
Adaptive Sparsification Mechanisms in
Signal Recovery

Dissertation

zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades

„Doctor rerum naturalium“

der Georg-August-Universität Göttingen

im Promotionsstudiengang Mathematical Sciences

der Georg-August University School of Science (GAUSS)

vorgelegt von

Jakob Alexander Geppert

aus Hamburg

Göttingen, 2 21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Georg-August-University Göttingen

https://core.ac.uk/display/401889131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:Betreuungsausschuss:

Prof. Dr. Gerlind Plonka-Hoch
Institut für Numerische und Angewandte Mathematik
Georg-August-Universität Göttingen

Prof. David Russell Luke, PhD
Institut für Numerische und Angewandte Mathematik
Georg-August-Universität Göttingen

Prof. Dr. Thorsten Hohage
Institut für Numerische und Angewandte Mathematik
Georg-August-Universität Göttingen

Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:Mitglieder der Prüfungskommission:
Referentin:

Prof. Dr. Gerlind Plonka-Hoch
Institut für Numerische und Angewandte Mathematik
Georg-August-Universität Göttingen

Korreferent:
Prof. David Russell Luke, PhD
Institut für Numerische und Angewandte Mathematik
Georg-August-Universität Göttingen

Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:Weitere Mitglieder der Prüfungskommission:

Prof. Dr. Dorothea Bahns
Mathematisches Institut
Georg-August-Universität Göttingen

Prof. Dr. Thorsten Hohage
Institut für Numerische und Angewandte Mathematik
Georg-August-Universität Göttingen

Prof. Dr. Dominic Schuhmacher
Institut für Mathematische Stochastik
Georg-August-Universität Göttingen

Jun.-Prof. Dr. Anne Wald
Institut für Numerische und Angewandte Mathematik
Georg-August-Universität Göttingen

Tag der mündlichen Prüfung: 22. März 2 21



iii





雨
　
の
　
富
　
士

霧
時
雨

富
士
を
見
ぬ
日
ぞ

　
　
お
も
し
ろ
き

　
　
　
　
　
芭
蕉





Mount Fuji in Rain
A day when Fuji is unseen
Veiled on a misty winter shower—
That day, too, is a joy.

Bashō

Original and Translation by [BM 2.].
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Part I.

Introduction

It may be one of mankind’s most profound desires to “understand whatever; Binds the world’s inner-
most core together”, [vG 3., ll. 382 – 383] to put it in the words of Goethe. This ambition has also
for centuries been accompanied by beliefs that most – if not all – observable occurrences appertain
to a deeper, more fundamental truth.1. That in turn redounds to a redundancy in description of a
class of objects that are similar to each other in a suitable manner.

This philosophical attitude has manifested itself in many ubiquitous phrases and expressions such as
the Sparsity of Effects Principle, Occam’s Razor, or the Pareto Principle. All these share the common
belief that most information already is contained in a small fraction of the data that we actually
observe, cf. e.g. [STW18., Sch14., New 5.]. Mathematically speaking, this translates into the per-
suasion that naturally occuring data allows for sparse enconding with respect to a suitable, possibly
overcomplete, representation system, e.g. a frame, cf. e.g. [BP13 .].

The aim to find, assess and make sense of underlying structure has once more gained momentum
in the last decades, not least alongside the emergent usage of neural networks, deep learning and,
generally, the omnipresence of the buzzwords Big Data or Data Science, cf. e.g. [AÖ17., Sed18.].

It has thusly become necessary for modelling schemes of all kinds to be able to incorporate sparsity
as either a prior, a goal or a measure of success. Depending on the context one might also call
these systems recovery or retrieval algorithms as they aim to extract the ground truth from the
given observations. However, depending on the sitation at hand and the inherent data structure,
off-the-shelf procedures may fail to recognize the underlying patterns. Hence, there has been steady
interest in the development of suitable adaptive algorithms.

New Results

In this thesis I consider two different adaptive recovery concepts in Part III . and one application
example in X-ray nanoscale imaging in Part IV ..

1This reasoning starts to drift into the direction of philosophy and religion or – more to the point – epistemology,
and dates back millennia. A prominent example might be the discussion of the Essence or, literally, Being – εἶναι – of
Plato in ancient Greek philosophy, cf. [RS 8.]. As this is clearly besides the topic of this thesis, I will not develop
this thought any further.



The first concept is concerned with proximity operators intertwined between an injective linear
operator T with bounded range and its pseudoinverse T †. Proximity operators are a versatile tool
in convex analysis and are defined as

proxf := argmin
z∈H

[
f(z) + 1

2∥z − ·∥2
]
. (1)

Here, f is commonly a proper, lower semi-continuous, convex (plc) function and called the prior
of the proximity operator. Proximity operators allow for several intuitions. One is to consider
Equation (1.) as a penalized least-squares problem, [GN2 .]. Another way would be do describe
proximity operators as resolvents of subdifferentials, [BC11 .]. A prominent example in frame analysis
is proxγ∥·∥1 which coincides with the soft shrinkage operator Sγ , [Bec17., GN2 .], and hence can be
employed for sparsification. However, this will only lead to sparsity with respect to the canonical
basis which in many applications is not helpful. Instead, one rather would like to have sparsity
with respect to a suitable encoding, e.g. a frame, [Chr16., CK13., ZS14.]. This motivates to nest the
proximity operator into a frame encoding and decoding step, respectively. For an encoding T and
prior f this reads

T−1 proxf T,

which is impractical due to overcomplete frames being full-rank, but singular. Thence, we decided
to use the Moore-Penrose pseudoinverse instead, yielding

T † proxf T. (2)

Clearly, this models the application of the specified proximity operator on the signal when encoded
with respect to T . This immediately leads to the question whether this expression is a proximity
operator itself. Besides direct applications, e.g. in customized denoising schemes, this property is
crucial for the usability within standard algorithms, such as Douglas-Rachford or forward-backward
splitting.

First, I prove that in finite dimensions this is indeed the case. The main theorem of that section,
Theorem 4.1 . states that for a frame T ∈ RL×N of full rank, the operator T †SγT is the proximity
operator of a plc function. The key to this result is the introduction of a new inner product

⟨x, y⟩T := ⟨Tx, Ty⟩

that is weighted with the frame T . Due to this, we get a changed notion of (cyclical) monotonicity
which through Rockafellar’s Cyclic Monotonicity Theorem, Theorem 2.8., Minty’s Theorem, Theo-
rem 2.5., and Moreau’s Théorème des Fonctions Duales, Corollary 2.15., carries over to the notion of
proximity operators.

Afterwards we extend the result of Theorem 4.1 . to arbitrary Hilbert spaces and injective operators
with closed range, respectively, in Theorem 4.12.. The main ingredient is again the weighted inner
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product introduced in the previous section. This time, this is combined with an analysis of the
Fréchet derivative in the aim to represent

T † proxf T = ∇Ψ,

i.e. writing the nested proximity operator as a Fréchet derivative with respect to the weighted inner
product. Finally, in Theorem 4.13. we are moreover able to explicitly describe a plc function g subject
to

T † proxf T = proxg (3)

in terms of an infimal convolution.

Concludingly, we see that by proving that the expression T † proxf T is a proximity operator, we
have created an adaptable tool that gives rise to adaptive algorithms when integrated, e.g., into larger
recovery schemes. A brief example of doing so is given in Section 7.1. in the application in Part IV ..

The second concept studied in this thesis concerns doubly sparse recovery from potentially noisy
bilinear measurements. That is, we consider measurements of input vectors u ∈ Cn1 and v ∈ Cn2

of the form
b(u, v) + z

for a bilinear map b : Cn1 × Cn2 −→ Cm and a perturbation term z. Through lifting, this can be
modelled as a linear problem of the outer product uv∗. In Chapter 5. we consider linear operators
A : Cn1×n2 −→ Cm. Expectably, we assume

A(uv∗) = b(u, v).

More importantly, we will consider operatorsA that satisfy an (s1, s2, r)-restricted isometry prop-
erty (RIP), i.e.,

(1− δ) ∥X∥2F ≤ ∥A (X) ∥22 ≤ (1 + δ) ∥X∥2F

for all matrices X ∈ Cn1×n2 of rank at most r with at most s1 non-zero rows and at most s2
non-zero columns. This condition can be understood as a measure of how close an operator A is to
unitarity. Most applications use the fact that classes of random matrices satisfy this property with
high probability, e.g. Gaussians.

Recovering a column- and row-sparse rank-one matrix X from its RIP measurement A(X) is still
a very hard problem due to the competing objectives. Also, bilinear inverse problems with sparsity
constraints are still a relatively new field of study. We follow the approach of Lee et. al in [LWB18 .],
which is able to guarantee successful recovery for signals whose singular vectors u and v satisfy
∥u∥∞ ≥ 0.78∥u∥2 and ∥v∥∞ ≥ 0.78∥v∥2. This does however imply that more than half of the
mass already has to be contained in the largest entry of u and v, respectively, rendering applicability
impossible for many settings in practice.
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We solve this problem by providing a tradeoff between the peak to average power ratio and the
number of required measurements in Theorem 5.13.. For somewhat peaky signals with sparsity
∥u∥0 = ∥v∥0 :=s this allows recovery with measurements in the order of s3/2 as compared to
arbitrary sparse signals with an established order of s2, cf. [LS15.]. We also relax the stiff focus on
the single-largest entry by introducing a new norm

∥x∥[k] := max
I⊆{1,...,n}

|I|=k

(∑
i∈I

|xi|2
)1/2

for x ∈ Cn and k ≤ n which allows us to assess the fraction of the mass that is contained in the k
largest entries of a given signal and scale the number of necessary measurements correspondingly.

Our new idea to introduce this twofold relaxation of requirements for guaranteed recovery provides
us with an easily customizable algorithm that allows adaptive tailoring for the use case at hand.

The application part discusses applicability of the aforementioned recovery schemes in the context
of phase retrieval. This is motivated by the phase loss problem inherent to diffractive imaging,
e.g. X-ray nanoscale imaging. Firstly, I improve the approach by Loock, [LP14., Loo16.], not least
by providing a way to extend his proof to the case of arbitrary frames by the results of this work.
Secondly, I analyze that phase retrieval, e.g. from Fourier magnitudes, can also be modelled as a
sparse rank-one recovery problem. Unfortunately, albeit the Fourier transform being unitary, the
phase loss destroys the length-preservation and does not even permit an RIP. In the sense of good
scientific practice, and especially to counteract publication bias, I include this negative result here.

Structure

This thesis structured into five parts. Parts I . and V . cover the introduction and conclusion while
Parts II . to IV . constitute the scientific part of this dissertation.

In Part II ., I present a collection of concepts that I require to formulate and solve the questions of
the following parts. Large portions of this part are cited from adequate literature as the definitions
are well understood and most statements are direct consequences thereof. To this end, Chapter 1.

is concerned with an introduction to Fourier analysis and frame theory as well as their extensions
to wavelets, shearlets and the Fresnel transform. Followingly, Chapter 2. focusses on convex ana-
lysis and contains the notions of plc functions, proximity operators as well as extended notions of
differentiability and continuity. This chapter also gives a very short prospect of operator splitting
algorithms by the examples of forward-backward and Douglas-Rachford splitting. Lastly, Chapter 3.

contains the compressed sensing concept of lifting along with the notions of the restricted isometry
property and signal peakiness.
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Most of my own contribution is located in Part III .. Here I am concerned with addressing the task
of adaptive sparsification mathematically and develop the new results stated above.

Chapter 4. considers nested proximity operators, i.e. expressions of the form T † proxf T . I show that
in suitable settings this again is a proximity operator. In Section 4.1., I consider the finite dimensional
case and concentrate on soft shrinkage, i.e. in the notation of Equation (2.), we let f = γ∥ · ∥1.
Besides proving that frame soft shrinkage is a proximity operator, I also present some geometrical
considerations aiming to provide heuristically graspable intuition, at least for small examples. In
Section 4.2., we abandon this approach and instead aim for utmost generality. This also allows for
description of the newly found prior g of Equation (3.). As both sections of this chapter are based
on individual manuscripts, [GP19., HNP+19.], each will begin with a short introduction of its own
to the specific focus of the respective paper.

Chapter 5. addresses sparse bilinear recovery which, through lifting, is modelled as doubly sparse
rank one matrix recovery. Working with the Sparse Power Factorization algorithm of [LWB18 .] we
develop relaxed sufficient recovery criteria. To this end, we analyze the proof ideas of Lee et al.
and piecewisely improve or replace their technical lemmas and proofs in order to feed the improved
criteria into their existing framework. As large portions of this chapter have been published in
[GKS19.], I have retained the introduction thereof at the beginning of this chapter for an appropriate
embedding of this chapter into the corresponding context of compressed sensing.

In Part IV ., I consider methodic approaches in the setting of X-ray nanoscale imaging. Here, Chap-
ter 6. gives a brief outline on mathematical modelling of the propagation of light in the sense of
an electromagnetic wave. Moreover, we see that phase loss is inherent to diffractive imaging and
consequently look for exploitable priors to overcome the illposedness of the recovery problem. In
Chapter 7., we follow two approaches of addressing phase retrieval, by a relaxed Douglas-Rachford
iteration in the sense of [LP14.] and via matrix recovery in the sense of [LYB13 ., CESV13.].

Publications

Some parts of this thesis are based on the manuscripts [GP19., GKS19., HNP+19.], of which I am
a coauthor. In each case I will explicitly state the beginning of sections containing those excerpts.
The content will be largely identical to the ones in the corresponding manuscripts except for, e.g.,
adaptations to fit the structure of this thesis or explanatory running text.

In this thesis, Section 4.1. is based on [GP19.]. This manuscript evolved from the study of Stefan
Loock’s dissertation, [Loo16.], upon which I noticed a flawed proof. When attempting to correct
his proof, I found that by the new approach the assertion could be considerably generalized. Thus,
Gerlind Plonka and I developed the idea of the adapted inner product that consequently gave rise
to the core theorem of [GP19.], i.e. Theorem 4.1 .. This manuscript has been submitted and is
currently awaiting reviews.
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Section 4.2. is based on [HNP+19.]. The idea for this manuscript arose in the communication with
Gabriele Steidl concerning the previous work, [GKS19.]. Having brought along further researchers
led this discussion into a new direction of more generality and less understanding by means of
heuristics or geometry. Notwithstanding that, this correspondency amounted to [HNP+19.]. After
having finished this manuscript, some of the authors changed the focus of this work towards neural
networks. Although carrying over portions of [HNP+19.], this lead to a new work under a new title
which has been published in [HHN+2 .]. Due to the not inconsiderable overlap, we decided not to
pursue publication of [HNP+19.].

Chapter 5. is based on [GKS19.]. I have been working with the Sparse Power Factorization (SPF)
algorithm since my Bachelor’s thesis, [Gep15.]. There, I showed applicability of different pursuit al-
gorithms as part of SPF and, in correspondence with Kiryung Lee, the principal author of [LWB18 .],
I found technical flaws in their early manuscript, [LWB13 .]. In myMaster’s thesis, [Gep17.], I worked
on generalized sufficient convergence criteria of SPF. Unfortunately, I encountered technical dif-
ficulties which led to an incorrect result. Under the lead of Dominik Stöger and together with
Felix Krahmer, we were able to overcome these. Having presented and discucced the result on two
conferences, [GKS17., SGK18.], we published our manuscript as [GKS19.].
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Part II.

Foundation

This part lays the formal foundation for this thesis. More precisely, we will introduce the notations,
definitions, notions and concepts that we will need later to formulate and address our main goals.
Thereby, we especially provide detailled explanations to large parts of the symbols presented in the
List of Symbols ..

First, in Chapter 1., we consider a suitable choice of bases, frames and transforms. To begin with,
we fix the notation for the discrete and continuous Fourier transform in Section 1.1.. While we
will assume basic knowledge of the reader in this topic, there exist numerous variants of notation
and normalization, prompting the necessity of this explicit introduction. Then, we introduce the
concept of frames as an extension of bases in Section 1.2.. In the process, we explicitly focus on
the singular value decomposition of finite-dimensional frames, i.e. rectangular matrices. Following,
we exemplify the notion of frames by two prominent representatives, wavelets and shearlets in
Sections 1.3. and 1.4.. In the latter case we will motivate the continuous version first and then come
to terms with a discretization. Concludingly, we state the Fresnel transform in Section 1.5. and
interlinkingly study its behavior with respect to preserving the structures of spline wavelets and, in
Section 1.6., of shearlets.

Chapter 2. concerns itself with the introduction of some tools that one may associate with usage
in convex analysis. This section covers three topics. First, Section 2.1. provides extension to the
basic differentiability and continuity notions from introductory calculus, covering, e.g., Lipschitz
continuity as well as Fréchet differentiability and subdifferentiability. Second, Section 2.2. introduces
the proximity operator and states some properties that are directly derivable from its definition.
Third, Section 2.3. is concerned with the operator splitting methods of forward-backward splitting
and Douglas-Rachford splitting. Here, these are stated in a rather general manner, allowing, e.g.,
to derive a relaxed version based on averaged alternating reflections as a special case.

Lastly we introduce some basic concepts of compressed sensing in Chapter 3.. In this context, we first
shortly demonstrate the so-called lifting procedure which allows to reformulate a bilinear inverse
problem as a linear problem of higher dimension in Section 3.1.. Thereafter, we state the restricted
isometry property in Section 3.2.. Playing a key role in Chapter 5. in Part III ., this property can
be understood as a measure how close a given operator is to a unitary one. Finally, we discuss a
quantification method for signal peakiness, that is a measure stating how much of a signal’s mass is
concentrated in few, large entries in Section 3.3..





1. Frames, Bases and Transforms

In this chapter we introduce the tools and notions of numerical Fourier analysis we will use in
Parts III . and IV ..

As the name of Fourier analysis suggests, we will first introduce the Fourier transform itself in the
discrete and continuous setting, Section 1.1.. In this thesis we are not interested in Fourier series.

Following historical developments, one may base the wavelet transform on the Fourier transform.
While we recognize this, we present the wavelet transform in Section 1.3. based on a multiresolution
analysis. The wavelet construction in this thesis is knowingly not comprehensive, but will suffice
for understanding of its interaction with the Fresnel transform at the end of this chapter.

As a further improvement of the wavelet transform, especially for two-dimensional, anisotropic
signals, we will look at the shearlet transform in Section 1.4.. Here, we follow [KL12.] to provide a
broader introduction by first considering the continuous transform being based on representation
theory and then take a glimpse at discretization efforts undertaken by Kutyniok and others.

Both wavelets and shearlets give rise to representation systems, e.g. of L2(Rn). Depending on the
choice of parameters, base functions etc., these systems can be complete or overcomplete. In the
latter case, we call those systems frames. The corresponding theory is introduced in Section 1.2. prior
to wavelets and shearlets in order to provide the necessary framework for an easier understanding.

Afterwards, we present the Fresnel kernel and Fresnel transform in Section 1.5.. The Fresnel kernel
is dominated by its exponential part that, neglecting constant terms in the argument, is of the form
exp(∥x∥22). It is hence straightforward to see a relationship to the Fourier transform. This obser-
vation is manifested later in Section 6.1. where we discuss usage of Fresnel and Fourier magnitudes
as means of describing measurable intensities of electromagnetic waves. We then go on to apply
the Fresnel transform to B-spline wavelets and shearlets. The former will result in a new kind of
wavelets, so-called F-spline wavelets.

Finally, we pick up Lieblings idea of F-splines and try to adopt this concept for shearlets in Sec-
tion 1.6.. Here, we analyze which characteristics of shearlet functions are retained in the process of
convolving with the Fresnel kernel and discuss whether this can yield a reasonable encoding scheme.
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1. Frames, Bases and Transforms

1.1. Fourier Transform

Based on n-th roots of unity, the Fourier basis lays the foundation to the discrete Fourier transform,
cf. [Won11.]. Note that as opposed to the usual convention in Fourier analysis, we will index vectors
and matrices starting with 1 in order to stay consistent throughout this thesis.

1.1 Definition.
Let n ∈ N. Denote ωn the n-th root of unity, i.e.

ωn := exp
(−2πi

n

)
.

We then define the Fourier Matrix Fn ∈ Cn×n component-wise as

Fn :=
(
ω(j−1)(k−1)
n

)n
j,k=1

.

It is well known and easy to see that the columns of Fn provide an orthogonal basis of Cn. More
precisely, n−1/2Fn is unitary and commonly called Discrete Fourier Basis.

This lets us define the Discrete Fourier Transform (DFT) as the map x 7−→ Fnx. This definition
easily yields the corresponding inversion theorem.

1.2 Theorem (Fourier Inversion Theorem).
We have

F−1
n = 1

nF
∗.

We further introduce the continuous Fourier transform as an operator on L2. We will assume some
basic familiarity of the reader with Fourier analysis. Hence, we will not concern ourselves with
the derivation of the Fourier transform or the reasoning on which spaces it is well defined. The
interested reader finds a detailled introduction in [PPST18 .].

1.3 Definition (Cf. [Kre15.]).
The Continuous Fourier Transform F : L2(Rn) −→ L2(Rn) is defined as

f̂(ξ) := F [f ](ξ) =

∫
Rn

f(x) exp(−2πi⟨ξ, x⟩) dx.

As special cases we introduce the lateral and spectral Fourier transform in R3, which apply the
continuous Fourier transform to only the first two or the last dimensions, respectively. This will be
relevant later in modelling propagation of light in the direction of the third axis in Section 6.1..
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1.2. Frames

1.4 Definition (Cf. [Kre15.]).
Let f ∈ L2(R3). We then define its Spectral Fourier Transform as

Fsp[f ](x1, x2, ω) :=

∫
R
f(x1, x2, x3) exp(−2πiωx3) dx3

and its Lateral Fourier Transform as

F⊥[f ](ω1, ω2, x3) :=

∫
R2

f(x1, x2, x3) exp(−2πi⟨ω, ( x1x2 )⟩) d( x1x2 ).

