In this work, a deep CNN-based Non-Screen Content and Screen Content NR-IQA framework is proposed which solves this issue in a more effective way. The framework is known as DNSSCIQ. Two different architectures are proposed based upon the input image type whether the input is a screen content or non-screen content image. This work attempts to solve this by evaluating the quality of such image

    Multiresolution image models and estimation techniques

    Get PDF

    Product of Gaussian Mixture Diffusion Models

    Full text link
    In this work we tackle the problem of estimating the density fX f_X of a random variable X X by successive smoothing, such that the smoothed random variable Y Y fulfills the diffusion partial differential equation (tΔ1)fY(,t)=0 (\partial_t - \Delta_1)f_Y(\,\cdot\,, t) = 0 with initial condition fY(,0)=fX f_Y(\,\cdot\,, 0) = f_X . We propose a product-of-experts-type model utilizing Gaussian mixture experts and study configurations that admit an analytic expression for fY(,t) f_Y (\,\cdot\,, t) . In particular, with a focus on image processing, we derive conditions for models acting on filter-, wavelet-, and shearlet responses. Our construction naturally allows the model to be trained simultaneously over the entire diffusion horizon using empirical Bayes. We show numerical results for image denoising where our models are competitive while being tractable, interpretable, and having only a small number of learnable parameters. As a byproduct, our models can be used for reliable noise estimation, allowing blind denoising of images corrupted by heteroscedastic noise

    Towards in vivo characterization of thyroid nodules suspicious for malignancy using multispectral optoacoustic tomography

    Get PDF
    Purpose: Patient-tailored management of thyroid nodules requires improved risk of malignancy stratification by accurate preoperative nodule assessment, aiming to personalize decisions concerning diagnostics and treatment. Here, we perform an exploratory pilot study to identify possible patterns on multispectral optoacoustic tomography (MSOT) for thyroid malignancy stratification. For the first time, we directly correlate MSOT images with histopathology data on a detailed level. Methods: We use recently enhanced data processing and image reconstruction methods for MSOT to provide next-level image quality by means of improved spatial resolution and spectral contrast. We examine optoacoustic features in thyroid nodules associated with vascular patterns and correlate these directly with reference histopathology. Results: Our methods show the ability to resolve blood vessels with diameters of 250 μm at depths of up to 2 cm. The vessel diameters derived on MSOT showed an excellent correlation (R2-score of 0.9426) with the vessel diameters on histopathology. Subsequently, we identify features of malignancy observable in MSOT, such as intranodular microvascularity and extrathyroidal extension verified by histopathology. Despite these promising features in selected patients, we could not determine statistically relevant differences between benign and malignant thyroid nodules based on mean oxygen saturation in thyroid nodules. Thus, we illustrate general imaging artifacts of the whole field of optoacoustic imaging that reduce image fidelity and distort spectral contrast, which impedes quantification of chromophore presence based on mean concentrations. Conclusion: We recommend examining optoacoustic features in addition to chromophore quantification to rank malignancy risk. We present optoacoustic images of thyroid nodules with the highest spatial resolution and spectral contrast to date, directly correlated to histopathology, pushing the clinical translation of MSOT.</p
    corecore