The continuous Fourier transform also possesses a well known inversion theorem, cf. [Kre15., Goo 5.].

1.5 Theorem (Fourier Inversion Theorem).
The inverse of the continuous Fourier transform is given by

F−1[f̂ ](x) = f(x) =

∫
f̂(ξ) exp(2πi⟨ξ, x⟩) dξ.

1.2. Frames

In numerous contexts, it is necessary to wisely choose an overcomplete representation system. Usu-
ally these are called Frames. The interested reader finds an ample introduction in [CKP13., Chr16.].
From there, we repeat the following basics. Unless stated otherwise, all content of this Section 1.2.

is taken from there.

We begin by stating the formal definition of a frame as an (over-)complete system.

1.6 Definition.
For a Hilbert spaceH, a Frame is a sequence {fk}∞k=1 ⊆ H, if there exist constants A,B > 0

such that for all f ∈ H

A∥f∥2 ≤
∞∑
k=1

|⟨fk, f⟩|2 ≤ B∥f∥2.

We call A and B the Frame Bounds of {fk}.

Having introduced the notion of frames, we further define the corresponding analysis and synthesis
operators.
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1. Frames, Bases and Transforms

1.7 Definition.
Let {fk} a frame. Denote its Analysis Operator T and Synthesis Operator T ∗ by

T : H −→ ℓ2 T ∗ : ℓ2 −→ H

f 7−→ (⟨f, fk⟩)∞k=1 and (ak)
∞
k=1 7−→

∞∑
k=1

ak fk.

We call the product T ∗T : H −→ H the Frame Operator of {fk}.

It is easy to see that the frame operator T ∗T is invertible on H, cf. [Chr16.]. As a consequence, we
can reconstruct f from its frame coefficients, i.e.

f =
∑
k∈N

⟨·, fk⟩(T ∗T )−1fk,

which readers familiar with functional analysis will easily recognize as the dual frame. For further
interest in this topic, I recommend the reading of [Rud91.].

1.8 Definition.
Let {fk} a frame with analysis operator T and synthesis operator T ∗. Then its Canonical Dual
Frame is defined as the sequence {(T ∗T )−1fk} ⊆ H.

In order to get an intuition of finite-dimensional frames, let us now consider a simple example.
Let H = Rn and F ∈ Rm×n, where m ≥ n, a matrix of full rank. Then, clearly, the rows
{f1, . . . , fm} ⊆ Rn of F form a frame. We obtain the frame coefficients in the form of a vector in
Rm by multiplication with F , i.e. the frame analysis of a vector x ∈ Rn can be written as

Tx =

 ⟨x,f1⟩
⟨x,f2⟩
...

⟨x,fm⟩

 = Fx.

Analogously, the frame synthesis operator is realized as multiplication with F ∗, i.e. for a coefficient
vector a ∈ Rm we see

T ∗a =

m∑
k=1

ak fk =

(
| | |
f1 f2 ··· fm
| | |

)( a1
a2
...
am

)
= F ∗a.

It is hence not uncommon to use the symbol T to denote both a frame ant its analysis operator.

A special class of frames are so-called tight frames that are characterized by having a frame operator
which is a multiple of the identity.
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1.2. Frames

1.9 Definition.
A frame is called Tight if the frame bounds coincide, i.e. A = B. A tight frame is called
Parseval Frame if A = B = 1.

We will now concern ourselves with the pseudoinverse operator for operators that are not directly
invertible.

1.1 Definition.
Let H,K Hilbert spaces and T : H −→ K an injective, linear operator, e.g. a frame. Its
Moore-Penrose Inverse or Pseudoinverse, T †, is defined by

T † := (T ∗T )−1 T ∗.

Clearly, for bijective operators the pseudoinverse coincides with the real inverse. If T is not bijective,
the pseudoinverse acts as a left-inverse, i.e. T †T = id. When applied on the right hand side, we get
an additional restriction to the range of T , that is, TT † = PR(T ), where PR(T ) is the projection
onto the range of T , cf. [BC11 .].

A very important subclass of frames are the so-called Riesz Bases.

1.10 Definition (Cf. [Chr16.]).
A frame {fk}∞k=1 ⊂ H is called a Riesz Basis if there exist constants c and C, subject to
0 < c ≤ C <∞, such that for all sequences a := {ak}∞k=1 ∈ ℓ2 we have

c∥a∥22 ≤
∥∥∥∥ ∞∑
k=1

akfk

∥∥∥∥2
2

≤ C∥a∥22.

It is a standard result in functional analysis, cf. [Rud91.], that if H is separable, there exists another
Riesz basis {f̃k}∞k=1 ⊂ H which is dual to {fk}∞k=1 in the sense that

⟨fj , f̃k⟩ = δj,k

for all j, k ∈ N.

Singular Value Decomposition

This section introduces the concept of the so-called singular value decomposition (SVD) both over
R and C. The SVD allows to decompose matrices of any kind, particularly frames, into a form that
allows for better understanding of key properties such as rank, orthogonality or spectral norm. This
is completely based on [GV96.].
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1. Frames, Bases and Transforms

We will proceed in two steps. First, we define the terms singular value decomposition, singular
value and singular vectors by providing the formal definition. Second, we cite the vital theorem
ensuring unconditional existence of this decomposition.

1.11 Definition.
Let A ∈ Cm×n. A decomposition of the form

A = UΣV ∗

where U ∈ Cm×n and V ∈ Cn×n are unitary and Σ ∈ Rm×n is diagonal in the sense that
σi,j = 0 for i ̸= j, such that further σi,i ≥ σj,j ≥ 0 for i ≥ j, is called the Singular Value
Decomposition (SVD) of A.

The columns of U are called Left Singular Vectors, the columns of V are called Right Singular
Vectors. The entries σi := σi,i are called Singular Values.

This definition is indeed useful as the SVD always exists.

1.12 Theorem.
The SVD always exists. If A is real, so are U and V .

Due to the decreasing ordering of the singular values, Σ is uniquely determined. In general, how-
ever, U and V are not. To underline the usefulness of this decomposition, besides the numerical
stability of the unitary matrices U and V , we will now list some commonly known properties of
the SVD.

1.13 Proposition.
Let A ∈ Cm×n with SVD A = UΣV ∗.
Then with p := min(m,n) and r := min{1 ≤ i ≤ p : si+1 = 0}

a) Avi = σiui and A∗ui = σivi for any i ∈ {1, . . . , p},

b) rk(A) = r,

c) the SVD can be shortened to

A =
r∑
i=1

σiuiv
∗
i ,

d) ∥A∥2 = σ1 and ∥A∥2F = σ21 + · · ·+ σ2p .

Based on c) in Proposition 1.13., there also exists a truncated version of the SVD that sizes down
Σ to a square matrix. As a consequence, obviously, U has to be trimmed back, too. Yet this
abridged decomposition still allows for meaningful representation of any matrix with more rows
then columns.
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1.3. Wavelets

1.14 Definition.
Let A ∈ Cm×n where m ≥ n and consider its SVD A = UΣV ∗. Then also A = U1Σ1V

∗

where U1 ∈ Cm×n and Σ1 ∈ Cn×n are the truncated submatrices of U and Σ, respectively.
We call this decomposition Thin Singular Value Decomposition (Thin SVD).

1.3. Wavelets

The concept of theDiscrete Wavelet Transform – or so-calledWavelets – as a form of encoding gained
momentum in the 199 s. An accessible presentation can be found in e.g. [Nic17., Mal 9.]. While
some degree of uncertainty will inevitably remain, the historical motivation of wavelets appears to
be rather well understood. In [Nic17.], Nickolas reports that wavelets were developed as an extension
and improvement for Fourier series as they were only able to capture periodic signals. Wavelets on
the other hand are designed to provide a family of functions that are scaled, dilated or translated
with respect to the so-calledMother Wavelet. Pioneering work in this context is largely attributed to
Chui and Daubechies, who independently developed the standard works [Dau92., Chu92.]. In 2 14,
Plonka compiled an introductory lecture Image and Geometry Processing I: Applied Fourier Analysis
based on [Mal 9., LMR94., KK98.], which we will closely follow. In this chapter, we will recurrently
need the notion of Riesz bases from Definition 1.1 ..

In one dimension, wavelets allow great modelling for large classes of physically observable data,
provided a smart choice of base wavelet. For the discrete wavelet transform on R, we define the
wavelet function as follows:

1.15 Definition.
A semi-orthogonal Wavelet is a function ψ ∈ L2(R) with the property that the family of
functions {

ψj,k := 2j/2ψ(2j · −k) : j, k ∈ Z
}

is a Riesz basis for L2(R) such that further its dual Riesz basis{
ψ̃j,k := 2j/2ψ̃(2j · −k) : j, k ∈ Z

}
satisfies ⟨

ψj1k1 , ψ̃
j2
k2

⟩
= δj1,j2δk1,k2

for j1, j2, k1, k2 ∈ Z and ⟨
ψj1k1 , ψ

j2
k2

⟩
= 0

for j1, j2, k1, k2 ∈ Z, where j1 ̸= j2.

In order to gain a more general understanding, it is advisable to include the notions of scaling
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1. Frames, Bases and Transforms

functions and of the multiresolution analysis. In fact, each of the following conditions has a few
implications on its own, be it for theoretical understanding or use case applicability. For this thesis,
however, we only aim to provide a shallow insight into this form of construction.

1.16 Definition.
Let {Vj}j∈Z a sequence of closed subspaces of L2(R) and ϕ ∈ V0 such that

(MRA 1) The spaces {Vj} are nested, in the sense that Vj ⊂ Vj+1 for all j ∈ Z,

(MRA 2) The set
∪
j∈Z Vj is dense in L2(R),

(MRA 3)
∩
j∈Z Vj = {0},

(MRA 4) For all j ∈ Z we have ϕ ∈ V0 if and only if ϕ(2j ·) ∈ Vj ,

(MRA 5) For all k ∈ Z we have ϕ ∈ V0 if and only if ϕ(· − k) ∈ V0,

(MRA 6) The collection {ϕ(· − k) : k ∈ Z} is a Riesz basis for V0.

Then the pair ({Vj}, ϕ) is called Multiresolution Analysis and ϕ is called its Scaling Function.

Using any multiresolution analysis ({Vj}, ϕ) we can now construct a wavelet. By definition we have
ϕ ∈ V0 and hence by (MRA 1) also ϕ ∈ V1. With (MRA 4) it follows that ϕ(12 ·) ∈ V0. As any element
in V0 possesses a representation in the sense of (MRA 6), there exist coefficients {ak}k∈Z such that

ϕ
( ·
2

)
=
∑
k∈Z

akϕ(· − k)

or
ϕ =

∑
k∈Z

akϕ(2 · −k). (1.1)

We call Equation (1.1.) the Scaling Equation of the multiresolution analysis. This now allows us to
construct the corresponding wavelet.

1.17 Theorem.
Let ({Vj}, ϕ) a multiresolution analysis with an exponentially decaying scaling function ϕ satisfying
Equation (1.1.). Further, define a sequence {gk}k∈Z via

gk := 2(−1)k+1

∫ ∞

−∞
ϕ(2x+ k − 1)ϕ(x) dx

for all k ∈ Z. Then we obtain a semi-orthogonal wavelet ψ ∈ L2(R) defined as

ψ : x 7−→
∑
k∈Z

gkϕ(2x− k).
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1.4. Shearlets

B-Spline Wavelets

An important class of wavelets can be constructed using B-Splines. Although the classical intro-
duction of this topic is the one by Chui, [Chu92., CW91.], here we will follow [SN96., LBU 3.].

First, we note that for n ∈ N0 the cardinal B-Splines βn are defined in Fourier domain as

β̂n : ξ 7−→
(
1− exp(−2πiξ)

2πiξ

)n+1

.

Note that in this form, βn is the cardinal B-Spline of order n + 1, yet of degree n. As shown in
[Chu92., Lie 4.], these satisfy the scaling equation, cf. Equation (1.1.)

βn =
∑
k∈Z

1

2n

(
n+ 1

k

)
βn(2 · −k).

Thus, the cardinal B-splines generate a multiresolution analysis and subsequently give rise to a family
of wavelets.

We will come back to this class of wavelets later in Section 1.5., where we discuss so-called F-splines,
which will be constructed as the Fresnel transform of the B-splines mentioned here.

1.4. Shearlets

The shearlet transform is a powerful transform that – when discretized – gives rise to a versatile
class of frames. These are of particular interest in the encoding of so-called Cartoon-like Images,
i.e. piecewise constant functions with smooth boundaries. This is due to the defining feature of
shearlets, the shearing, cf. Equation (1.2.). Kutyniok and Labate motivate the necessity of this feature
by the ubiquity of anisotropic features in data occuring in practice. In [KL12.], they write

A fundamental property of virtually all data found in practical applications is that the rele-
vant information which needs to be extracted or identified is sparse, i.e., data are typically
highly correlated and the essential information lies on low-dimensional manifolds. […] This
is closely related to the observation that virtually all multivariate data are typically dominated
by anisotropic features such as singularities on lower dimensional embedded manifolds.

For more details on manifolds and their properties, the interested reader is referred to [Lee13 .].

Recently, there has been renewed interest in topics such as constructing compactly supported shear-
lets [KKL12.] or formulating the transform with the help of the Radon transform [BDDO17.] or via
a multiresolution analysis [CZ17.].

Here, we present some common forms of shearlets that are of interest in the exemplary application

17



1. Frames, Bases and Transforms

discussed in Part IV .. The concept of shearlets is based on unitary representations. As I do not want
to pursue any excursion into representation theory, I advise readers to the study of [Sug9 .]. This
introduction paraphrases [KL12.].

Continuous Shearlets

We introduce the Parabolic Scaling Matrices Aa for a ∈ R+ and Shearing Matrices Ss for s ∈ R by

Aa :=

[
a 0

0
√
a

]
Ss :=

[
1 s

0 1

]
. (1.2)

We further define two operators on L2(R2). Parametrized with M ∈ GL2(R) and t ∈ R2, we
define the Dilation Operator DM and Translation Operator Tt via

DM : L2(R2) −→ L2(R2) Tt : L2(R2) −→ L2(R2)

Φ 7−→ | det(M)|1/2Φ(M−1·) and Φ 7−→ Φ(· − t).

These let us now introduce the so-called Shearlet Group, a semi-direct product

S := (R+ × R)⋉R2

characterized by
(a, s, t) · (a, s̃, t̃) = (aã, s+

√
as̃, t+ SsAat̃).

As a next step we introduce a unitary representation σ : S −→ U(L2(R2)) of S, defined as

σ(a, s, t) : Φ 7−→ TtDAaDSsΦ.

This now lets us characterize continuous shearlets.

1.18 Definition.
Let ψ ∈ L2(R2).
We define its Continuous Shearing System by

SH(ψ) := {σ(a, s, t)ψ : (a, s, t) ∈ S}.

When referring to this system, we call ψ its Shearlet. The corresponding Continuous Shearlet
Transform is defined as a map onto S∗, the subgroup of units of S,

SHψ : L2(R2) −→ S∗

f 7−→ [(a, s, t) 7→ ⟨f, σ(a, s, t)ψ⟩] . (1.3)

18



1.4. Shearlets

We will now take a look at three important classes of shearlets, namely classical, admissible and
separable shearlets.

1.19 Definition.
A function is called Classical Shearlet if there exist functions ψ1, ψ2 ∈ L2(R) such that for
ω = (ω1, ω2) ∈ R2,

ψ̂(ω1, ω2) = ψ̂1(ω1)ψ̂2

(
ω2

ω1

)
,

where

• ψ̂1, ψ̂2 ∈ C∞(R)

• supp(ψ̂1) ⊆ [−1
2 ,−

1
16 ] ∪ [ 116 ,

1
2 ] and supp(ψ̂2) ⊆ [−1, 1]

•
∑
j∈Z

|ψ̂1(2
−jω)|2 = 1 for a.e. ω ∈ R

•
1∑

k=−1

|ψ̂2(ω + k)|2 = 1 for a.e. ω ∈ [−1, 1].

Despite these very specific conditions, classical shearlets provide an easily graspable geometrical
interpretation. One may picture ψ1 as a (discrete) wavelet and ψ2 as a bump function. A simple yet
suitable choice could be to select ψ1 as a Lemariè‒Meyer wavelet and ψ2 as a spline.

Next, we present the notion of admissible shearlets.

1.20 Definition (4 in [KL12.]).
A function ψ ∈ L2(R2) is called Admissible Shearlet if∫

R2

|ψ̂(ξ1, ξ2)|2

ξ21
dξ <∞. (1.4)

With the help of the Plancherel theorem, one can show that admissible shearlets give rise to an
isometric shearlet transform as soon as they satisfy the condition∫ ∞

0

∫ ∞

−∞

|ψ̂(ξ1, ξ2)|2

ξ21
dξ2 dξ1 =

∫ 0

−∞

∫ ∞

−∞

|ψ̂(ξ1, ξ2)|2

ξ21
dξ2 dξ1 = 1. (1.5)

It can also be shown, [DKM+ 8., KL12.], that classical shearlets are especially admissible and satisfy
the condition of Equation (1.5.), i.e. yield an invertible shearlet transform.

Last, the separable shearlet transform, as considered in [Lim1 ., KKL12.], aims at the construction
of bandlimited shearlets. As Lim describes in [Lim1 .], separable shearlets are designed to have a
rectangular essential support in Fourier domain rather than the isosceles trapezoids of common, e.g.
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1. Frames, Bases and Transforms

classical, shearlets. A complete classification of separable, bandlimited shearlets is far beyond the
scope of this thesis. Instead we state a simplified, tractable approach yielding such shearlets.

1.21 Proposition (Cf. [KKL12.]).
Let K,L ∈ N such that L ≥ 10 and 3L

2 ≤ K ≤ 3L − 2. Let m0 a trigonometric polynomial
with real coefficients satisfying m0(0) = 1 and

|m0(x)|2 = cos(πx)2K
L−1∑
n=0

(
K−1+n

n

)
sin(πx)2n.

Further define ϕ ∈ L2(R) by

ϕ̂(ξ) =
∞∏
j=0

m0(2
−jξ).

Now define a band-pass filter m1 by

|m1(x)|2 = |m0(x+ 1
2)|

2

for all x ∈ R. Then the shearlet ψ ∈ L2(R2) defined in Fourier domain by

ψ̂(ξ) = m1(4ξ1)ϕ̂(ξ1)ϕ̂(2ξ2), (1.6)

for ξ = (ξ1, ξ2) ∈ R2 is compactly supported.

Discrete Shearlets

While continuous shearlets may be a versatile analysis tool, their handling is difficult in practice due
to the cardinality of S. Therefore, Kutyniok describes a way to discretize shearlets to create a frame.
In that sense for a shearlet ψ ∈ L2(R2) let

ψj,k,m = 2
3
4 j ψ(SkA2j · −m)

and define
SH(ψ) := {ψj,k,m : j, k ∈ Z,m ∈ Z2}.

Luckily, for classical shearlets this system already is a frame.
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1.5. Fresnel Transform

1.22 Proposition (2 in [KL12.]).
Let ψ ∈ L2(R2) a classical shearlet. Then SH is a Parseval frame for L2(R2).

Shearlets also provide numerous opportunities for digitization whilst keeping intact core properties.
To the interested reader I suggest the reading of [KLR16.]. For our purpose, it is sufficient to know
that there exist feasible algorithms that allow digital application of the shearlet frame.

1.5. Fresnel Transform

The Fresnel Transform is a parameterized unitary transform onRn. This transform will later become
a crucial part in the Fresnel Propagation in Section 6.1. as an approximative model for the propagation
of electromagnetic waves in vacuum. We will base this introduction on [LBU 3., Lie 4.]. For the
interested reader, I also recommend the reading of the latter.

We start by introducing the Fresnel kernel and, based on that, the Fresnel transform as the convo-
lution therewith.

1.23 Definition.
Let τ > 0. We define the Fresnel Kernel Kτ by letting

Kτ : Rn −→ C,

x 7−→ 1

τn
exp
(
iπ
τ2

∥x∥22
)
.

We call the convolution with the Fresnel kernel the Fresnel Transform and write

f̃τ := f ∗Kτ .

This definition is very approachable in the respect that, for instance, it exhibits a closed form in
Fourier domain. That is,

K̂τ : Rn −→ C,

ξ 7−→ (i)n/2 exp
(
−iπτ2∥ξ∥22

)
.

Also, both the kernel Kτ and its Fourier transform K̂τ are separable by dimension.
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1. Frames, Bases and Transforms

1.24 Remark.
When letting

kτ := 1
τ exp(iπ(

1
τ ·)

2)

and correspondingly
k̂τ :=

√
i exp(−iπ(τ ·)2)

we see, e.g. in R2, that
Kτ (x1, x2) = kτ (x1)kτ (x2)

and
K̂τ (ω1, ω2) = k̂τ (ω1)k̂τ (ω2).

F-Spline Wavelets

In the early 2 s, Liebling considered B-Spline wavelets, cf. Section 1.3., and applied the Fresnel
transform to the spline functions βn. We denote β̃nτ = βn ∗ kτ as in Definition 1.23. and call this
family F-Splines, cf. [LBU 3., Lie 4.].

Following [LBU 3.], we notice that F-splines do not satisfy the scaling equation, Equation (1.1.), but
instead

β̃nτ/2 =
∑
k∈Z

1

2n
(
n+1
k

)
β̃nτ (· − k).

The authors go on to propose an alternate multiresolution analysis by letting

Ṽj,τ := span
k∈Z

{
β̃nτ (2

−j · −k)
}
∩ L2(R)

satisfying

(MRA 1') The spaces {Ṽj,τ} are nested, in the sense that Ṽj,τ ⊂ Ṽj−1,τ for all j ∈ Z,

(MRA 2) The set
∪
j∈Z Ṽj,τ is dense in L2(R),

(MRA 3)
∩
j∈Z Ṽj,τ = {0},

(MRA 4') For all j ∈ Z we have f ∈ Ṽj,τ if and only if f̃√3τ (2·) ∈ Ṽj−1,τ ,

(MRA 5) For all k ∈ Z we have f ∈ Ṽ0,τ if and only if f(· − k) ∈ Ṽ0,τ ,

(MRA 6) The collection {β̃nτ (· − k) : k ∈ Z} is a Riesz basis for Ṽ0,τ .

Note that in this design the scaling spaces are in inverse nesting order as compared to Definition 1.16..
This MRA still allows for a digitization of wavelets and the authors provide exemplary applications
such as backpropagation of diffraction patterns.
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1.6. Fresnel Transformed Shearlets

1.6. Fresnel Transformed Shearlets

Generalizing the approach of Liebling based in [LBU 3.], i.e. applying the Fresnel transform on
(B-spline) wavelets, we will now investigate the effects of consecutive application of Fresnel and
shearlet transform. The main idea is that, if an image I(x, y) can be sparsely represented by the
shearlet transform w.r.t. ψ, its Fresnel transform Kτ ∗ I should satisfy the same for an adequate
counterpart. In this section, we investigate which kind of shearlets appear to be suitable.

In contrast to Liebling’s success, however, we expect less convenient results due to the construction
of shearlets themselves. While multi-dimensional wavelets are commonly constructed as the tensor
product of their one-dimensional versions, [Øyv19 .], shearlets deliberately left this path in order
to be able to address singularities along curves, [KL12.]. Thus we expect this undertaking to be
challenging at best.

In this sense, we will show that the Fresnel transform keeps the structure of admissible shearlets
intact, Proposition 1.25., but not of classical shearlets, Proposition 1.26.. It also maps band-limited
shearlets onto band-limited shearlets, Proposition 1.27., and retains Equation (1.6.) as one of the
characteristic conditions for separable shearlets as introduced in Proposition 1.21., Proposition 1.28..
We are, however, not able to show that the Fresnel transform of separable shearlets yields separable
shearlets in an applicable manner.

To that end, recall the Fresnel transform of the previous section, Definition 1.23. and especially the
notation

f̃τ := f ∗Kτ

for the transformed function.

We start by considering admissible shearlets.

1.25 Proposition.
The Fresnel transform maps admissible shearlets on admissible shearlets.

Proof.
Assume that ψ ∈ L2(R2) is a shearlet satisfying the condition in Equation (1.4.). We will now
investigate these conditions with regard to its Fresnel transformed counterpart, ψ̃τ . To that end, we
calculate

|F [ψ̃τ ]|2 = |F [ψ ∗Kτ ]|2 = |ψ̂ K̂τ |2 = |ψ̂|2 |K̂τ |2 = |ψ̂|2 |i exp
(
−iπτ2∥ · ∥22

)
|2 = |ψ̂|2.

So we find ∫∫
R2

|F [ψ̃τ ](ω1, ω2)|2

ω2
1

dω2 dω1 =

∫∫
R2

|ψ̂(ω1, ω2)|2

ω2
1

dω2 dω1 <∞.
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1. Frames, Bases and Transforms

Thus, the Fresnel transform does not change the properties of Equation (1.4.), i.e. the admissibility
assertion holds true for ψ̃τ . qed

Clearly, the same argument applies for Equation (1.5.), i.e. admissible shearlets providing an isometric
shearlet transform yield Fresnel transformed shearlets with the same property.

Now, we will analyse the structure of classical shearlets w.r.t. the Fresnel transform. Here, we will
run into problems as the two-dimensional Fresnel transform is applied in a tensor-like manner, cf.
Remark 1.24., while classical shearlets are decomposed as

ψ̂(ω1, ω2) = ψ̂1(ω1)ψ̂2

(
ω2

ω1

)
,

cf. Definition 1.19.. Expectably, this is incompatible.

1.26 Proposition.
The Fresnel transform does not preserve the structure of classical shearlets.

Proof.
Assume thatψ ∈ L2(R2) is a shearlet satisfying the conditions of Definition 1.19. w.r.t. the functions
ψ1 and ψ2. To show that ψ̃τ no longer is a classical shearlet, assume contrarily the existence of two
functions ψτ1 and ψτ2 such that these would conform with the conditions of Definition 1.19., i.e.

ψ̂τ1 (ω1)ψ̂τ2
(
ω2
ω1

)
= F [ψ̃τ ](ω).

Note that we will not assume that ψτ1 = ψ1 ∗Kτ or ψτ2 = ψ2 ∗Kτ .

Thence, with ω = (ω1, ω2) ∈ R2,

ψ̂τ1 (ω1)ψ̂τ2
(
ω2
ω1

)
= F [ψ̃τ ](ω)

= F [ψ ∗Kτ ](ω)

= K̂τ (ω)ψ̂(ω)

= k̂τ (ω1)k̂τ (ω2) ψ̂1(ω1)ψ̂2

(
ω2
ω1

)
= F [kτ ∗ ψ1](ω1)F [ψ2]

(
ω2
ω1

) ∫
R
kτ (t) exp(−2πitω2) dt,

where the integral is a function in ω2 as compared to the desired ω2/ω1, thereby rendering the
desired decomposition impossible. qed

Next, we take a look the the Fresnel transform in conjunction with band-limited shearlets. Due to
the closed form of the Fresnel kernel both in spatial and frequency domain, this property can easily
be addressed.
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1.6. Fresnel Transformed Shearlets

1.27 Proposition.
The Fresnel transform maps band-limited shearlets onto band-limited shearlets.

Proof.
Let ψ be band-limited, i.e. assume existence of constants a < b and α < β such that

supp(ψ̂) ⊆ [a, b]× [α, β].

Then

supp(̂̃ψτ ) = supp(F [ψ ∗Kτ ]) = supp(K̂τ · ψ̂) = supp(K̂τ ) ∩ supp(ψ̂) ⊆ supp(ψ̂).

So ψ̃τ is band-limited as well. qed

Finally, we consider separable shearlets. These are an intricate topic in their own right, cf. [Lim1 .,
KKL12.], which is why we will restrict ourselves in this thesis to the analysis of the decomposition
structure of Equation (1.6.). This class of shearlets, however, is the most promising from a heuristic
point of view as separability of the shearlet (in Fourier domain) may align well with the Fresnel
kernel, which exhibits the same property.

1.28 Proposition.
The Fresnel transform maps shearlets generated from Proposition 1.21. onto functions satisfying Equa-
tion (1.6.).

Proof.
Let ψ a compactly supported separable shearlet in the sense of Proposition 1.21., i.e. there exist a
scaling function φ and a band-pass filter m1, such that for ω = (ω1, ω2) ∈ R2,

ψ̂(ω) = m1(4ω1)φ̂(ω1)φ̂(2ω2).

Now let

mτ (4ω1) := 4m1(4ω1) exp
(
−3

4 iπτ
2ω2

1

)
φτ := kτ (2·) ∗ φ.

Then the Fresnel transform ψ̃τ = ψ ∗Kτ possesses a Fourier transform F ψ̃τ that can be decom-
posed as

F ψ̃τ = F [ψ ∗Kτ ](ω)
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= K̂τ (ω) ψ̂(ω)

= k̂τ (ω1)m1(4ω1)φ̂(ω1) k̂τ (ω2)φ̂(2ω2)

= m1(4ω1) k̂τ (ω1)φ̂(ω1) 2F [kτ (2·)](2ω2)φ̂(2ω2)

= 2m1(4ω1) F [kτ ∗ φ](ω1) F [kτ (2·) ∗ φ](2ω2)

= 2m1(4ω1) F [kτ ∗ φ](ω1) φ̂τ (2ω2)

= 4m1(4ω1) exp
(
−3

4 iπτ
2ω2

1

)
F [kτ (2·) ∗ φ](ω1) φ̂τ (2ω2)

= mτ (4ω1) φ̂τ (ω1) φ̂τ (2ω2),

where the penultimate identity is due to

F [kτ ∗ φ](ω1) = k̂τ (ω1) φ̂(ω1)

=
√
i exp(−iπτ2ω2

1) φ̂(ω1)

=
√
i exp

(
−iπτ2ω2

1

)
φ̂(ω1)

=
√
i exp

(
−1

4 iπτ
2ω2

1

)
φ̂(ω1) exp

(
−3

4 iπτ
2ω2

1

)
=

√
i exp(−iπτ2(12ω1)

2) φ̂(ω1) exp
(
−3

4 iπτ
2ω2

1

)
= k̂τ (

ω1
2 ) φ̂(ω1) exp

(
−3

4 iπτ
2ω2

1

)
= 2F [kτ (2·) ∗ φ](ω1) exp

(
−3

4 iπτ
2ω2

1

)
.

So, indeed, the function ψ̃τ can be decomposed in the same manner. qed

For achieving a decomposition suitable for digitization in the sense of the digital separable shearlet
transform, cf. [KLZ12.], we would needmτ and φτ to behave sufficiently nice. However, numerical
tests suggested this is not the case.

In summary, the characteristic feature of shearlets, i.e. the ability to follow singularities along
(smooth) curves does not allow sensible propagation with respect to the paraxial Fresnel transform,
as expected.
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2. Convex Analysis

This chapter is concerned with introducing the concepts of convex analysis that we will use recur-
rently in Part III .. In doing so, this chapter has three different, although related, focal points. Before
coming to the first point, we address some introductory notions that are relevant in their own right
but will not necessarily entail a cascade of successive results, at least not within the focus of this
thesis. These notions include plc functions, the infimal convolution and firm nonexpansiveness. We
also provide insight into the concept of monotonicity and its properties of cyclicity and maximality,
correspondingly.

Our first focus will be on the extension of the notion of derivatives and continuity in Section 2.1.. To
this end, we introduce generalized concepts, e.g. the subdifferential, to create a notion of derivatives
of functions that are not differentiable in the usual sense. This will become crucial when considering
proximity operators in the subsequent section, since those are closely related, as we will demonstrate.
We will also state the condition for Lipschitz continuity and derive the concept of nonexpansiveness.

Secondly, we focus on the proximity operator, which is the key to understanding Chapters 4. and 7..
Most relevantly, we introduce the formal definition and show existence, uniqueness, and single-
valuedness for plc priors. We also consider proximity operators as special cases of resolvents, thereby
embedding this notion into a larger, more general context within convex analysis and operator the-
ory. Moreover, we provide coherence to the preceding section by analyzing the proximity operator
for e.g. nonexpansiveness.

Our third focus, in Section 2.3., will be on a choice of operator splitting algorithms, namely forward-
backward splitting and Douglas-Rachford splitting. We state their schematic instructions and cite
converge criteria from [BC11 .]. This will then allow us to consider a special case of Douglas-Rachford
splitting, employing averaged alternating reflections. Following the works of Luke, cf. [BCL 4.,
Luk 5., LM2 .], we furthermore derive a relaxation of the Douglas-Rachford algorithm, which is
known as DRλ.

We start by introducing the notion of plc functions. These will be essential in the context of
proximity operators and consequently throughout Chapter 4.. To this end, we state the requirements
for proper, lower semi-continuous and convex functions and define plc functions as those that satisfy
all three criteria.
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2. Convex Analysis

2.1 Definition (Cf. [BC11.]).
Let H a Hilbert space and f : H −→ R ∪ {+∞}. Then f is called

a) Proper, if f(x) ̸= −∞ for any x and f(x0) ̸= +∞ for at least one x0.

b) Lower Semi-Continuous at some point x, if for every net (xa)a∈A in Rd it holds that
xa −→ a implies f(x) ≤ lim inf f(xa).

c) Convex, if its epigraph is convex, i.e. for all α ∈ (0, 1) and arbitrary (x, ξ) and (y, η) ∈
epi f we have that (αx+ (1− α)y, αξ + (1− α)η) ∈ epi f as well.

If a function is proper, lower semi-continuous and convex, we also call that function to be
PLC. We denote the set of plc functions from H to R∪ {+∞} by Γ0(H). We will omit the
specification of H whenever clear from context.

Next, we want to introduce the concept of the infimal convolution. This concept is much less
common than the usual convolution, i.e. the integral convolution. These two kinds of convolution
feature a noticeably close relationship, as their defintion is identical when interchanging the integral
operator for an infimum and the product for a sum.

2.2 Definition (Cf. [BC11.]).
Let f, g ∈ Γ0(H). We define the Infimal Convolution f □ g as

f □ g := inf
y∈H

[f(y) + g(· − y)] .

The infimal convolution lives within the Γ0 space of a given Hilbert space. Thus, as would be ex-
pected from any well-defined operation in functional calculus, it exhibits a closedness property.

2.3 Proposition (Cf. [Phe93., BGLW08.]).
Let f, g ∈ Γ0. Then also f □ g ∈ Γ0.

We will now concern ourselves with the notion of monotonicity. To that end, we proceed by first
recalling the classical notion of monotone functions and then expanding this to the more specific
α-strong monotonicity.

2.1 Definition (20.1 and 22.1 in [BC11.]).
Let α > 0 and A : H −→ 2H an operator. A is called Monotone if we have

⟨x− y, u− v⟩ ≥ 0

for all pairs (x, u); (y, v) ∈ Γ(A). A is called α-Strongly Monotone if A− α id is monotone.
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Now, as a further, related concept, we introduce cyclical monotonicity and describe the condition
for maximality thereof. As Rockafellar shows in [Roc66.], maximally cyclically monotone operators
are indeed very common. For a plc function f ∈ Γ0(H) the subdifferential ∂f is a maximally
cyclically monotone operator onH×H∗, where H∗ denotes the dual space to H. We will formally
introduce the subdifferential in Definition 2.7. and formulate a theorem including this statement in
Theorem 2.8..

2.4 Definition (Cf. 12.24 in [RW98.]).
Denote ⟨·, ·⟩ an inner product in H. A mapping H : H −→ 2H is called Cyclically Monotone
if for any m ∈ N, m ≥ 2 and any choice of points x1, . . . , xm and elements yi ∈ H(xi) we
have

⟨x2 − x1, y1⟩+ ⟨x3 − x2, y2⟩+ · · · ⟨x1 − xm, ym⟩ ≤ 0.

We call H Maximally Cyclically Monotone if it is cyclically monotone and its graph cannot be
enlarged without destroying this property.

The maximality condition in its presented form might appear rather abstract and of little use.
Fortunately, maximal monotonicity can be characterized in a much more tangible way by Minty’s
Theorem.

2.5 Theorem (Minty's Theorem, 21.1 in [BC11.]).
Let A : H −→ 2H be monotone. Then A is maximally monotone if and only if the operator id+A
has full range, i.e. R(id+A) = H.

At the end of this section we will now address the notion of firm nonexpansiveness and, based
on that, cocoerciveness. We will later also present the defintion of the weaker condition of (not
necessarily firm) nonexpansiveness in Definition 2.1 .. This will be however based on Lipschitz
continuity and is hence contextualized in Section 2.1.. Differentiability and Continuity.

2.6 Definition (Cf. [HNP+19., BC11.]).
Let H a Hilbert space with inner product ⟨·, ·⟩ and corresponding norm ∥ · ∥. An operator
G : H −→ H is called Firmly Nonexpansive if for all x, y ∈ H the relation

∥Gx−Gy∥2 ≤
⟨
x− y,Gx−Gy

⟩
is satisfied.

The operator G is said to be β-Cocoercive for some β > 0, if βG is firmly nonexpansive.

29



2. Convex Analysis

2.1. Differentiability and Continuity

In this section we provide terminology to extend the commonly known notions of differentiability
and continuity, e.g. from basic calculus. To this end, we consider the subdifferential that provides
a sense of derivative even for non-differentiable functions. This also allows us to state Rockafellar’s
Cyclic Monotonicity Theorem that we have anticipated since Definition 2.4.. A second generalization
of the classical derivative is the Fréchet derivative that we introduce in Definition 2.9.. We conclude
by presenting the concept of Lipschitz continuity, which is a stricter condition than basic continuity.
This in turn leads to an easy characterization of nonexpansiveness, which adds the missing context
to Definition 2.6..

We begin by quoting the definition of the subdifferential from [BC11 .].

2.7 Definition (16.1 in [BC11.]).
Let H a Hilbert space and f : H −→ R ∪ {∞} be proper. The Subdifferential of f is the
set-valued operator

∂f : H −→ 2H

x 7−→ {u ∈ H : ⟨y − x, u⟩+ f(x) ≤ f(y) for all y ∈ H} .

Let now x ∈ H. Then f is Subdifferentiable at x if ∂f(x) ̸= ∅.

We now have introduced, in Definitions 2.4. and 2.7., all required prerequisites to state Rockafellar’s
Cyclic Monotonicity Theorem. This will, eventually, allow us to investigate set-valued operators
for maximal cyclical monotonicity.

2.8 Theorem (Rockafellar, 22.14 in [BC11.]).
A set-valued mapping H : RN −→ 2R

N is the subdifferential of a function Φ ∈ Γ0 if and only if
H is maximally cyclically monotone.

As a second generalized notion of derivation is given by the so-called Fréchet derivative. This
concept also gives rise to an appropriate understanding of the gradient, which we will use later, e.g.
in Section 4.2..

2.9 Definition (Cf. [FSG08., HNP+19.]).
Let H a Hilbert space and f : H −→ R. The function f is called Fréchet Differentiable at
x ∈ H if there exists a bounded linear operator Dfx : H −→ R such that

lim
∥h∥H→0

|f(x+ h)− f(x)−Dfxh|
∥h∥H

= 0.
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For a Fréchet differentiable function f : H −→ R, the gradient ∇f(x) at x ∈ H is defined as
the vector satisfying

⟨∇f(x), h⟩ = Dfxh.

for all h ∈ H.

If clear from context, we will omit the subscript of x and write Df .

As we have formulated this definition for arbitrary Hilbert spaces with a not further specified norm,
the gradient and hence the Fréchet differentiability property fundamentally depend on the chosen
inner product. The same holds true for the Lipschitz continuity between two arbitrary Hilbert
spaces that we will introduce next.

2.10 Definition (Cf. [BC11.]).
Let H,K two Hilbert spaces. A function f : H −→ K is called L-Lipschitz Continuous if
there exists a constant L ≥ 0 such that for any x, y ∈ H we have

∥f(x)− f(y)∥K ≤ L∥x− y∥H.

A 1-Lipschitz continuous function is called Nonexpansive.

2.2. Proximity Operators

This section is dedicated to introducing the proximity operator and presents some basic results that
follow immediately from its definition. We will consider the proximity operator for plc functions,
that we have introduced in Definition 2.1., as this will ensure uniqueness and existence. Moreover,
we will use this newly introduced tool to handily characterize maximal cyclical monotonicity and
classify the proximity operator as the resolvent of the subdifferential of its prior.

First, we state the proximity operator and the inherent Moreau envelope.

2.11 Definition (Proximity Operator, cf. [BC11.]).
Let f ∈ Γ0(H). We define its Proximity Operator (prox operator) as

proxf := argmin
z∈H

[
f(z) + 1

2∥z − ·∥2
]

and its Moreau envelopeMf : H −→ R via

Mf := inf
z∈H

[
f(z) + 1

2∥z − ·∥2
]
.
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2. Convex Analysis

When discussing proximity operators proxf or Moreau envelopes Mf , we will refer to f as their
corresponding Prior. It is important to note that the proximity operator and the Moreau envelope
depend crucially on the underlying space and the choice of the employed norm. Yet, this allows us
to tailor these operators for specific use cases as we will demonstrate in Section 4.1..

There also exists an alternative characterization of the Moreau envelope as an infimal convolution,
namely for f ∈ Γ0 we see

Mf = f □ 1
2∥ · ∥

2.

In relation to frame theory, cf. Chapter 1., the next example shows that some common shrinkage
operators can be expressed as proximity operators. Reversely, this shows that for some priors the
proximity operator exhibits a closed form which in general is rather rare.

2.12 Example (Cf. [Bec17., GN20.]).
Considering the (pseudo-)norms of ℓ0, ℓ1 and ℓ2 as introduced in the List of Symbols., we
present their proximity operators in a closed form. We use a positive scaling coefficient λ > 0.
In the first two cases, the proximity operator is best expressed componentwise; hence we will
use some x ∈ Rn as a generic argument of the proximity operators.

Now, we see that hard shrinkage is the proximity operator of ∥ · ∥0,

[
proxλ∥·∥0(x)

]
j
=


0, |xj | <

√
2λ,

xj , |xj | >
√
2λ,

0 or xj , |xj | =
√
2λ,

soft shrinkage is the proximity operator of ∥ · ∥1,

[
proxλ∥·∥1(x)

]
j
=


xj − λ, xj ≥ λ,

xj + λ, xj ≤ −λ,
0, else,

or the proximity operator of ∥ · ∥2,

proxλ∥·∥2(x) =
{(

1− λ∥x∥−1
2

)
x, ∥x∥2 > λ,

0, ∥x∥2 ≤ λ.

In the following, we will also refer to the soft shrinkage operator proxλ∥·∥1 as Sλ, as is more common
in frame theory.

In order to embed the notion of proximity operators into some larger context in operator theory, we
now consider the notion of so-called resolvents and subsequently prove that these form a superclass
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to proximity operators.

2.13 Definition (23.1 and 23.10 in [BC11.]).
Let A : H −→ 2H. We denote the Resolvent of A as

JA := (id+A)−1

and the Reflected Resolvent of A as

RA := 2JA − id.

The next proposition combines two core properties of proximity operators. First, and most impor-
tantly for unburdened usage of proximity operators, this states unconditional, unique existence and,
notably, single-valuedness for plc functions. Second, this provides the relation between proximity
operators, resolvents and subdifferentials, which are all pivotal notions in convex analysis.

2.14 Proposition (Cf. [ET87.]).
The proximity operator proxf of a plc function f ∈ Γ0 exists, is uniquely defined, single-valued,
and we have

proxf = J∂f .

This proposition entails two useful results with respect to this thesis. First, we rewrite the relation
between the proximity operator and the corresponding resolvent at a lower, i.e. element-wise, level
in Moreau’s Théorème des Fonctions Duales. Often, this is more useful in calculations than the
operator-theoretic form of Proposition 2.14..

2.15 Corollary (Moreau, 4.a in [Mor65.]).
Let f ∈ Γ0(Rd) and x, y ∈ Rd. Then y ∈ ∂f(x) if and only if x = proxf (x+ y).

Second, this yields cocoerciveness with coefficient 1, which is a instantaneous consequence of the
monotonicity of the proximity operator.

2.16 Corollary.
Proximity operators are 1-cocoercive.

Proof.
Let f ∈ Γ0 and x, y ∈ H be arbitrary. Let now u := proxf (x) and v := proxf (y). Then by
Corollary 2.15., x− u ∈ ∂f(x) and y − v ∈ ∂f(y). As the subdifferential is monotone, we have

⟨(x− u)− (y − v), u− v⟩ ≥ 0

which ends the proof. qed
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The end of this section will relate the proximity operator to the notions of the preceding section.
We first show that a proximity operator is firmly nonexpansive and its Moreau envelope is Fréchet
differentiable, cf. Definitions 2.6. and 2.9..

2.17 Theorem (12.27 and 12.29 in [BC11.]).
Let f ∈ Γ0(H) and λ > 0. Then it holds that

a) The operator proxλf : H −→ H is firmly nonexpansive,

b) The functionMλf is (Fréchet) differentiable and has a Lipschitz-continuous gradient given by

∇Mλf (x) = x− proxλf (x).

Furthermore, we relate a proximity operator to the Fréchet gradient of its Moreau envelope. This
subtle relatedness will become beneficial in Section 4.2..

2.18 Corollary.
Let λ > 0 and f plc. For Φ := 1

2∥ · ∥
2 −Mλf we see

proxλf (x) = ∇
(
1

2
∥ · ∥2 −Mλf (x)

)
= ∇Φ(x).

Proof.
Considering that proxλf is nonexpansive by Corollary 2.16. and that Φ is convex, the claim follows
directly from Theorem 2.17. b). qed

Finally, it was shown byMoreau that also the following (reverse) statement holds true. This provides
context in the sense of nonexpansiveness and the subdifferential, cf. Definitions 2.7. and 2.1 ..

2.19 Theorem (10.c in [Mor65.]).
The operator f : H −→ H is a proximity operator if and only if it is nonexpansive and there exists
a function ψ ∈ Γ0(H), such that for any x ∈ H we have f(x) ∈ ∂ψ(x).

2.3. Operator Splitting Algorithms

This section is based on [BC11 ., Set1 ., Och18 .]. Here, we are looking for a possibly unique minimizer
of the sum of two functions. As this problem can become arbitrarily complicated to solve explicitly,
we will instead turn our attention to (numerical) algorithms. While there exist a myriad of algo-
rithms with numerous assumptions and requirements, we will ex ante restrict ourselves to a small
selection. In this thesis, we consider Forward-Backward and Douglas-Rachford Splitting. The latter
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will also give rise to a relaxation, DRλ or RAAR, that has proven useful in phase retrieval problems,
cf. [LP14., Luk 5., LZ17.]. Interestingly, these two algorithms can also be understood as two special
forms of a more general, relaxable algorithm, the so-called Generalized Forward-Backward Splitting,
cf. [RFP13 .]. In this context remember the notation of the kernel, N (f) := {x : f(x) = 0}.

We will first consider the forward-backward splitting algorithm as stated by Bauschke and Com-
bettes. This includes a convergence guarantee that fortunately is stated in extensive generality.

2.20 Proposition (25.9 in [BC11.]).
Let D ⊆ H be nonempty and closed, let A : H −→ 2H be maximally monotone and such that
dom(A) ⊆ D, let B : D −→ H, let α, β > 0. Suppose that one of the following holds

• A is α-strongly monotone, B is β-cocoercive and γ ∈ (0, 2β),

• α ≤ β, B is α-strongly monotone and β-Lipschitz continuous and γ ∈ (0, 2α/β2).

Let x(0) ∈ D and update

y(n) := x(n) − γBx(n)

x(n+1) := JγAy
(n).

Then (x(n)) converges linearly to the unique point in N (A+B).

Note that the assumptions directly ensure that N (A+B) is not empty.

When comparing distinct, yet akin, iterative algorithms, it can be useful to reformulate the iteration
instructions in the form of a single line and to compare those. Capturing the characteristics of
Proposition 2.2 ., the update step can be written in one line as

x(n+1) = JγA(x
(n) − γBx(n)). (2.1)

We will now consider Douglas-Rachford splitting.

2.21 Theorem (25.6 in [BC11.]).
Let A and B be maximally monotone operators fromH to 2H such thatN (A+B) ̸= ∅, let (λn)
be a sequence in [0, 2] such that

∑
n∈N λn(2− λn) = +∞, let γ > 0 and x(0) ∈ H. Update

y(n) := JγBx
(n)

z(n) := JγA(2y
(n) − x(n))

x(n+1) := xn + λn(z
(n) − y(n))

Then there exists x ∈ Fix(RγARγB) such that
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• JγBx ∈ N (A+B),

• (x(n)) converges weakly to x,

• both (y(n)) and (z(n)) converge weakly to JγBx,

• if either A orB is uniformly monotone on every nonempty bounded subset of its domain, both
(y(n)) and (z(n)) converge strongly to the unique point in N (A+B).

Again, the update step can be summarized in one line

x(n+1) = x(n) + λn(JγA(2JγBx
(n) − x(n))− JγBx

(n)). (2.2)

While this looks decidedly different to Equation (2.1.), there exists research on how to incorpo-
rate both Equations (2.1.) and (2.2.) into a larger, generalized class of iterative operator splitting
algorithms. The interested reader is advised to the reading of [RFP13 .].

Reflections and Relaxation

We now discuss a special case of Douglas-Rachford, that is, the reflection off convex sets. Consider
two convex sets S and M and denote their indicator functions ιS and ιM . Let now proxιS = PS
the projector onto S and analogously for proxιM = PM ontoM . Based on that we can now define
the reflectors RM and RS of the sets by simply putting RM = 2PM − id and RS = 2PS − id.

Plugging this into the Douglas-Rachford algorithm with λn ≡ 1, γ = 1 and A = ∂ιS , B = ∂ιM ,
the update instruction reads

x(n+1) = 1
2(RSRM + id)x(n). (2.3)

In many applications, especially when inexact data leads to empty intersections of constraint sets,
we want to relax the applied algorithm to also address previously infeasible input and parameter
regions. To the above formulation in Equation (2.3.), there exists a well-studied relaxation, which
is often referred to as DRλ, cf. [Luk 5.].1. For a relaxation constant β rewrite the update rule as

x(n+1) := β 1
2(RSRM + id)x(n) + (1− β)PMx

(n). (2.4)

This can be extended similarly to the Douglas-Rachford algorithm of Theorem 2.21., yielding

x(n+1) := β
[
x(n) + λnJγA(2JγBx

(n) − x(n))
]
+ (1− β − βλn)JγBx

(n).

Convergence results to this form can be found in [LM2 .]. For more reading on relaxations of the
Douglas-Rachford splitting algorithm, I refer to [DP18.].

1Sometimes Equations (2.3.) and (2.4.) are called (Relaxed) Alternating Averaged Reflections, (R)AAR, [BCL 4., Luk 5.].
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Referencing [FR13., 岡藤伏+14.], compressed sensing is widely understood as the mathematical
discipline which aims at solving underdetermined linear systems. That is, as is general knowledge,
finding solutions x ∈ Cn of the problem

Ax = y,

provided the measurement matrix A ∈ Cm×n and the measurement y ∈ Cm×n, where m < n.
Assuming that one solution exists, this problem possesses a non-trivial solution subspace, i.e. in-
finitely many solutions.

When addressing this problem with algorithmic ideas, one needs some additional priors, the ex-
ploitation of which often enables recovery and, depending on the setting, even uniqueness thereof.
Commonly, sparsity is the key to either enabling algorithms or to making them run more stably or
smoothly. Another focus of research is the suitable choice of a measurement operator that allows
modelling of physically observable scenarios on the one hand, and provides sufficient conditions for
theoretical or algorithmic solution of the problem on the other hand. One well-established option
are random matrices, e.g. Gaussian matrices.

In this chapter we dicuss three topics that fall under the sphere of compressed sensing. First, in
Section 3.1., we present the idea of so-called lifting that reformulates a bilinar map as a linear map of
higher dimension. This entails applicability of the entirety of concepts and algorithms of the much
better understood linear problems.

Second, Section 3.2. gets back to the above mentioned choice of measurement operator. We present
the so-called restricted isometry property (RIP) that allows the classification of the distance of
operators to unitary ones. We also consider the previously stated Gaussian matrices and show that
they indeed fulfill said RIP condition.

Third, we discuss the concentration of mass within a signal in Section 3.3.. That is, we analyze
how many large entries (in modulus) dominate the ℓ2-norm of the whole vector. Aiming for
representation of this property, we present a norm that quantifies this behavior, which will become
a crucial tool in Chapter 5..
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3.1. Lifting

In some applications, one is facing not an underdetermined linear but bilinear problem. In order
to be able to access the manifold of existing analysis and solution tools of linear problems, it is
desirable to trace these problems back to linear ones. In this section, we present the so-called
Lifting procedure that is able to achieve exactly this. The idea behind this scheme is to consider
bilinar measurements of the vectors u and v as a linear measurement of their outer product uv∗.
We introduce this concept based on [BBCE 9 ., CSV12., LWB18 .].

Assume the noiseless measurement b ∈ Cm is provided as

b := B(u, v),

with respect to the bilinear map B : Cn1 ×Cn2 −→ Cm. We then can represent this bilinear map
B by a linear map, which is a standard result in tensor theory. Here we consider the outer vector
product as a tensor product, which yields the following reading of the theorem presented by Ryan,
[Rya 2.].

3.1 Theorem (Cf. [Rya02.]).
LetB : Cn1×Cn2 −→ Cm be a bilinear map. Then there exists a uniquely defined linear operator
A : Cn1×n2 −→ Cm that satisfies

B(u, v) = A(uv∗)

for all pairs of vectors u ∈ Cn1 and v ∈ Cn2 .

Much more relevant for algorithmic applicability is the fact that such a linear mapA is fully charac-
terized by a unique set of (representation) matrices in a way that the k-th entry of A (X), denoted
as [A (X)]k, is given by

[A (X)]k = tr (A∗
kX) . (3.1)

The right hand side of the equation above is easily recognizable as the Frobenius inner product of
the representation matrix Ak and the argument X . Hence, the existence of these matrices is an
immediate consequence of the Riesz representation theorem, [Rud91.].

3.2. Restricted Isometry Property

Unitary operators are convenient in various contexts. In applications one often exploits, besides
numerical stability, that these are length-preserving. The downside, however, is that the space
of unitary operators is comparably small and many real-life applications are not representable by
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unitary operators. Thus, for linear operators of the above form A : Cn1×n2 −→ Cm we would like
to have a means of quantification to describe how close A is to a unitary operator. This is often
done via the so-called restricted isometry property.

3.2 Definition (Cf. [LWB18.]).
A linear operator A : Cn1×n2 −→ Cm has the (s1, s2, r)-Restricted Isometry Property (RIP)
with Restricted Isometry Constant δ if

(1− δ) ∥X∥2F ≤ ∥A (X) ∥22 ≤ (1 + δ) ∥X∥2F

for all matrices X ∈ Cn1×n2 of rank at most r with at most s1 non-zero rows and at most s2
non-zero columns.

While there exists theory on constructing matrices satisfying a suitable RIP, cf. [Mix15 .], in most
cases one defaults to using randommatrices instead. While being an active research topic on its own,
cf. [Ver12., KW11.], we will here restrict ourselves to the definition of a Gaussian measurement opera-
tor in Definition 3.3. and its – highly probable – restricted isometry property in Proposition 3.4..

3.3 Definition.
An operator A : Cn1×n2 −→ Cm is called an i.i.d. Gaussian Measurement Operator if all
the entries of the matrices {Ak}k as in Equation (3.1.) are independent with distribution
CN (0, 1

m).

That is, the entries of both re({Ak}k) and im({Ak}k) follow a real normal distribution
N (0, 1

2m).

Gaussian measurement operators satisfy an RIP with high probability. One of the benefits of the
following proposition is that it smoothly incorporates sparsity, which is integral to almost every
compressed sensing application by adequately scaling the number of required measurements.

3.4 Proposition (Cf. Theorem III.7 in [LWB18.]).
LetA : Cn1×n2 −→ Cm be an i.i.d. Gaussian measurement operator. There are absolute constants
c1, c2 > 0, such that if

m ≥ c1
δ2
r (s1 + s2) log

(
max

{
n1
s1
,
n2
s2

})
,

for some δ > 0, then A has the (s1, s2, r)-restricted isometry property with restricted isometry
constant δ with probability at least 1− exp (−c2m).

Scaling the number of measurements and thereby adapting the resulting RIP of the measurement
operator is one of the core ideas of Chapter 5.. In that context, we will revisit the above statement
in a customized form in Theorem 5.4..
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3.3. Peakiness

When recovering a distorted, e.g. noisy, signal from its linear measurements, sometimes there exist
algorithms that excel at correctly identifying and recovering the largest entry (in modulus) of the
desired signal whenever it is reasonably distinguished from to the other elements. Often however,
this comes at the cost of poor performance when signals are closer to a completely generic one, i.e.
all entries having a modulus close to 1/

√
n for a signal with n non-zero entries.

In order to be able to analyze the performance of algorithms depending on the degree of genericity we
will now present a norm to quantify the notion of peakiness. That is, a measure of how much mass
is concentrated in a specified number of entries. In this context we will generally consider peakiness
to be the counterpart of genericity. This is constructed as a prematurely cancelled calculation of the
ℓ2-norm when rearranging the entries in non-increasing order.

3.5 Notation (Cf. [GKS19.]).
Let x ∈ Cn. We then define the following shorthand notation

∥x∥[k] := max
I⊆{1,...,n}

|I|=k

(∑
i∈I

|xi|2
)1/2

.

Using the notion of the non-increasing rearrangement, cf. List of Symbols., the understanding of
this notation as a shortened ℓ2-norm becomes easily visible, as

∥x∥2[k] := max
I⊆{1,...,n}

|I|=k

∑
i∈I

|xi|2 =
k∑
i=1

(x⋆i )
2 =

∥∥∥( x⋆1 ··· x⋆k 0 ··· 0 )T
∥∥∥2
2
.

To furthermore quantify the relative content of information within a signal we consider the additional
notion of the peak to average power ratio, i.e. the squared ratio between ℓ2 and ℓ∞ norm scaled by
the size of the signal.

3.6 Definition (Cf. [NK03.]).
Let x ∈ Cn \ {0}. We call the quotient

n

(
∥x∥∞
∥x∥2

)2

its Peak to Average Power Ratio (PAPR).

For further reading in the context of information density etc., I commend the interested reader to
[CT 6.], where further suchlike tools can be found in terms of information theory.
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Part III.

Feature Extraction

In this part we present two vastly different methods to promote sparsity in the signals at hand.
Relying on the ubiquitous sparsity of effects, i.e. the observation that naturally occurring data can
be sparsely represented with respect to a suitable encoding, we assert that enforcing sparsity in the
right context will automatically yield emphasis on or enable the extraction of desired features.

In Chapter 4. we consider soft shrinkage as a method to promote sparsity. The soft shrinkage oper-
ator with parameter λ, Sλ, can be understood in different ways. Firstly, as stated in Example 2.12.,
it is the proximity operator of the ℓ1-norm which is widely accepted as the continuous proxy for the
true sparsity measure, i.e. the ℓ0-pseudonorm. Secondly, as a geometrical interpretation, Sλ moves
every value closer to zero by λ. Except for those that were smaller than λ in the beginning, which
are set to zero instead. Both approaches yield the intuition that application of this operator favors
sparse signals. This motivates the question, how this may be extended to enforce sparsity with re-
spect to arbitrary complete systems, without losing the property of being a proximity operator. To
this end, we analyze under what circumstances expressions of the form T † proxΦ T are proximity
operators, too.

In Section 4.1. we consider the above scenario with finite-dimensional frames T and the soft thresh-
olding operator, i.e. Φ = ∥ · ∥1. This also includes a geometrical exemplification in order to gain
a heuristic understanding of this nesting concept. In Section 4.2. we extend the range of operators
to T being an injective operator with closed range between arbitrary Hilbert spaces and without
posing restrictions on Φ. This, however, in turn leads to an unillustratable degree of abstractness.

Chapter 5. considers the aim of sparsification from a compressed sensing point of view. That is, in
contrast to the above, we do not intend to denoise or correct a corrupted signal but instead aim to
recover it from its measurements with respect to a known measurement operator. In this specific
case, we consider a bilinear measurement by an operator satisfying a suitable restricted isometry
property, e.g. a Gaussian. We then present the Sparse Power Factorization algorithm of [LWB18 .]
in Section 5.1., which is able to address this problem in the case of particularly peaky signals. As this
often does not match physically observable data, we extend the range of applicable parameters by
providing a reverse relationship between the number of required measurements and the peakiness
of the signals to be recovered.

While this part functions as the theoretical part and the core of this thesis, in Part IV . the methods of
both chapters will also be analyzed with regard to the applicability in an existing real world context.
There, we will discuss an application of the schemes portrayed within this part, in the context of
phase retrieval as considered in X-ray nanoscale imaging.





4. Nested Proximity Operators

As touched on in the preamble to this part, we aim at an emphasis of sparsity with the goal of feature
accentuation. This chapter takes the approach of so-called soft shrinkage, or soft thresholding. This
process is well studied, we exemplarily refer to [Don95.].

Utilizing the ℓ1-norm as a convex proxy for sparsity is a common procedure, cf. e.g. [CWB 8 .,
BJMO12.]. Doing so does however often fall short of enforcing sparsity in a regard suitable to
the application at hand. Instead, sparsity with respect to an encoding scheme, e.g. a frame, cf.
Section 1.2., is desirable. This motivates the application of a composition of some sort of encoding
followed by the shrinkage operator and an, ideally matching, decoding step. For a frame T and the
soft shrinkage operator Sγ this could take the form

T−1SγT

for γ > 0 and a matrix T ∈ RL×N with L ≥ N and full rank N . However, non-trivial frames are
in general not directly invertible, which is why we will consider the pseudoinverse, cf. Definition 1.1.,
in lieu thereof. Thence, we obtain

T †SγT.

Analyzing expressions of this kind in finite dimensions will be the subject of Section 4.1.. In general,
this differs from intertwining the shrinkage operator with the frame analysis and synthesis operators
due to the usage of the pseudoinverse. We study some geometrical properties of this expression and
are able to show that this is indeed a proximity operator, cf. Section 2.2.. This opens the variety of
tools of convex analysis to be applied to this kind of expression, e.g. operator splitting algorithms,
cf. Section 2.3..

Second, in Section 4.2., we expand the notion of frames to arbitrary injective operators and use the
broader concept of proximity operators instead of restricting ourselves to soft shrinkage. That is,
we consider compositions of the form

T † proxφ T,

where φ is a plc function and T an injective operator with bounded range between arbitrary Hilbert
spaces. Here we characterize the result of the application of linear transform, proximity operator
and pseudoinverse transform. We are able to show that this is a proximity operator of a certain plc
function. We further provide a closed form for said function in terms of an infimal convolution.
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4.1. Frame Shrinkage

Note: The following portion of this thesis is predominantly taken from [GP19.] of which I am a
coauthor. Until the end of Section 4.1. the content is in large portions identical to the one in [GP19.].
I have occasionally adapted the order, notation or, where adequate, wording and added further
thoughts if considered reasonable. I will also at times leave out parts that have been referenced
earlier within this thesis or are irrelevant with regard to the concern of this work. In these cases I
have put references to the corresponding location whenever I believe this to be beneficial.

In this section, we will generally use T to represent an arbitrary frame and Sγ := proxγ∥·∥1 the
soft shrinkage operator introduced in Example 2.12.. We will heavily rely on previously intro-
duced concepts, most prominently the proximity operator, Definition 2.11., and the pseudoinverse,
Definition 1.1.. We will show that the commonly used frame shrinkage operator that maps a given
vector x ∈ RN onto the vector T †SγTx, is already a proximity operator, which can therefore be
directly used in corresponding splitting algorithms.

Many reconstruction problems in signal and image processing are ill-posed and commonly solved
by means of variational methods. In the finite-dimensional case, the ill-posed operator equation
Kx = f is often solved using a regularization approach,

x̃ = argmin
x∈RN

F (x) = argmin
x∈RN

(
1

2
∥Kx− f∥22 +Φ(x)

)
. (4.1)

Here, K : RN −→ RM is a known linear or non-linear operator and f ∈ RM represents the
measured (noisy) data. For regularization, a plc functional Φ: RN −→ R ∪ {∞} as introduced
in Definition 2.1. is employed that enforces desired properties of x such as regularity or sparsity.
The observant reader will easily spot the familiarity of Equation (4.1.) with the proximity operator
of Definition 2.11..

In many applications, signals tend to be sparse with regard to a suitable encoding, and functionals
of the form Φ = γ ∥ · ∥1 or Φ = γ ∥T · ∥1 with γ > 0 and a linear transform T ∈ RL×N are
frequently used.

While orthogonal transforms T have proven to be ideal with regard to numeric stability, they of-
ten fail to capture the underlying characteristics of many signal types. Therefore, in numerous
applications one uses redundant representations that suit the purpose at hand, as e.g. redundant
wavelet transforms, curvelets or shearlets for capturing non-isotropic features in 2D images, cf.
[ELL 8., KKL12., MP1 .] as well as Sections 1.3. and 1.4.. In this case we have rectangular transform
matrices T with L > N .

Within the last years, many computational algorithms have been proposed to solve the minimization
problem in Equation (4.1.), which are, for example, based on operator splitting methods, such as
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4.1. Frame Shrinkage

forward-backward splitting (FBS) or Douglas-Rachford splitting (DRS), which we have introduced
in Section 2.3.. These approaches make use of the so-called proximity operator of Φ, cf. Defini-
tion 2.11.. If we take the standard inner product and let Φ = γ ∥ · ∥1, we recall from Example 2.12.

that we obtain the so-called soft shrinkage operator.

For Φ = γ ∥T · ∥1 with T being an orthonormal matrix, it can be shown that the corresponding
proximity operator is

proxγ∥T ·∥1 = T ∗ SγT = T−1 SγT,

see Proposition 23.29 in [BC11 .]. This, however is no longer true if T is not orthogonal or if the
rows of T do note even form a basis, i.e., if T ∈ RL×N for L > N , see e.g. [Ela 6.]. In this case,
the proximity operator can no longer be represented in a closed form, and one has to make use of
an iteration procedure to compute it.

Yet the question remains, what would happen if we replaced the exact proximity operator with the
frame soft shrinkage operator T † SγT , also for rectangular matrices T ∈ RL×N . For that inves-
tigation we replace proxγ∥T ·∥1 by T † SγT in iteration procedures such as, e.g., forward-backward
splitting or Douglas-Rachford splitting. Will these splitting algorithms still converge? And, if so,
how will the regularization functional change?

A related question, but from a different point of view, has also been posed by Elad in [Ela 6.].
His main argument, to explain the good performance of methods that just employ the frame soft
shrinkage operator, is based on the connection to the solution of basis pursuit denoising (BPDN)
problems [CDS98.]. He showed that the application of the frame soft shrinkage operator can be
interpreted as the first iteration step of an iterative algorithm to solve the BPDN problem.

We would like to present another heuristic argument towards the use of the frame soft shrinkage
operator. In phase retrieval, for example, one needs to address the inverse problem introduced by
the loss of the phase information. In practice, this problem is often formulated as a feasibility
problem. In our case we can define the measurement set

M := {x : Kx = f}

and a constraints set, as for example

C := {x : ∥x∥2 ≤ ∥K†f∥2, Tx is s-sparse}.

We are looking for some
x ∈M ∩ C. (4.2)

It is quite likely thatM ∩C = ∅, particularly for noisy data f . In this case we aim at finding x ∈ C

with shortest distance toM , or, more generally, x corresponding to the smallest sum of distances to
C andM . The most simple iteration algorithms to tackle the feasibility problem of Equation (4.2.)
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4. Nested Proximity Operators

are alternating projection algorithms. We start with an arbitrary x0, apply the projection to M ,
then the projection to C, and then iterate. Another, more sophisticated algorithm is the relaxed
version of Douglas-Rachford, DRλ of [Luk 5.]. As we have seen in Section 2.3., this will converge
to the zeroset of the sum of two operators. In our case we can use this to model the distance toM
and C respectively. The relaxation in turn is used to tackle the infeasible caseM ∩ C = ∅.

For linear K the projection ontoM is well-defined, sinceM is an affine subspace of RN . The set
C is bounded but usually no longer convex, and the projection cannot be obtained easily. For given
x ∈ C we could apply the frame shrinkage operator with a suitable γ such that SγT x is s-sparse.

However, the frame soft shrinkage operator is not the orthogonal projector onto C, it is not even
idempotent. But it obviously provides a vector which is somewhat close to C. In [LP14., Loo16.],
this approach has been used in connection with the DRλ algorithm for phase retrieval problems
with very good numerical results.

Tailoring Operator Splitting Methods

To solve Equation (4.1.), we observe that the first term ∥Kx − f∥22 of the functional F is dif-
ferentiable. This may no longer hold true for the convex functional Φ. Therefore we apply the
subdifferential as introduced in Definition 2.7.. Note that the solution x̃ of Equation (4.1.) neces-
sarily satisfies

0 ∈ ∂

(
1

2
∥Kx̃− f∥22 +Φ(x̃)

)
= K∗(Kx̃− f) + ∂Φ(x̃).

Multiplication with a constant λ > 0 and addition of x̃ yields the equivalent statements

x̃− λK∗(Kx̃− f) ∈ x̃+ λ∂Φ(x̃)

(id− λK∗K)x̃+ λK∗f ∈ (id+ λ∂Φ)−1(x̃).

Thus formally
x̃ = (id+ λ∂Φ)−1 [(id− λK∗K)x̃+ λK∗f ] . (4.3)

The operator (id+λ∂Φ)−1 is also called the resolvent of λ∂Φ, cf. Definition 2.13. and Proposition 2.14..

Indeed, we observe that 1
2∥y − x∥2 + λΦ(y) is strictly convex and

y = proxλΦ(x) ⇐⇒ 0 ∈ (y − x) + λ∂Φ(y) = −x+ (id+ λ∂Φ)(y)

⇐⇒ y = (id+ λ∂Φ)−1(x).

In particular,
x− y ∈ λ∂Φ(y) ⇐⇒ y = proxλΦ(x),
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4.1. Frame Shrinkage

or equivalently,
t ∈ λ∂Φ(y) ⇐⇒ y = proxλΦ(y + t), (4.4)

cf. Corollary 2.15.. Now, Equation (4.3.) already provides an iterative algorithm, the so-called
forward-backward splitting iteration, see e.g. [LM79., BC11 ., Set1 .]:

4.1 Algorithm (Forward-Backward Splitting).
For an arbitrary starting vector x(0) ∈ RN , iterate

y(j) := (id − λK∗K)x(j) + λK∗f

x(j+1) := proxλΦ(y
(j)).

Note that Algorithm 4.1. is a special case of Proposition 2.2 . , where we select A = ∂Φ and
B = ∂(12∥K · −f∥22) = K∗(K · −f).

This iteration converges for λ ∈ (0, 2/∥K∗∥22), see e.g. [Set1 .], since the map

x 7−→ 1

∥K∗∥22
(K∗Kx+K∗f)

is firmly nonexpansive, i.e., we have for arbitrary vectors x and y,

⟨x− y,K∗K(x− y)⟩ = ∥K(x− y)∥22 ≥
1

∥K∗∥22
∥K∗K(x− y)∥22.

Let us consider a second operator splitting method. Observe that the fixed point relation in Equa-
tion (4.3.) can be rewritten as

x̃+ λK∗Kx̃ ∈ proxλΦ [(id− λK∗K)x̃+ λK∗f ] + λK∗Kx̃.

With t̃ := (id+ λK∗K)x̃ it follows that

t̃ ∈ proxλΦ(2x̃− t̃+ λK∗f) + t̃− x̃.

This leads to the Douglas-Rachford iteration, which converges in a large parameter range, see
[BC11 ., Set1 .].

4.2 Algorithm (Douglas-Rachford Splitting).
For λ > 0 and any starting vectors x(0), t(0) ∈ RN , iterate

t(j+1) := proxλΦ(2x
(j) − t(j) + λK∗f) + t(j) − x(j)

x(j+1) := (id+ λK∗K)−1t(j+1).
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Note that Algorithm 4.2. is again a special case, this time of Theorem 2.21. with λn ≡ 1 and γ = λ

and B = K∗K and A = ∂Ψ for Ψ: x 7−→ Φ(x) +K∗f .

For the two considered algorithms we need to evaluate the proximity operator of the regularization
functional λΦ.

Analyzing The Frame Soft Shrinkage Operator

Our goal is to show that for any frame matrix T ∈ RL×N with L ≥ N and full rank N the
operator T † SγT is the proximity operator of a plc functional. Remember that Sγ = proxγ∥·∥1 , cf.
Example 2.12.. In a first step we define the set-valued mapping

H : RN −→ 2R
N

x 7−→ {y : x = T †SγT (x+ y)}. (4.5)

Then, according to Equation (4.4.) and Corollary 2.15., we have to show thatH is the subdifferential
of a functional Φ ∈ Γ0.

Now, we will show that H in Equation (4.5.) is well-defined, and we will study some properties of
H . In a final step, we will then be able to show that indeed H = ∂Φ for some Φ ∈ Γ0.

In order to give first insight into the procedure, we start off with a toy example.

4.3 Lemma.
For T = ( 1c ) with c ≥ 1 and γ > 0 we find for H in Equation (4.5.) for x ≥ 0

H(x) =


γ
[
−1
c ,

1
c

]
x = 0,

γ
c +

x
c2

x ∈
(
0, γ(c−1)c

c2+1

]
,

γ
(

1+c
1+c2

)
x > γ(c−1)c

c2+1
.

For x < 0 we have H(x) = −H(−x). Then H is the subdifferential of the even function

Φ(x) =


γx
c + x2

2c2
x ∈

[
0, γ(c−1)c

c2+1

]
,

γ
(

1+c
1+c2

)
x x > γ(c−1)c

c2+1
,

Φ(−x) x < 0.
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4.1. Frame Shrinkage

Proof.
For x = 0, it follows from Equation (4.5.) with T † = 1

1+c2
(1, c) that y ∈ H(0) if and only if

1

1 + c2
(1, c)Sγ

(
1

c

)
y = 0.

This is only true if Sγ (c y) = 0, i.e. y ∈ [−γ
c ,

γ
c ].

For x > 0 we find

x =
1

1 + c2
(1, c)Sγ

(
1

c

)
(y + x).

Since x > 0, we need that SγT (x + y) > 0. Thus c(x + y) > γ as well as x + y > 0. We
consider two cases.

If x+ y ≤ γ and c(x+ y) > γ, then

x = T †SγT (x+ y) =
1

1 + c2
(1, c)

(
0

c(x+ y)− γ

)

implies
y =

x

c2
+
γ

c
.

Further, the condition x+ y = x+ ( x
c2

+ γ
c ) ≤ γ yields x ≤ c(c−1)γ

1+c2
.

Let now x+ y > γ and c(x+ y) > γ, then

x = T †SγT (x+ y) =
1

1 + c2
(1, c)

(
x+ y − γ

c(x+ y)− γ

)
= x+ y − γ(c+ 1)

c2 + 1
.

Thus, we find y = γ(c+1)
c2+1

, and x+y > γ is true for x > γc(c−1)
c2+1

. Similar considerations for x < 0

yield H(−x) = −H(x). Integration yields Φ as asserted. qed

Considering an explicit example of Lemma 4.3., let c = 2 and γ = 5
3 . Then we find

H(x) =



[
−5

6 ,
5
6

]
x = 0,

5
6 + x

4 x ∈
(
0, 23
]
,

1 x > 2
3 ,

−H(−x) x < 0,

and Φ(x) =


5x
6 + x2

8 x ∈
[
0, 2

3

]
,

x− 1
18 x > 2

3 ,

Φ(−x) x < 0.

Thus Φ approximates the absolute value, see Figure 4.1..
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Figure 4.1.: Visualization of H and Φ.

Now we inspect the function H in Equation (4.5.) and show first that for any fixed γ > 0 and each
x ∈ RN the set H(x) is not empty.

4.4 Proposition.
Let T ∈ RL×N with L ≥ N have full rank N and let γ > 0. Then, for each x ∈ RN , we have
H(x) ̸= ∅. Further, for each x ∈ RN we have H(x) ⊂ {y ∈ RN : ∥y∥∞ ≤ γ ∥T †∥∞}, i.e.
the image of H is bounded.

Proof.
By Equation (4.5.), we have y ∈ H(x) if x = T †SγT (x+ y). With the substitution t = x+ y, we
get an equivalent fixed point representation, i.e. t−x ∈ H(x) if and only if t = x+(id−T †SγT ) t.
This motivates to define a function

fx,T : RN −→ RN

t 7−→ x+ (id− T †SγT ) t. (4.6)

If now fx,T possesses a fixed point t, then y = t− x is an element of H(x). Hence, to prove that
H(x) ̸= ∅, we show that for each x ∈ RN the function fx,T possesses at least one fixed point.

First, we consider fx,P (t) = x+(id−P ∗SγP )t, for some matrix P ∈ RL×N satisfying P ∗P = id,
i.e., P † = P ∗. We define the closed ball

B(x, γ∥P ∗∥∞, ℓ∞) := {t ∈ RN : ∥x− t∥∞ ≤ γ∥P ∗∥∞}.

Then fx,P (t) ∈ B(x, ∥P ∗∥∞, ℓ∞) for each t ∈ RN , since we have

∥x− fx,P (t)∥∞ = ∥(id− P ∗SγP )t∥∞ = ∥P ∗(id− Sγ)Pt∥∞
≤ ∥P ∗∥∞ ∥(id− Sγ)Pt∥∞ ≤ ∥P ∗∥∞ sup

s∈RL

∥(id− Sγ)s∥∞ ≤ γ∥P ∗∥∞ .

Since Sγ is continuous, fx,P is also continuous, and it follows by Brouwer’s fixed point theorem, cf.
[Sek57.] that there exists a fixed point of fx,P within B(x, γ∥P ∗∥∞, ℓ∞).
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4.1. Frame Shrinkage

Second, we recall that the matrix T ∈ RL×N possesses a (thin) singular value decomposition, cf.
Definition 1.14.,

T = PDQ∗,

where P ∈ RL×N has N orthogonal columns, i.e., P ∗P = id, D = diag(d1, . . . , dN ) ∈ RN×N

contains the positive singular values of T , and Q ∈ RN×N is orthogonal. In particular, we have

T † = QD−1P ∗.

Using the singular value decomposition of T , we discover that the function fDQ∗x,P , being defined
analogously to fx,T – with DQ∗x instead of x and with the matrix P instead of T – satisfies

fDQ∗x,P (t) = DQ∗x+ (id− P ∗SγP )t

= DQ∗x+DQ∗(QD−1)(id− P ∗SγP )DQ
∗(QD−1t)

= DQ∗x+DQ∗(id− T †SγT )(QD
−1t)

= DQ∗(x+ (id− T †SγT )(QD
−1t))

= DQ∗ fx,T (QD
−1t).

Reversely,
fx,T (t) = QD−1fDQ∗x,P (DQ

∗t). (4.7)

Since P satisfies P ∗P = id, we already know from the first step that fDQ∗x,P possesses a fixed
point x̄. Now, Equation (4.7.) implies

fx,T (QD
−1x̄) = QD−1fDQ∗x,P (DQ

∗(QD−1x̄)) = QD−1x̄,

i.e., fx,T possesses at least the fixed point QD−1x̄.

Moreover, using T †T = id, we obtain for each fixed point t = fx,T (t),

∥x− t∥∞ = ∥x− fx,T (t)∥∞ = ∥(id− T †SγT )t∥∞
= ∥T †(id− Sγ)Tt∥∞ ≤ ∥T †∥∞ ∥(id− Sγ)Tt∥∞ ≤ ∥T †∥∞ γ.

Since t− x ∈ H(x), the boundedness of the image of H follows. qed

Thus, we conclude that the mapping H in Equation (4.5.) is well defined. Next we show that H(0)

is indeed not single-valued.

4.5 Proposition.
Let T ∈ RL×N with L ≥ N with full rank N . Further let γ > 0 andH as in Equation (4.5.).
Then y ∈ H(0) if and only if ∥T y∥∞ ≤ γ.
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Proof.
We recall that the pseudoinverse from Definition 1.1. and that T †T = (T ∗T )−1T ∗T = id as T has
full rank N .

Now consider the soft shrinkage operator Sγ from Example 2.12. and let ∥T y∥∞ ≤ γ. Then the
definition of Sγ implies SγT y = 0 and hence also T †SγT (y + 0) = 0, that is, y ∈ H(0). Next,
let y ∈ H(0), i.e.,

T †SγT y = 0. (4.8)

We show that then ∥T y∥∞ ≤ γ. We consider the components [T y]j , for 1 ≤ j ≤ L, and define
three index sets I1, I2, I3 that form a partition of {1, . . . , L},

I1 := {1 ≤ j ≤ L : (T y)j > γ},
I2 := {1 ≤ j ≤ L : (T y)j < −γ},
I3 := {1 ≤ j ≤ L : (T y)j ∈ [−γ, γ]}.

Suppose that ∥Ty∥∞ > γ, which means that I1 ∪ I2 ̸= ∅. Then

SγT y =
∑
j∈I1

([T y]j − γ) ej +
∑
j∈I2

([T y]j + γ) ej , (4.9)

where ej denotes the j-th unit vector in RL. Now we combine Equations (4.8.) and (4.9.) to get

0 = T †SγT y =
∑
j∈I1

([T y]j − γ)T †ej +
∑
j∈I2

([T y]j + γ)T †ej

=
∑
j∈I1

([T y]j − γ) ṽj +
∑
j∈I2

([T y]j + γ) ṽj , (4.1 )

where ṽj := T † ej . In other words, the set {ṽj : j ∈ I1 ∪ I2} is linearly dependent. At the same
time, none of these vectors ṽj vanish because ṽj = 0 for j ∈ I1 ∪ I2 leads to the contradiction

0 = |⟨ṽj , (T ∗T ) y⟩| =
∣∣∣⟨T †ej , (T

∗T ) y⟩
∣∣∣ = ∣∣∣⟨(T ∗T )T †ej , y⟩

∣∣∣ = |⟨T ∗ej , y⟩| = |[Ty]j | > γ.

Without loss of generality, assume I1 ̸= ∅ and choose j1 ∈ I1. Then [Ty]j1 > γ and Equa-
tion (4.1 .) implies

ṽj1 =
∑
j∈I1
j ̸=j1

γ − [Ty]j
[Ty]j1 − γ

ṽj +
∑
j∈I2

−γ − [Ty]j
[Ty]j1 − γ

ṽj . (4.11)

A closer look at the coefficients shows that

γ − [Ty]j
[Ty]j1 − γ

< 0 for j ∈ I1 \ {j1} and −γ − [Ty]j
[Ty]j1 − γ

> 0 for j ∈ I2.
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Hence, we find with T ∗T ṽj = T ∗ej ,

[Ty]j1 = ⟨Ty, ej1⟩ = ⟨y, (T ∗T )(T ∗T )−1T ∗ej1⟩ = ⟨y, (T ∗T ) ṽj1⟩

=

⟨
y, (T ∗T )

(∑
j∈I1
j ̸=j1

γ − [Ty]j
[Ty]j1 − γ

ṽj +
∑
j∈I2

−γ − [Ty]j
[Ty]j1 − γ

ṽj

)⟩

=
∑
j∈I1
j ̸=j1

γ − [Ty]j
[Ty]j1 − γ

⟨y, (T ∗T ) ṽj⟩ +
∑
j∈I2

−γ − [Ty]j
[Ty]j1 − γ

⟨y, (T ∗T ) ṽj⟩

=
∑
j∈I1
j ̸=j1

γ − [Ty]j
[Ty]j1 − γ︸ ︷︷ ︸

<0

⟨T y, ej⟩︸ ︷︷ ︸
>γ

+
∑
j∈I2

−γ − [Ty]j
[Ty]j1 − γ︸ ︷︷ ︸

>0

⟨T y, ej⟩︸ ︷︷ ︸
<−γ

< 0,

which contradicts the above assumption that j1 ∈ I1. Thus, I1∪ I2 = ∅, i.e., all indices are located
within I3, which readily shows that ∥Ty∥∞ ≤ γ. qed

Further, if all components of Tx have a modulus greater than γ(∥TT †∥∞+1), we show thatH(x)

consists of a single element.

4.6 Proposition.
Let T ∈ RL×N with L ≥ N with full rank N . Further let γ > 0 and

x ∈ UT,γ :=
{
v ∈ RN : |(Tv)j | > γ(∥T T †∥∞ + 1) ∀ j ∈ {1, . . . , L}

}
.

Then H(x) with H in Equation (4.5.) contains a single element. Moreover, denote the set of
all vectors in RL containing only components ±1 by

{
ul : l ∈ {1, . . . , 2L}

}
. Then, on each set

Sl := UT,γ ∩ {x ∈ RN : sgn(Tx) = ul} the mapping H evaluates to the constant value γT †ul.

Proof.
By Proposition 4.4., H(x) is not empty for each x ∈ RN , and each fixed point of fx,T in Equa-
tion (4.6.) provides us with an element y = t− x ∈ H(x). We show that fx,T possesses only one
fixed point, if

min
j∈{1,...,L}

|(Tx)j | > γ(∥TT †∥∞ + 1).

Assume that fx,T , with x ∈ UT,γ , possesses two fixed points t1 and t2. Thus

t1 = x+ (id− T †SγT )t1, t2 = x+ (id− T †SγT )t2,

implies
x = T †SγTt1 = T †SγTt2.
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Consequently,
T †SγTt1 − T †SγTt2 = 0. (4.12)

Now, similarly as in the previous proof, we can show that T †(SγTt1 − SγTt2) = 0 implies
SγTt1 − SγTt2 = 0. This time we consider the index sets

I1 = {1 ≤ j ≤ L : [SγTt1 − SγTt2]j > 0},
I2 = {1 ≤ j ≤ L : [SγTt1 − SγTt2]j = 0},
I3 = {1 ≤ j ≤ L : [SγTt1 − SγTt2]j < 0}.

We observe that j ∈ I1 yields [Tt1 −Tt2]j > 0 and similarly j ∈ I3 yields [Tt1 −Tt2]j < 0. We
want to show that I1 ∪ I3 = ∅.

The relation of Equation (4.12.) implies

0 =
∑
j∈I1

[SγTt1 − SγTt2]jT
†ej +

∑
j∈I3

[SγTt1 − SγTt2]jT
†ej .

Now, suppose contrarily that w.l.o.g. I1 ̸= ∅, then for j1 ∈ I1 we find ṽj1 := T †ej1 similarly as in
Equation (4.11.) of the form

ṽj1 =
∑
j∈I1
j ̸=j1

−[SγTt1 − SγTt2]j
[SγTt1 − SγTt2]j1

ṽj +
∑
j∈I3

−[SγTt1 − SγTt2]j
[SγTt1 − SγTt2]j1

ṽj .

A closer look at the coefficients shows that

−[SγTt1 − SγTt2]j
[SγTt1 − SγTt2]j1

< 0

for j ∈ I1 \ {j1} and
−[SγTt1 − SγTt2]j
[SγTt1 − SγTt2]j1

> 0

for j ∈ I3.

Hence, we find with T ∗T ṽj = T ∗ej ,

[T (t1 − t2)]j1

= ⟨T (t1 − t2), ej1⟩ = ⟨t1 − t2, T
∗T ṽj1⟩

=

⟨
t1 − t2, (T

∗T )
∑
j∈I1
j ̸=j1

−[SγTt1 − SγTt2]j
[SγTt1 − SγTt2]j1

ṽj +
∑
j∈I3

−[SγTt1 − SγTt2]j
[SγTt1 − SγTt2]j1

ṽj

⟩
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=
∑
j∈I1
j ̸=j1

−[SγTt1 − SγTt2]j
[SγTt1 − SγTt2]j1

⟨t1 − t2, (T
∗T )ṽj⟩+

∑
j∈I3

−[SγTt1 − SγTt2]j
[SγTt1 − SγTt2]j1

⟨t1 − t2, (T
∗T )ṽj⟩

=
∑
j∈I1
j ̸=j1

−[SγTt1 − SγTt2]j
[SγTt1 − SγTt2]j1︸ ︷︷ ︸

<0

⟨T (t1 − t2), ej⟩︸ ︷︷ ︸
>0

+
∑
j∈I3

−[SγTt1 − SγTt2]j
[SγTt1 − SγTt2]j1︸ ︷︷ ︸

>0

⟨T (t1 − t2), ej⟩︸ ︷︷ ︸
<0

< 0,

which contradicts the above assumption that j1 ∈ I1. Therefore, I1 ∪ I3 = ∅, and for each
component it follows either that [Tt1]j = [Tt2]j or |[Tt1]j | ≤ γ and |[Tt2]j | ≤ γ. Further,
observe that

∥Tt1 − Tx∥∞ = ∥Tt1 −  TT †SγTt1∥∞ = ∥TT †(id− Sγ)Tt1∥∞ ≤ ∥TT †∥∞ γ,

and similarly for the fixed point t2. Therefore, |[Tx]j | > γ(∥T †T∥∞ + 1) for all j ∈ {1, . . . , L}
implies that

|[Tt1]j | > |[Tx]j | − |[Tt1]j − [Tx]j | > γ

for all j ∈ {1, . . . , L}. Thus, all components of Tt1 and Tt2 coincide, and we conclude t1 = t2.

Since H(x) is contains a single element for x ∈ Sl, it follows with sgn(Tx) = ul that

x = T †SγTt1 = T †(Tt1 − γul) = t1 − γT †ul

and thus H(x) = t1 − x = γT †ul. qed

Our considerations show that H does in general not coincide with the subdifferential ∂∥T ·∥1 =

T ∗ sgn (T ·). But similarly to H , we observe that y ∈ ∂∥T ·∥1(0) if and only if ∥Tx∥∞ ≤ γ, and
∂∥T ·∥1(x) is single-valued if

min
j∈{1,...,L}

|[Tx]j | > γ.

Frame Soft Thresholding is a Proximity Operator

Throughout this section, we again assume that T ∈ RL×N with L > N has full rankN , γ > 0 and
let Sγ = proxγ∥·∥1 as before. We will now show that the set-valued function H in Equation (4.5.)
is the subdifferential of a plc function. To that end we introduce a weighted inner product

⟨x, y⟩T := ⟨Tx, Ty⟩ (4.13)

based on the canonical inner product ⟨·, ·⟩ on the right hand side.

To prove that H is the subdifferential of a plc function we employ Rockafellar’s Monotonicity
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Theorem, Theorem 2.8.. That means, we have to show thatH in Equation (4.5.) is indeed maximally
cyclically monotone. To this end, we need some preliminary lemmas, in the context of which we will
use the notions of monotonicity, cyclical monotonicity, maximal monotonicity etc. as introduced in
Chapter 2..

4.7 Lemma.
For x ∈ RN and y ∈ H(x) we have

Ty + (Sγ − id)T (x+ y) ∈ N (T †) = N (T ∗),

and
y = T †(id− Sγ)T (x+ y).

Proof.
Recall that T † = (T ∗T )−1T ∗ ∈ RN×L and T †T = id. Thus we have

y ∈ H(x) ⇐⇒ x = T †SγT (x+ y)

⇐⇒ T †Tx = T †SγT (x+ y)

⇐⇒ ∃u ∈ N (T †) : u+ Tx = SγT (x+ y)

⇐⇒ ∃u ∈ N (T †) : u+ T (x+ y)− Ty = SγT (x+ y)

⇐⇒ ∃u ∈ N (T †) : u+ T (x+ y)− SγT (x+ y) = Ty

⇐⇒ ∃u ∈ N (T †) : u+ (id− Sγ)T (x+ y) = Ty. (4.14)

In other words, Ty + (Sγ − id)T (x + y) ∈ N (T †). Further, multiplying Equation (4.14.) with
T †, it follows that

T †Ty = y = T †(id− Sγ)T (x+ y),

which finishes this proof. qed

Next we consider a rather technical lemma. While not being interesting in its own right, it will
become a core building block in proving cyclical monotonicity of H in Theorem 4.9..

4.8 Lemma.
Let x1, x2 ∈ RN and y1 ∈ H(x1), y2 ∈ H(x2). Further, let

z1 := (id− Sγ)T (x1 + y1), z2 := (id− Sγ)T (x2 + y2).

Then
⟨SγT (x1 + y1), z2 − z1⟩ ≤ 0.
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Proof.
From the definition of Sγ as the proximity operator of the ℓ1-norm in Example 2.12., it follows for
x ∈ R

(1− Sγ)x =


x− (x− γ) = γ x > γ,

x− (x+ γ) = −γ x < −γ,
x |x| ≤ γ,

and therefore for all x ∈ RN ,

|[(id− Sγ)Tx]j | ≤ γ, for any j ∈ {1, . . . , L}. (4.15)

Let us consider the case [T (x1 + y1)]j ≤ −γ. Then [(id − Sγ)T (x1 + y1)]j = −γ and Equa-
tion (4.15.) imply |[(id− Sγ)T (x2 + y2)]j ≥ −γ, such that

[z2 − z1]j = [(id− Sγ)T (x2 + y2)− (id− Sγ)T (x1 + y1)]j

≥ −γ − [(id− Sγ)T (x1 + y1)]j

= −γ + γ = 0.

In the case [T (x1 + y1)]j ≥ γ we similarly conclude from [(id − Sγ)T (x1 + y1)]j = γ and
Equation (4.15.) that

[z2 − z1]j = [(id− Sγ)T (x2 + y2)− (id− Sγ)T (x1 + y1)]j

≤ γ − [(id− Sγ)T (x1 + y1)]j

= γ − γ = 0.

Thus, in both cases we have−sgn[z2−z1]j = sgn[SγT (x1+y1)]j . Finally, for |[T (x1+y1)]j | < γ

it follows that [SγT (x1 + y1)]j = 0. We therefore conclude

⟨SγT (x1 + y1), z2 − z1⟩ =
N∑
j=1

[SγT (x1 + y1)]j [z2 − z1]j ≤ 0.

and the assertion follows. qed

Now we can show cyclical monotonicity of H .

4.9 Theorem.
The map H in Equation (4.5.) is cyclically monotone with respect to the norm induced by ⟨·, ·⟩T .
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Proof.
Letm ∈ N andm ≥ 2. Further, for i ∈ {1, . . . ,m} let yi ∈ H(xi). As before we use a thin SVD
of T , cf. Definition 1.14., i.e. T = PDQT with Q ∈ RN×N orthogonal, D ∈ RN×N containing
the N positive singular values of T , and P ∈ RL×N with P ∗P = id. Further, let

x̃i := DQTxi,

ỹi := DQT yi,

zi := (id− Sγ)T (xi + yi) = (id− Sγ)P (x̃i + ỹi),

ui := Tyi − zi = P ỹi − zi. (4.16)

For simplicity we use the convention xm+1 := x1 as well as ym+1 := y1, and extend that similarly
for x̃m+1, ỹm+1, zm+1, and um+1. Then, by Lemma 4.7., ui ∈ N (T †) and thus also ui ∈ N (P ∗),
since T † = QD−1P ∗, where QD−1 ∈ RN×N is invertible. Further, with Equation (4.16.) we can
write

ỹi = P ∗P ỹi = P ∗(ui + zi) = P ∗zi.

We will show that
A :=

m∑
i=1

⟨x̃i+1 − x̃i, ỹi⟩ ≤ 0.

First, we observe that for all i ∈ {1, . . . ,m},

Px̃i + ui = Px̃i + P ỹi − zi = P (x̃i + ỹi)− (id− Sγ)P (x̃i + ỹi) = SγP (x̃i + ỹi). (4.17)

Using Equation (4.17.), it follows

A =
m∑
i=1

⟨x̃i+1 − x̃i, P
∗zi⟩ =

m∑
i=1

⟨P (x̃i+1 − x̃i), zi⟩

=
m∑
i=1

⟨(Px̃i+1 + ui+1)− (Px̃i + ui)− ui+1 + ui, zi⟩

=
m∑
i=1

⟨SγP (x̃i+1 + ỹi+1), zi⟩ −
m∑
i=1

⟨SγP (x̃i + ỹi), zi⟩+
m∑
i=1

⟨−ui+1 + ui, zi⟩

=
m∑
i=1

⟨SγP (x̃i+1 + ỹi+1), zi − zi+1⟩+
m∑
i=1

⟨−ui+1 + ui, zi⟩.

By Lemma 4.8., the first sum is not positive. Thus,

A ≤
m∑
i=1

⟨−ui+1 + ui, zi⟩ =
m∑
i=1

⟨−ui+1 + ui, P ỹi − ui⟩

58



4.1. Frame Shrinkage

=

m∑
i=1

⟨P ∗(−ui+1 + ui), ỹi⟩ −
m∑
i=1

⟨ui, ui⟩+
m∑
i=1

⟨ui+1, ui⟩.

The first sum vanishes, since ui and ui+1 are in N (P ∗). Thus,

A ≤ −
m∑
i=1

∥ui∥22 +
m∑
i=1

⟨ui+1, ui⟩ ≤ −
m∑
i=1

∥ui∥22 +
1

2

m∑
i=1

(
∥ui∥22 + ∥ui+1∥22

)
= 0.

Then we simply observe that, as P is orthogonal,

A =
m∑
i=1

⟨x̃i+1 − x̃i, ỹi⟩ =
m∑
i=1

⟨DQT (xi+1 − xi), DQ
T yi⟩ =

m∑
i=1

⟨xi+1 − xi, yi⟩T ≤ 0.

Thus, the assertion of the theorem holds. qed

Now we can conclude the main theorem of this section.

4.10 Theorem.
Let T ∈ RL×N with L ≥ N have full rank N and let RN be equipped with the inner product
⟨·, ·⟩T as defined in Equation (4.13.). Then the operator T †SγT is a proximity operator of a plc
function Φ.

Proof.
First, by Equation (4.4.), for any x and p we have p− x ∈ ∂Φ(x) if and only if x = proxΦ(p). So,
by Theorem 2.8., we need to prove that H in Equation (4.5.) is maximally cyclically monotone.

As shown in Theorem 4.9., we already have thatH is cyclically monotone. Further, by Proposition 4.4.,
H is bounded, i.e., for all x ∈ RN we have that y ∈ H(x) implies ∥y∥∞ ≤ γ∥T ∗∥∞. Therefore,
we observe that the range of the operator id + H is RN . By Minty’s Theorem, Theorem 2.5., it
follows that H is also maximally monotone. The assertion now follows from Theorem 2.8.. qed

As a corollary, we can easily prove firm nonexpansiveness of the composition T †SγT . To this end,
recall the notion of (firm) nonexpansiveness from Definitions 2.6. and 2.1 ..

4.11 Corollary.
Let T ∈ RL×N with L ≥ N have full rank N . Let ∥ · ∥T be the norm corresponding to the inner
product in Equation (4.13.). Then the operators T †SγT and id−T †SγT are firmly non-expansive,
i.e., for all x, y ∈ RN we have

∥T †SγTx− T †SγTy∥2T + ∥(id− T †SγT )x− (id− T †SγT )y∥2T ≤ ∥x− y∥2T .
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Proof.
Observe that as R(SγT ) ⊆ R(T ), it is easy to see that

∥T †SγTx− T †SγTy∥2T = ∥TT †(SγTx− SγTy∥22 = ∥SγTx− SγTy∥22.

Also,

∥(id− T †SγT )x− (id− T †SγT )y∥2T
= ∥T (id− T †SγT )x− T (id− T †SγT )y∥22
= ∥Tx− Ty − SγTx+ SγTy∥22
= ∥x− y∥2T + ∥SγTx− SγTy∥22 − 2⟨T (x− y), SγTx− SγTy⟩

To prove the assertion of the corollary we hence have to show that

∥SγTx− SγTy∥22 − ⟨T (x− y), SγTx− SγTy⟩ ≤ 0.

But this assertion is obviously true since for each component k ∈ {1, . . . , L}, we have either
(SγTx − SγTy)k = 0 or sgn(SγTx − SγTy)k) = sgn(T (x − y))k and |(SγTx − SγTy)k| ≤
|(T (x− y))k|. qed

4.2. Proximity Operators Nested Into Injective Operators

Note: The following portion of this thesis is predominantly taken from [HNP+19.] of which I
am a coauthor. Until the end of Section 4.2. the content is in large portions identical to the one
in [HNP+19.]. I have occasionally adapted the order, notation or, where adequate, wording and
added further thoughts if considered reasonable. I will also at times leave out parts that have been
referenced earlier within this thesis or are irrelevant with regard to the concern of this work. In these
cases I have put references to the corresponding location whenever I believe this to be beneficial.

Above, we considered the question whether the frame soft shrinkage operator can itself be seen
as a proximity operator, see Section 4.1.. In this section, we prove that for any injective operator
T ∈ B(H,K) with closed range and any proximity operator Prox : K −→ K, the new operator
T † ProxT : H −→ H is also a proximity operator on the linear spaceH, but equipped with another
inner product. This includes the above mentioned finite dimensional setting as a special case. In
contrast to Section 4.1., we directly approach the question using a classical result of Moreau [Mor65.].

There are several fields where our results may be of interest. Some different norms in the defini-
tion of the proximity operator were successfully used in variable metric algorithms, see [CPR13 .].
Recently, it was shown that many activation functions that appear in neural networks are indeed
proximity functions [CP2 .]. Here, we concatenate proximity operators with a linear operator and
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stay within the set of proximity operators in different Hilbert spaces. Finally, our findings may be
of interest in connection with so-called Plug-and-Play algorithms [CWE17., SVW+16., TBDF18.].

Proximity Operators and Linear Operators

We use notation and terminology as before. That is especially the notion of the proximity operator
from Section 2.2., frame theory from Section 1.2. and the idea of nesting proximity operators as in
Section 4.1..

Thanks to Corollary 2.18., we know that Prox : H −→ H is a proximity operator if and only if it is
nonexpansive and the gradient of a convex, differentiable function Φ: H −→ R.

Let now H and K be real Hilbert spaces with inner products ⟨·, ·⟩H and ⟨·, ·⟩K and corresponding
norms ∥·∥H and ∥·∥K. By B(H,K) we denote the space of bounded, linear operators fromH toK
with domain H. In this section, we show that for any injective operator T ∈ B(H,K) with closed
range R(T ) and any proximity operator Prox : K −→ K, the operator T † ProxT : H −→ H is
itself a proximity operator on the linear spaceH equipped with a suitable (equivalent) norm ∥·∥HT

.

For any injective T ∈ B(H,K) with closed range, recall its pseudoinverse T † from Definition 1.1..
Such a map T also gives rise to an inner product inH via ⟨x, y⟩HT

= ⟨Tx, Ty⟩H and corresponding
norm ∥x∥HT

= ∥Tx∥H as before in Section 4.1., cf. Equation (4.13.). In general, this defines a pre-
Hilbert space. Since T has additionally closed range, the norms ∥ · ∥H and ∥ · ∥HT

are equivalent
on H due to

∥T∥−1
B(H,K)∥x∥HT

≤ ∥x∥H = ∥T †Tx∥H ≤ ∥T †∥B(K,H)∥x∥HT

for all x ∈ H. The norm equivalence also ensures the completeness of H equipped with the new
norm. To emphasize that we consider the linear space H with this norm we write HT .

For a Fréchet differentiable function, cf. Definition 2.9., the gradient depends on the chosen norm
through

∇HT
Φ(x) = (T ∗T )−1∇HΦ(x).

Now the desired result follows from the next theorem. Here, we refer to (firm) nonexpansiveness
and convexity of functions as in Definitions 2.1., 2.6. and 2.1 .. We also use the pseudoinverse as
introduced in Definition 1.1..

4.12 Theorem.
Let T ∈ B(H,K) be injective with closed range and Prox : K −→ K a proximity operator on K.
Then, the operator T † ProxT : HT −→ HT is a proximity operator.
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Proof.
In view of Theorems 2.17. and 2.19., it suffices to show that T † ProxT is nonexpansive and that there
exists a convex function Ψ: HT −→ R with T † ProxT = ∇HT

Ψ.

First, we show that T † ProxT is firmly nonexpansive, and thus nonexpansive. To that end let
x, y ∈ H. Using that TT † = PR(T ), it follows

∥T † ProxTx− T † ProxTy∥2HT
= ∥TT † (ProxTx− ProxTy) ∥2K
≤ ∥ProxTx− ProxTy∥2K. (4.18)

Now, we obtain⟨
T † ProxTx− T † ProxTy, x− y

⟩
HT

=
⟨
TT †(ProxTx− ProxTy

)
, Tx− Ty

⟩
K

=
⟨
T ∗TT †(ProxTx− ProxTy

)
, x− y

⟩
H

=
⟨
ProxTx− ProxTy, Tx− Ty

⟩
K,

and since Prox is firmly nonexpansive with respect to ∥ · ∥K and by Equation (4.18.) further⟨
T † ProxTx− T † ProxTy, x− y

⟩
HT

≥ ∥ProxTx− ProxTy∥2K
≥ ∥T † ProxTx− T † ProxTy∥2HT

.

Thus, T † ProxT is firmly nonexpansive.

Second, it remains to prove that there exists a convex function Ψ: HT −→ R such that ∇HT
Ψ =

T † ProxT . Since Prox is a proximity operator, there exists Φ: H −→ R with Prox = ∇KΦ.
Then, a natural candidate is given by Ψ = ΦT . Using the definition of the gradient and the chain
rule, it holds for all x, h ∈ H that

⟨∇HΨ(x), h⟩H = DΨ(x)h = DΦ(Tx)Th = ⟨∇KΦ(Tx), Th⟩K = ⟨T ∗ ProxTx, h⟩H.

Hence, we conclude

∇HT
Ψ = (T ∗T )−1∇HΨ(x) = (T ∗T )−1T ∗ ProxTx = T † ProxTx.

Finally, Ψ is convex since it is the concatenation of a convex function with a linear function. qed

For Prox := proxg with g ∈ Γ0(H), we are able to explicitly compute f ∈ Γ0(H) such that
T † ProxT = proxf on HT .

We now present a formula to solve the expression proxf = T † proxg T for f in terms of an infimal
convolution, cf. Definition 2.2. and Proposition 2.3.. Note however that despite the looks this is not
necessarily a closed expression as the infimal convolution oftentimes is not computable explicitly.
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4.13 Theorem.
Let T ∈ B(H,K) an injective operator with closed range and Prox := proxg for some g ∈ Γ0(K).
Then T † proxg T : HT −→ HT is the proximity operator on HT of f ∈ Γ0(H) given by

f(x) := g□
(
1
2∥ · ∥

2
K + ιN (T ∗)

)
(Tx). (4.19)

Here N (T ∗) denotes the kernel of T ∗ and ιN (T ∗) its indicator function, cf. List of Symbols..

For bijective T ∈ B(H,K) this expression simplifies to f = gT.

Proof.
Since R(T ) is closed, we have the orthogonal decomposition H = R(T )⊕N (T ∗). Then, we get

T † proxg(Tx) = T † argmin
z∈K

{
1
2∥z − Tx∥2K + g(z)

}
= T †PR(T ) argmin

z=z1+z2
z1∈R(T ),z2∈N (T ∗)

{1
2
∥z1 + z2 − Tx∥2K + g(z1 + z2)

}

= T † argmin
z1∈R(T )

inf
z2∈N (T ∗)

{1
2
∥z1 − Tx∥2K +

1

2
∥z2∥2K + g(z1 + z2)

}
= T † argmin

z1∈R(T )

{
1

2
∥z1 − Tx∥2K + inf

z2∈N (T ∗)

{1
2
∥z2∥2K + g(z1 + z2)

}}
= T †T argmin

y∈H

{
1

2
∥Ty − Tx∥2K + inf

z2∈N (T ∗)

{1
2
∥z2∥2K + g(Ty + z2)

}}
= argmin

y∈H

{
1

2
∥y − x∥2HT

+ inf
z2∈N (T ∗)

{1
2
∥z2∥2K + g(Ty + z2)

}}
(4.2 )

= argmin
y∈H

{
1

2
∥y − x∥2HT

+ g□
(
1
2∥ · ∥

2
K + ιN (T ∗)

)
(Ty)

}
.

Hence, we conclude that T † proxg T is the proximity operator on HT of f in Equation (4.19.). In
particular, we conclude for bijective T by Equation (4.2 .) that

T † proxg(Tx) = argmin
y∈H

{1
2
∥x− y∥2HT

+ g(Ty)
}
. qed

Also note that in general f is a weaker regularizer than g, i.e., f ≤ g. This is necessary since for
the latter we would get, using the same reasoning as in Equation (4.2 .)

argmin
y∈H

{1
2
∥x−y∥2T+g(Ty)

}
= T † argmin

z∈K

{1
2
∥z−Tx∥2K+g(z)+ιR(T )(z)

}
̸= T † proxg(Tx).
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Frame Soft Shrinkage

Let is now investigate frame soft shrinkage as a special proximity operator and thereby finding a
different characterization as compared to Section 4.1.. Hence, let K = ℓ2 be the Hilbert space of
quadratic summable sequences with the usual ℓ2-norm and assume further that H is separable.

Recalling frames from Section 1.2., note that T † is indeed the synthesis operator for the canonical
dual frame of {fk}k∈N. The relation between linear, bounded, injective operators of closed range
and frame analysis operators reads as follows:

4.14 Proposition.
An operator T ∈ B(H, ℓ2) is injective and has closed range if and only if it is the analysis operator
of some frame of H.

Proof.
If T is the analysis operator for a frame {xk}k∈N, then T is bounded, injective and has closed range,
see [Chr16.]. Conversely, assume that T ∈ B(H, ℓ2) is injective and that R(T ) is closed. By the
closed range theorem, cf. [MS79.], it holds R(T ∗) = H . Let {δk}k∈N be the canonical basis of ℓ2
and set {xk}k∈N := {T ∗δk}k∈N. Since

∑
k∈N |⟨x, xk⟩H|2 = ∥Tx∥22, we conclude that {xk}k∈N

is a frame of H and T is the corresponding analysis operator. qed

The soft shrinkage operator Sλ on ℓ2 (applied componentwise) is the proximity operator corre-
sponding to the function g := λ∥ · ∥1 for some λ > 0, as shown in Example 2.12.. Then we obtain
as immediate consequence of Theorem 4.13. the following corollary.

4.15 Corollary.
Let T : H −→ ℓ2 be an analysis frame operator and Prox : ℓ2 −→ ℓ2 an arbitrary proximity
operator. Then T † ProxT is itself a proximity operator on H equipped with the norm ∥ · ∥HT

. In
particular, it holds for Prox := Sλ, λ > 0 that

T †SλT (x) = argmin
y∈H

{
∥x− y∥2HT

+ f(y)
}

for
f(y) :=

[
λ∥ · ∥1□

(
1
2∥ · ∥

2
2 + ιN (T ∗)

)]
(Ty).

Finally, let us have a look at the finite dimensional setting with H := Rd, K := Rn, n ≥ d. Then
we have for any T ∈ Rn×d with full rank d and an arbitrary proximity operator on Rn that

T † ProxT (x) = argmin
y∈Rd

{
1
2∥x− y∥2T + f(y)

}
where

f(y) := λ
[
∥ · ∥1□

(
1
2∥ · ∥

2
2 + ιN (T T)

)]
(Ty).
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5. Sparse Rank-One Matrix Recovery

In this chapter we are considering a different approach for extracting desired features. Set in a
compressed sensing environment, we suppose a bilinear measurement setting, cf. Chapter 3. That is,
we want to recover two sparse signals u, v from the corresponding function value b(u, v) for some
bilinear map b. With lifting, cf. Section 3.1., this becomes a sparse rank-one matrix recovery problem.
While it is well known that recovering a simultaneously sparse and rank-one matrix is difficult,
[AKR18.], we propose an adaptive scheme, based on the Sparse Power Factorization algorithm by
Lee et al., [LWB18 .].

Note: The following portion of this thesis is predominantly taken from [GKS19.] of which I am a
coauthor. Until the end of Chapter 5. the content is in large portions identical to the one in [GKS19.].
I have occasionally adapted the order, notation or, where adequate, wording and added further
thoughts if considered reasonable. I will also at times leave out parts that have been referenced
earlier within this thesis or are irrelevant with regard to the concern of this work. In these cases I
have put references to the corresponding location whenever I believe this to be beneficial.

Many measurement operations in signal and image processing as well as in communication follow
a bilinear model. Namely, in addition to the measurements depending linearly on the unknown
signal, certain parameters of the measurement procedure enter in a linear fashion. Hence, one cannot
employ a linear model (for example, in connection compressed sensing techniques [CRT 6.]) unless
one has an accurate estimate of these parameters.

When such estimates are not available or too expensive to obtain, there are certain asymmetric
scenarios where one of the inputs can be recovered even though the other one is out of reach
(e.g., [XLTK95., LKR18.], this scenario is sometimes referred to as passive imaging). In most cases,
however, the natural aim will be to recover both the signal and the parameters, that is, to solve
the associated bilinear inverse problem. Even when some estimates of the parameters are available,
such a unified approach will be preferred in many situations, especially when information is limited.
Consequently, the study of bilinear inverse problems, including, but not limited to, the important
problem of blind deconvolution, has been an active area of research for many years [Hay94.].

Observe that bilinear maps admit a representation as a linear map in the rank one outer product of
the unknown signal and the parameter vector. Thus, one can approach such problems using tools
from the theory of low-rank recovery (see, e.g., [ARR14., LS17., JKS18.]). Under sparsity assumptions
however, the direct applicability of these approaches is limited, as two competing objectives arise:
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5. Sparse Rank-One Matrix Recovery

one aims to simultaneously minimize rank and sparsity. That is the case when the signals and/or
parameter vectors admit an approximate representation using only a small (but unknown) subset of
an appropriate basis. For more details regarding the appearances of such assumptions in bilinear
inverse problems, see [LS15.]. As a consequence, the problem becomes considerably more difficult;
Oymak et al., for example, have demonstrated that minimizing linear combinations of the nuclear
norm (a standard convex proxy for the rank) and the ℓ1-norm (the corresponding quantity for
sparsity) exhibits suboptimal scaling [OJF+15.]. In fact it is not even clear if, without additional
assumptions, efficient recovery is at all possible for a near-linear number of measurements (as it
would be predicted identifiability considerations [KK17.]).

Recently, a number of nonconvex algorithms for bilinear inverse problems have been proposed.
For example, for such problems without sparsity constraints, several such algorithms have been
analyzed for blind deconvolution and related problems [LLSW19., LS18.] with near-optimal recovery
guarantees. In contrast, our understanding of bilinear inverse problems with sparsity constraints is
still in its infancy. Recently, several algorithms have been analyzed for sparse phase retrieval [BR18.,
Sol19.] or blind deconvolution with sparsity constraints [QZEW2 .]. The recovery guarantees for
these algorithms, however, are either suboptimal in the number of necessary measurements or only
local convergence guarantees are available, i.e., one relies on the existence of a good initialization.
A noteworthy exception are the two related papers [BR16., IVW17 .], where a two-stage approach for
(sparsity) constrained bilinear inverse problems is proposed, which achieves recovery at near-optimal
rate. However, the algorithm relies on a special nested structure of the measurements, which is not
feasible for many practical applications.

In [LWB18 .] Lee, Wu, and Bresler introduced the Sparse Power Factorization (SPF) method together
with a tractable initialization procedure based on alternating minimization. They also provide a first
performance analysis of their method for random bilinear measurements in the sense that their
lifted representation is a matrix with independent Gaussian entries. That is, they work with linear
operators A : Cn1×n2 −→ Cm that admit a representation as

[A (X)]ℓ = tr (A∗
ℓX)

for i.i.d. Gaussian matrices Aℓ ∈ Cn1×n2 as considered in Section 3.1. in Equation (3.1.).

For such measurements they show that with high probability, SPF converges locally to the right
solution, i.e., one has convergence for initializations not too far from the signal to be recovered.

For signals that have a very large entry, they also devise a tractable initialization procedure – they
call it thresholding initialization – such that one has global convergence to the right solution. Local
convergence has also been shown for the multi-penalty approach A-T-LAS1,2 [FMN21.], but to our
knowledge, comparable global recovery guarantees are not available to date. This is why we focus
on SPF in this chapter, using the results of [LWB18 .] as our starting point.
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The precise condition for their guarantee to hold is that both (normalized) input signals need to
be larger than some c > 1

2 in supremum norm – more than one quarter of its mass needs to be
located in just one entry, that is, the signals must have a very high peak to average power ratio, cf.
Definition 3.6.. Thusly motivated, we will develop an improved criterion that accepts arbitrary mass
distribution within the signal while only requiring a mildly increased number of measurements.

Let b ∈ Cm be given by b := B(u, v) + z where z is a perturbation term, e.g. noise. In the sense
of Section 3.1., our goal will be to reconstruct u and v from linear measurements given by

bℓ = tr (A∗
ℓuv

∗)

At the core of the Sparse Power Factorization Algorithm, as introduced in [LWB18 .], are the linear
operators F : Cn2 −→ Cm×n1 and G : Cn1 −→ Cm×n2 defined by

F (y) :=

 y∗A∗
1

...

y∗A∗
m

 , G(x) :=

x∗A1

...

x∗Am

 . (5.1)

A direct consequence of this definition is that for all x ∈ Cn1 and all y ∈ Cn2 we have

A(xy∗) = [F (y)]x = [G(x)]y,

The preparation for our goal of relaxed, i.e. more general, preformance criteria subdivides this
chapter into three sections. We will first present the algorithmic framework of the Sparse Power
Factorization (SPF) algorithm in Section 5.1.. To this end, we first discuss pursuit algorithms. This
class of algorithms provide (approximate) solutions to underdetermined linear inverse problems
while adhereing to a sparsity constraint. Afterwards we consider the SPF algorithm itself. Within
each iteration, SPF requires a sparse solution to a system of linear equations and hence employs a
pursuit algorithm. Moreover, as SPF will only exhibit local convergence, we address the crucial part
of a sufficient initialization. We further consider the approach of SPF in the context of NP-hard
sparse recovery problems, i.e. especially SparsePCA.

Then follows a rather technical section. The goal of Section 5.2. is to fit our improved recovery
criteria onto the proof framework of [LWB18 .]. To do this, we first cite their recovery guarantee and
some auxiliary lemmas. In a second step, we complement their approach by posing new lemmas
with our relaxed criteria in mind to, eventually, achieve a seamless fit of both their contribution and
our own in the final section.

Finally, Section 5.3. allows us to insert the framework buildup of the preceding section into our
new, adaptive recovery criteria. In the end, we will discuss our result in comparison to competing
concepts and in which cases this outperforms state-of-the-art algorithms.
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5. Sparse Rank-One Matrix Recovery

5.1. Algorithms

In this section we present the Sparse Power Factorization Algorithm (SPF), developed by Lee, Wu
and Bresler, [LWB18 .]. As their paper elaborately explains the composition of the algorithm, we
will restrict ourselves to a brief introduction.

Here, we start with pursuit algorithms, which subsequently will be employed to solve sub-problems
in the iterations of SPF. Secondly, we state the SPF algorithm in the form presented by Lee et al. in
[LWB18 .]. Most importantly, we will look for a suitable initialization procedure to get close enough
to the ground truth for SPF to perform satisfactorily.

Pursuit Algorithms

When using overcomplete representation systems, e.g. frames, cf. Section 1.2., one will at some point
inevitably come to the problem of encoding a signal optimally with respect to said frame. While
the meaning of the word optimal may depend on the larger context, often one wants to represent
a signal with a fixed number s of coefficients with minimal error. This is well understood to be
NP-hard, however. For a more in-depth discussion I refer the reading [Mal 9.] which provides a
pleasant read on this topic. Especially the twelfth chapter may be of interest with respect to this
very topic.

For this thesis it will suffice to understand a Pursuit Algorithm to be a procedure that aims at solving
an underdetermined linear system

Ax = y,

for x ∈ Cn, provided the measurement matrix A ∈ Cm×n and measured data y ∈ Cm, where
m < n while requiring solutions to possess a maximum number of non-zero coefficients, i.e.
∥x∥0 ≤ s.

There exists an ample variety of different algorithms for this task. Many of these are based on a
greedy approach to avoid the complexity imposed by NP-hardness. As discussed before in Chapter 4.,
the ℓ1-norm is an accessible proxy for sparsity and is hence employed in numerous algorithms.
Others use novel ideas, such as a constantly updated weighted least-squares minimization.

Notable algorithms includeHard Thresholding Pursuit (HTP), [Fou11.], Basis Pursuit (BP), [CDS98.],
(Compressive Sampling) Matching Pursuit (CoSaMP), [NT 9., MZ93.] or Iteratively Reweighted
Least Squares (IRLS), [DDFG1 .].

In this thesis we will only use HTP in accordance with [LWB18 .]. There, the Hard Thresholding
Pursuit Algorithm is defined as follows:
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5.1. Algorithms

5.1 Algorithm (HTP(A, b, s)).
Input: Measurement matrixA ∈ Cm×n, measurement b ∈ Cm, sparsity constraint s ∈ N.
Output: x̂ ∈ Cn.
1: t← 0

2: while stop condition not satisfied do
3: t← t+ 1

4: w = x(t−1) +A∗
(
b−Ax(t−1)

)
5: J ← argmax

J⊂{1,...,n}, |J|=s

∥wJ∥2

6: x(t) ← argmin
x:supp(x)⊂J

∥Ax− b∥2

7: end while
8: return x̂← x(t)

Sparse Power Factorization

The idea of Sparse Power Factorization is to iteratively update estimates u(t) and v(t) for u and v in
an alternating fashion. That is, in each iteration one keeps one of v(t) and u(t) fixed and updates
the respective other by solving an (underdetermined) linear system. Solving each of these linear
systems then amounts to solving a linear inverse problem with sparsity constraints, which is the
topic of pursuit algorithms as discussed above.

In the context of my Bachelor’s thesis, [Gep15.], I have conducted research on interchanging HTP for
different pursuit algorithms in the interations of SPF. When using, e.g., CoSaMP, the required RIP
of the measurement operator is slightly varied, i.e. (4s1, 4s2, 2)-RIP for CoSaMP as compared to
(3s1, 3s2, 2)-RIP for HTP. Also the restricted isometry constant δ has a tighter bound for CoSaMP.
Moreover, numerical testing suggests similar and, more importantly, acceptable behavior for a range
of pursuit algorithms.

Nonetheless, in this thesis we will restrict ourselves to Hard Thresholding Pursuit (HTP), cf.
Algorithm 5.1., as the authors of [LWB18 .] have done for their analysis, too. In order to alter-
natingly update the left and right singular vectors u(t) and v(t) we need to consider the application
of A with one fixed singular vector, i.e. the application of A(u · ∗) and A( · v∗). This can be
handily realized with the help of the functions F and G of Equation (5.1.) as

A(u · ∗) = G(u) and A( · v∗) = F (y).

In the case of no desired sparsity in either singular vector, the algorithm will default to common
least-squares minimization in the respective update step.

With this, the Sparse Power Factorization Algorithm reads as follows:
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5. Sparse Rank-One Matrix Recovery

5.2 Algorithm (Algorithm 1 in [LWB18.]).
Input: OperatorA, Measurement b, Sparsity Constraints s1, s2, Initialization vinit.
Output: Estimate X̂.
1: t← 0

2: while stop condition not satisfied do
3: t← t+ 1

4: v(t−1) ← v(t−1)∥∥v(t−1)
∥∥

2

5: if s1 < n1 then
6: u(t) ← HTP(F(v(t−1)), b, s1)

7: else
8: u(t) ← argmin

x

∥∥b− [F(v(t−1))]x
∥∥2

2

9: end if
10: u(t) ← u(t)∥∥u(t)

∥∥
2

11: if s2 < n2 then
12: v(t) ← HTP(G(u(t)), b̄, s2)

13: else
14: v(t) ← argmin

b

∥∥b̄− [G(u(t))]b
∥∥2

2

15: end if
16: end while
17: return X̂ ← u(t)(v(t))∗

Initialization

As for many other non-convex algorithms (e.g. [JNS13., CLS15.]), the convergence properties of
Sparse Power Factorization depend crucially on the choice of the starting point. In [JNS13., CLS15.]
the starting point is chosen via a spectral initialization. That is, one chooses the leading left-
and right-singular vectors of A∗ (y) as the starting point. The general idea behind this approach
is that, if the map A is random, under appropriate assumptions, the leading eigenvectors of the
expected value, E[A(y)] are given by u and v. Indeed under the assumptions in this chapter, we
have that E[A∗A] = id. If z = 0, this implies that E[A(y)] = E[A∗A(uv∗)] = uv∗. However,
spectral initialization requires that the number of measurements is at the order of max{n1, n2}, as
otherwise the matrix A∗(y) will in general not concentrate around its expectation. Hence, spectral
initialization will in general not be optimal as it does not take into account the sparsity of the vectors
u and v. One way to incorporate the sparsity assumption would be to solve the Sparse Principal
Component Analysis (SparsePCA) problem.

max Re (ũ∗A∗ (y) ṽ)

subject to ∥ũ∥0 ≤ s1, ∥ũ∥2 = 1

∥ṽ∥0 ≤ s2, ∥ṽ∥2 = 1,

(5.2)

7



5.2. Assessing Locality

where ∥·∥0 denotes the number of non-zero entries. As it was shown in [LWB18 ., Proposition III.4],
Algorithm 5.2., if initialized by a solution of Equation (5.2.) is able to recover the solution u and v
from a number of measurements at the order of (s1 + s2)max

{
s1
n1
, s2n2

}
. However, the SparsePCA

problem has been shown to be NP-hard [TP14.]. Nevertheless, in the last fifteen years there has been
a lot of research on the SparsePCA problem and, in particular, on tractable (i.e., polynomial-time)
algorithms, which yield good approximations to the true solution. Several computationally tractable
algorithms have been proposed for solving Equation (5.2.), e.g., thresholdings algorithms [Ma13 .],
a general version of the power method [JNRS1 .] and semidefinite programs [dBE 8.]. From the
statistical perspective, a particular emphasis has been put for computationally efficient or at least
tractable algorithms on the analysis of the single spike model, [AW 9., KNV15., DM16.]. These
approaches, however, require that the number of samples scales with the square of the number of
non-zero entries of the signal to estimate (up to log-factors). This raised the question whether there
are fundamental barriers preventing the SparsePCA problem to be solved in polynomial time at a
sampling rate close to the information theoretic limit. Indeed, it has been shown that an algorithm
achieving this would also allow for an algorithm which solves the k-clique problem in polynomial
time [BR13., WBS16.]. However, a widely believed conjecture in theoretical computer science states
that this is not the case, which indicates that this approach will not be suited for initializing bilinear
recovery problems either.

Here, we will analyze the following initialization algorithm, which is the one proposed in [LWB18 .].
For a set J1 ⊂ {1, . . . , n1}, respectively J2 ⊂ {1, . . . , n2} in the following we will denote by ΠJ1 ,
respectively ΠJ2 the matrix, which projects a vector onto the components which belong to J1,
respectively J2. We further will use the short-hand Π⊥

J2
= Π{1,...,n2}\J2 .

5.3 Algorithm (Algorithm 3 in [LWB18.]).
Input: OperatorA, Measurement b, Sparsity Constraints s1, s2,
Output: Initial guess vinit for v ∈ Cn2 .
1: For all i ∈ {1, . . . , n1} let ξi be the ℓ2-normof the best s2-sparse approximation of the ith row

of the matrixA∗ (b) ∈ Cn1×n2 .
2: Let Ĵ1 ⊂ {1, . . . , n1} be the set of the s2 largest elements in {ξ1; ξ2; . . . ; ξn1}
3: Choose Ĵ2 to contain the indices of the s2 columns ofΠĴ1

A∗ (b) largest in ℓ2-norm, i.e.,

Ĵ2 := argmax
J⊂{1,...,n2}, |J|=s2

∥∥ΠĴ1
[A∗(b)]ΠJ

∥∥
F. (5.3)

4: return vinit, the leading right singular vector ofΠĴ1
[A∗(b)]ΠĴ2

.

5.2. Assessing Locality

As SPF will at best converge locally, successful recovery crucially depends on its initialization. In
this sense, this section prepares toolwork to analyze the initialization for the performance guaran-

71
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tees in Section 5.3.. To that end, we check, amongst other things, which entries the initialization
finds correctly and assess the angle between the correct left singular vector v and the result of the
initialization vinit. Large parts of this section will be identical or close to [LWB18 .] and are stated
here for completeness of the chain of arguments. Some lemmas will be of a more technical nature,
but will become relevant pieces in Section 5.3. nonetheless.

In the following, we will work with the model of Equation (3.1.), i.e., we observe

tr (A∗
ℓuv

∗) + zℓ

where u ∈ Cn1 is s1-sparse, v ∈ Cn2 is s2-sparse, and zℓ ∈ Cm is noise. As in [LWB18 .], ν will
quantify the Noise-to-Signal Ratio by

ν (z) :=
∥z∥2

∥A (uv∗) ∥2
.

In our results, we will make no assumptions on the noise z except that ν(z) needs to be smaller
than a certain threshold. Our results will hold for adversarial noise, i.e., the recovery guarantees will
hold uniformly for all z ∈ Cm, such that ν(z) satisfies this threshold. For our analysis, A will be
a Gaussian linear operator, that is, all the entries of the matrices A1, . . . , Am are independent with
distribution CN

(
0, 1

m

)
. Here, a complex-valued random variable X has distribution CN

(
0, 1

m

)
if its real and complex part are independent Gaussians with expectation 0 and variance

√
σ
2 .

In [LWB18 .], the authors derived that Algorithm 5.2., if initialized by Algorithm 5.3., is able to recover
both u and v (up to scale ambiguity), if both u and v belong to a certain restricted class of signals.
More precisely, they proved the following result. This extends the RIP of Gaussian matrices, as
discussed in Proposition 3.4., by the adequate recovery guarantee.

5.4 Theorem (Cf. III.7 and III.10 in [LWB18.]).
Assume that A : Cn1×n2 −→ Cm is a Gaussian linear operator as described before. Let b =

A (uv∗)+z, where u is s1-sparse and v is s2-sparse. Suppose that ∥u∥∞ ≥ 0.78∥u∥2, ∥v∥∞ ≥
0.78∥v∥2, and that the noise level satisfies ν (z) ≤ 0.04. Then, with probability exceeding 1 −
exp (−c1m), the output of the Algorithm 5.2., initialized by Algorithm 5.3., converges linearly to
uv∗ provided that

m ≥ c2 (s1 + s2) log
(
max

{
n1
s1
,
n2
s2

})
,

where c1, c2 > 0 are absolute constants.

Note that in order to apply Theorem 5.4. to signals u and v, one needs to require that more than
half of the mass of u and v is located in one single entry. This is a severe restriction, which
can be prohibitive for many applications. Our goal in the following will be to considerably relax
this assumption by slightly increasing the amount of required measurements. We will relax this
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assumption in two different ways: On the one hand we will show that one can replace 0.78 by an
arbitrary small constant that will then show up in the number of measurements. On the other hand
we generalize the result to the case that a significant portion of mass of u is concentrated on a small
number of entries k, rather than just one of them.

Now, we prepare the necessary tools for the main goal of this chapter, Theorem 5.13.. As in [LWB18 .,
Lemma VIII.7] we will need the following quantity, which depends on δ and ν.

ωsup := sup
{
ω ∈ [0, π2 ) : ω ≥ arcsin (Cδ[δ tan(ω) + (1 + δ)ν sec(ω)])

}
(5.4)

Here, the constant Cδ is given by the expression

Cδ = 1.1

√
2

1−δ2 + 1
1−δ

1−
√

2
1−δ2 δ

,

as it can be seen by an inspection of the proof of Lemma VIII.1 in [LWB18 .]. The precise value of
Cδ will not be important in the following, we will only use that 2 ≤ Cδ ≤ 5 for δ ≤ 0.04.

A simple estimate for ωsup is given by the following lemma.

5.5 Lemma.
Assume that δ ≤ 0.04 and ν ≤ 0.04. Then it holds that

1
2 ≤ sin(ωsup) ≤ 1.

Proof.
We observe that, in order to show the claim, it is enough to verify that ω = arcsin(12) fulfills the
inequality in Equation (5.4.). Indeed, using cos(ω) =

√
3
4 and Cδ ≤ 5 we obtain that

Cδ

[
δ tan

(
arcsin

(
1
2

))
+ (1 + δ) ν sec

(
arcsin

(
1
2

)) ]
= Cδ

[
0.04

1/2√
3/4

+
1.04 · 0.04√

3/4

]
≤ 1

2
.

qed

The quantity ωsup controls the maximal angle between the initialization vinit and the ground truth
v such that the Sparse Power Factorization is guaranteed to converge as captured by the following
theorem.
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5.6 Theorem (Theorem III.9 in [LWB18.]).
Assume that

1) A has the (3s1, 3s2, 2)-RIP with isometry constant δ ≤ 0.08,

2) ν ≤ 0.08,

3) the initialization vinit satisfies sin(∠(vinit, v)) < sin
(
ωsup

)
.

Then the iterates {x(t)}t∈N generated by Algorithm 5.2., initialized via Algorithm 5.3., satisfy

lim sup
t→∞

∥x(t) − uv∗∥F
∥uv∗∥F

≤ 8.3ν.

Furthermore, the convergence is linear, i.e., for all t ≳ log
(
1
ε

)
we have that

∥Xt − uv∗∥F
∥uv∗∥F

≤ 8.3ν + ε. (5.5)

Thus, it remains to verify that the initialization satisfies sin(∠(vinit, v)) < sin
(
ωsup

)
. The following

lemma gives an upper bound on sin(∠(vinit, v)).

5.7 Lemma (Lemma VIII.10 in [LWB18.]).
Assume that the (3s1, 3s2, 2)-restricted isometry property holds for some constant δ > 0. Fur-
thermore, assume that ∥u∥2 = ∥v∥2 = 1. Let Ĵ1 ⊆ {1, . . . , n1} and Ĵ2 ⊆ {1, . . . , n2}
denote the output resulting from Algorithm 5.3.. Denote by vinit the leading right singular vector of
Π
Ĵ1
[A∗(b)]Π

Ĵ2
. Then it holds that

sin(∠(vinit, v)) ≤

∥∥Π
Ĵ1
u
∥∥
2

∥∥Π⊥
Ĵ2
v
∥∥
2
+ (δ + ν + δν)∥∥Π

Ĵ1
u
∥∥
2
− (δ + ν + δν)

. (5.6)

The next lemma shows that initialization according to Algorithm 5.3. successfully finds non-zero
components whose absolute value is above 2 (δ + ν + δν).

5.8 Lemma (Lemma VIII.12 in [LWB18.]).
Assume that u and v, are s1-sparse, respectively s2-sparse, and satisfy ∥u∥2 = ∥v∥2 = 1 and
assume that the measurement operator A satisfies the (3s1, 3s2, 2)-RIP with constant δ. Recall
that Ĵ1 ⊂ {1, . . . , n1} is the support estimate for vinit given by the initialization Algorithm 5.3..
Define

J̃1 := {1 ≤ j ≤ n1 : |uj | ≥ 2 (δ + ν + δν)} . (5.7)

Then we have that J̃1 ⊂ Ĵ1.
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We now present a lemma that can be understood as a case-specific adaptation of the restricted
isometry property. The assertion states that the tensor operator Π

J̃1
(A∗A− I)⊗Π

J̃2
is bounded

in terms of δ, the isometry constant of A.

5.9 Lemma (Lemma A.2 and Lemma A.3 in [LWB18.]).
Assume that the (3s1, 3s2, 2)-restricted isometry property is fulfilled for some restricted isometry
constant δ > 0. Assume that the cardinality of J̃1 ⊆ {1, . . . , n1}, respectively J̃2 ⊆ {1, . . . , n2}
is at most 2s1, respectively 2s2. Then, whenever u ∈ Cn1 is at most 2s1-sparse and v ∈ Cn2 is at
most 2s2-sparse, we have that

∥Π
J̃1
[(A∗A− I)(uv∗)]Π

J̃2
∥2 ≤ δ∥uv∗∥F.

Furthermore for all z ∈ Cn and for all J̃1 ⊆ {1, . . . , n1}, respectively J̃2 ⊆ {1, . . . , n2}, with
cardinality at most s1, respectively s2, we have that

∥Π
J̃1
[A∗(z)]Π

J̃2
∥2 ≤

√
1 + δ∥z∥2.

Following the series of lemmas quoted from [LWB18 .], the next statement provides a relation be-
tween the mass of u and v in the index sets Ĵ1 and Ĵ2, respectively, on the one hand and the index
set J̃1 together with the largest entry of v on the other hand.

5.10 Lemma.
Assume that A has the (3s1, 3s2, 2)-restricted isometry property with isometry constant δ > 0 and
let u and v as in Lemma 5.8.. Let J̃1 be defined as in Equation (5.7.). Then, it holds that∥∥Π

Ĵ1
u
∥∥
2

∥∥Π
Ĵ2
v
∥∥
2
≥
∥∥Π

J̃1
u
∥∥
2
∥v∥∞ − 2 (δ + ν + δν) .

Proof.
Recall that b = A (X) + z and define k1 and k2 by

k1 := argmax
k∈{1,...,n2}

|vk|

k2 := argmax
k∈{1,...,n2}

∥∥Π
Ĵ1
[A∗(b)]Π{k}

∥∥
F.

(5.8)

The starting point of our proof is the observation that∥∥Π
Ĵ1
[A∗(b)]Π{k2}

∥∥
F ≥

∥∥Π
Ĵ1
[A∗(b)]Π{k1}

∥∥
F ≥

∥∥Π
J̃1
[A∗(b)]Π{k1}

∥∥
F, (5.9)

where the first inequality is due to the definition of k2 and the second one follows from Lemma 5.8.,
entailing J̃1 ⊂ Ĵ1. The right hand side of the inequality chain can be estimated from below by
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∥∥Π
J̃1
[A∗(b)]Π{k1}

∥∥
F

≥
∥∥Π

J̃1
uv∗Π{k1}

∥∥
F −

∥∥Π
J̃1

[(A∗A− I) (uv∗)] Π{k1}
∥∥
F −

∥∥Π
J̃1
A∗ (z)Π{k1}

∥∥
F

≥
∥∥Π

J̃1
uv∗Π{k1}

∥∥
F −

(
δ∥uv∗∥F +

√
1 + δ∥z∥2

)
≥
∥∥Π

J̃1
u
∥∥
2
∥v∥∞ − (δ + ν + δν) .

(5.1 )

In the first inequality we used b = A (uv∗) + z and the triangle inequality. The second inequality
follows from Lemma 5.9.. The last line follows from ∥uv∗∥F = 1 and ∥z∥2 = ν. Next, we will
estimate the left hand side of Equation (5.9.) by∥∥Π

Ĵ1
[A∗(b)]Π{k2}

∥∥
F

≤
∥∥Π

Ĵ1
uv∗Π{k2}

∥∥
F +

(
δ∥uv∗∥F +

√
1 + δ∥z∥2

)
≤
∥∥Π

Ĵ1
u
∥∥
2

∥∥Π{k2}v
∥∥
2
+ (δ + ν + δν)

≤
∥∥Π

Ĵ1
u
∥∥
2

∥∥Π
Ĵ2
v
∥∥
2
+ (δ + ν + δν) .

(5.11)

The first two lines are obtained by an analogous reasoning as for Equation (5.1 .). The last line is due
to {k2} ⊂ Ĵ2, which is a consequence of the definition of Ĵ2 in Equation (5.3.) and the definition of
{k2} in Equation (5.8.). We finish the proof by combining the inequality chains of Equations (5.9.)
to (5.11.). qed

Lemma 5.1 . is actually a slight generalization of what has been shown in [LWB18 ., p. 1685]. For
completeness we have included a proof, which closely follows the proof in [LWB18 .].

We will now piece together these ingredients to obtain a sufficient condition; in the remainder of
this section we will then show that this condition holds in our measurement setup. First note that
in order to apply Theorem 5.6. we need to check that

sin(∠(vinit, v)) < sin
(
ωsup

)
is satisfied. By Lemma 5.7. it is sufficient to show that the right hand side of Equation (5.6.) is strictly
smaller than sin

(
ωsup

)
. Combining this with the equality

∥∥Π⊥
Ĵ2
v
∥∥
2
=
√

1−
∥∥Π

Ĵ2
v
∥∥2
2
we obtain

the sufficient condition∥∥Π
Ĵ1
u
∥∥
2

√
1−

∥∥Π
Ĵ2
v
∥∥2
2
< sin

(
ωsup

) (∥∥Π
Ĵ1
u
∥∥
2
− (δ + ν + δν)

)
− (δ + ν + δν) .
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Further manipulations yield that this is equivalent to

∥∥Π
Ĵ1
u
∥∥2
2
<
(
sin
(
ωsup

) ∥∥Π
Ĵ1
u
∥∥
2
−
(
1 + sin

(
ωsup

))
(δ + ν + δν)

)2
+
∥∥Π

Ĵ1
u
∥∥2
2

∥∥Π
Ĵ2
v
∥∥2
2
.

(5.12)

Hence, in the following our goal will be to verify Equation (5.12.). We already noticed that the
angle ωsup measures how much the vector vinit given by the initializiation has to be aligned with the
ground truth v in order for the Sparse Power Factorization to converge. Consequently, it is natural
to expect that the smaller the constant δ and the noise-to-signal ratio ν, the less the initializiation
vector has to be aligned with the ground truth, i.e., the larger ωsup can be. This fact is captured by
the following lemma.

5.11 Lemma.
Let δ ≤ 0.04 and ν ≤ 0.04. Then it holds that

sin(ωsup) ≥ 1− C2
δ (δ + 2δν + 2ν)2 .

Proof.
We will first show that it holds that

sin
(
ωsup

)
= Cδ

[
δ tan

(
ωsup

)
+ (1 + δ)ν sec

(
ωsup

)]
. (5.13)

For that, we define the set

Ω := {ω ∈ [0, π/2) : sin(ω) ≥ Cδ[δ tan(ω) + (1 + δ)ν sec(ω)]}

and note that ωsup = sup(Ω). Note that from Lemma 5.5. and its proof, it follows that Ω is
nonempty. We observe that

lim
ω↗π/2

Cδ[δ tan(ω) + (1 + δ)ν sec(ω)] = +∞.

Hence, Ω is a compact set. In particular, ωsup is contained in this set. Now assume by contradiction
that

sin
(
ωsup

)
> Cδ[δ tan(ωsup) + (1 + δ)ν sec(ωsup)].

Because of Section 5.2. and as the sine is bounded in [0, π/2), this implies by continuity that there
must be an ω̃ ∈ [0, π/2) such that ω̃ > ωsup and

sin(ω̃) = Cδ[δ tan(ω̃) + (1 + δ)ν sec(ω̃)].
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Hence, ω̃ ∈ Ω which is a contradiction to the definition of ωsup. Hence, we have proven Equa-
tion (5.13.). Using trigonometric identities, we obtain that

sin
(
ωsup

)
= Cδ

δ sin
(
ωsup

)√
1− sin

(
ωsup

)2 + (1 + δ) ν
1√

1− sin
(
ωsup

)2
 .

Lemma 5.5. implies that

sin
(
ωsup

)
≤

sin
(
ωsup

)√
1− sin

(
ωsup

)2Cδ (δ + 2 (1 + δ) ν) .

Rearranging terms yields that

sin
(
ωsup

)
≥
√
1− C2

δ (δ + 2δν + 2ν)2.

The claim follows then using the fact that
√
x ≥ x for all x ∈ [0, 1]. qed

5.3. Adaptive Recovery

With the preparation completed, we can now prove our desired result, enabling recovery in various
peakiness settings by trading off peakiness against the number of required measurements.

5.12 Proposition.
There are absolute constants c1, c2, c3 > 0 such that if

m ≥ c1δ
−2 (s1 + s2) log

(
max

{
n1
s1
,
n2
s2

})
, (5.14)

for some 0 < δ < 0.01, then with probability at least 1−exp (−c2m) the following statement holds
uniformly for all s1-sparse u ∈ Cn1 , s2-sparse v ∈ Cn2 and z ∈ Cm such that ∥u∥2 = ∥v∥2 = 1

and ν (z) ≤ 0.01:
Let the measurements be given by b = A (uv∗) + z for A Gaussian as above and let J̃1 be defined
by

J̃1 := {j ∈ {1, . . . , n1} : |uj | ≥Mδ,ν} , (5.15)

where
Mδ,ν := 2 (δ + ν + δν) .
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Then, whenever ∥∥Π
J̃1
u
∥∥
2
∥v∥∞ > c3

√
Mδ,ν , (5.16)

the iterates {x(t)}t∈N generated by Algorithm 5.2. initialized via Algorithm 5.3., satisfy

lim sup
t→∞

∥x(t) − uv∗∥F ≤ 8.3ν.

Furthermore, the convergence is linear in the sense of Equation (5.5.).

Proof.
Assumption of Equation (5.14.) and Theorem 5.4. yield that with probability at least 1− exp (−cm)

the (3s1,3s2,2)-restricted isometry property holds with constant δ. For the remainder of the proof,
we will consider the event that the restricted isometry property holds for such δ.

We obtain ∥∥Π
J̃1
u
∥∥
2
∥v∥∞ ≥

(√
C2
δ + 1 + 1

)√
Mδ,ν

from 2 ≤ Cδ ≤ 5 and by choosing the constant c3 in Equation (5.16.) large enough. Combining
this with Lemma 5.1 . we obtain that∥∥Π

Ĵ1
u
∥∥
2

∥∥Π
Ĵ2
v
∥∥
2
≥
∥∥Π

J̃1
u
∥∥
2
∥v∥∞ −Mδ,ν .

>
√(

C2
δ + 1

)
Mδ,ν ,

(5.17)

where we used that
√
x ≥ x for all x ∈ [0, 1]. This yields a lower bound for the second summand

of the right hand side of Equation (5.12.). To bound the first summand we estimate

sin(ωsup)∥ΠĴ1u∥ −
(
sin(ωsup) + 1

)
(δ + ν + δν)

≥
(
1− C2

δ (δ + 2ν + 2δν)2
)
∥Π

Ĵ1
u∥ − 2 (δ + ν + δν)

≥∥Π
Ĵ1
u∥ − C2

δ (δ + 2ν + 2δν)2 − 2 (δ + ν + δν)

≥∥Π
Ĵ1
u∥ −

(
C2
δ + 1

)
Mδ,ν

≥0.

(5.18)

In the first line we used Lemma 5.11. and the fact that sin(ωsup) ≤ 1. The second line is due to
∥Π

Ĵ1
u∥ ≤ 1 and the third inequality is due to δ ≥ 0, ν ≥ 0. In order to verify the last inequality,

it is enough to observe that due to Lemma 5.8. and due to Equation (5.16.) with c3 large enough

∥Π
Ĵ1
u∥ ≥ ∥Π

J̃1
u∥2 ≥ ∥Π

J̃1
u∥2∥v∥∞ ≥

(
C2
δ + 1

)
Mδ,ν ,

where the last inequality uses thatCδ ≤ 5 and 0 ≤ δ, ν ≤ 0.01. Hence, by squaring Equation (5.18.)
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we obtain that (
sin(ωsup)∥ΠĴ1u∥ −

(
sin(ωsup) + 1

)
(δ + ν + δν)

)2
≥
(
∥Π

Ĵ1
u∥ − 1

2

(
C2
δ + 1

)
Mδ,ν

)2

≥∥Π
Ĵ1
u∥2 −

(
C2
δ + 1

)
Mδ,ν∥ΠĴ1u∥

≥∥Π
Ĵ1
u∥2 −

(
C2
δ + 1

)
Mδ,ν ,

where in the last line we again used that ∥Π
Ĵ1
u∥ ≤ 1. Together with Equation (5.17.) this yields

Equation (5.12.), as desired. qed

We will now state the main result of this chapter, Theorem 5.13.. For that, we recall the ∥ · ∥[k]
norm from Notation 3.5.. Our main requirement on the vector u will be that a significant amount
of its mass is located in the largest k entries, i.e., that ∥u∥[k]

∥u∥2 is large enough.

5.13 Theorem.
Let k ∈ {1, . . . , n1} and 0 < ξ < 1, 0 < µ < 1. Then, there are absolute constants
C1, C2, C3 > 0 such that if, with A as in Proposition 5.12.,

m ≥ C1max
{

1

ξ4µ4
,
k

ξ2

}
(s1 + s2) log

(
max

{
n1
s1
,
n2
s2

})
,

then with probability at least 1− exp (−C2m) the following holds.

For all s1-sparse u ∈ Cn1 with ∥u∥[k] ≥ ξ∥u∥2, all s2-sparse u ∈ Cn2 with ∥v∥∞ ≥ µ∥v∥2,
and all z ∈ Cm with ν (z) ≤ C3min

{
ξ2µ2; ξ√

k

}
the iterates {x(t)}t∈N generated by applying

Algorithm 5.2., initialized by Algorithm 5.3., satisfy

lim sup
t→∞

∥x(t) − uv∗∥F
∥uv∗∥F

≤ 8.3ν.

Furthermore, the convergence is linear in the sense of Equation (5.5.).

Proof.
We will prove this result by applying Proposition 5.12. with

δ = min
{

ξ

6
√
2k

;
ξ2µ2

8c23

}
.

Let u ∈ Cn1 s1-sparse, v ∈ Cn2 s2-sparse and z ∈ Cm such that the assumptions of this theorem
are satisfied. Without loss of generality we may assume in the following that ∥u∥2 = ∥v∥2 = 1.
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First, we note that invoking δ, ν < 0.01 and potentially decreasing the size of C3 we have that

2 (δ + ν (z) + δν (z)) < 2 (δ + 2ν (z)) ≤ ξ√
2k
.

Hence, we obtain that

J̆1 :=

{
j ∈ {1, . . . , n1} : |uj | ≥

ξ√
2k

}
⊂ J̃1, (5.19)

where J̃1 is the set defined in Equation (5.15.).

Note that ∑
i∈{1,...,k}\J̆1

(u⋆i )
2 <

∑
i∈{1,...,k}\J̆1

ξ2

2k
≤ ξ2

2
,

where in the first inequality we have used that u⋆i <
ξ√
2k

for all i ∈ {1, . . . , k}\J̆1. By the
assumption ∥u∥[k] ≥ ξ this yields that

∑
i∈{1,...,k}∩J̆1

(u⋆i )
2 ≥ ξ2

2
,

which in turn implies that ∥ΠJ̆1u∥2 ≥
ξ√
2
. By the inclusion J̆1 ⊂ J̃1 of Equation (5.19.) we obtain

that ∥Π
J̃1
u∥2 ≥ ξ√

2
. Hence, using the assumption ∥v∥∞ ≥ µ, our choice of δ, the assumption on

the noise level ν (z) and potentially again decreasing the value of the constant C3 we obtain that

∥Π
J̃1
u∥2∥v∥∞ ≥ ξµ√

2
≥ c3

√
Mδ,ν .

This shows that Equation (5.16.) is satisfied. Hence, we can apply Proposition 5.12. and by inserting
our choice of δ into Equation (5.14.), so choosing the constant C1 large enough, we obtain the main
result. qed

This result gives rise to a number of special cases.

Peaky Signals. In [LWB18 .] the authors discuss recovery guarantees for signals u and v with ∥u∥∞
∥u∥2

and ∥v∥∞
∥v∥2 , both bounded below by an absolute constant µ ≈ 0.78. The case k = 1 of our theorem

yields a direct improvement of this result in the sense that µ can be chosen arbitrarily small with
the number of required measurements only increasing by a factor of order µ−8. Hence, even when
this constant decays logarithmically in the dimension, the required number of measurements will
only increase by logarithmic factors.
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Signals With Multiple Large Entries. When one of the input signals has multiple large entries,
using the ∥ · ∥[k] norm improves upon the resulting guarantee as compared to the scenario just
discussed. As an example, assume that s1 = s2 = s, that u and v are normalized with

∥v∥∞ ≥ c1s
−1/8,

and that k = c2s
1/2 of the entries of u are of absolute value at least c3s−1/4. Then ∥u∥[k] ≥√

c2c3. Using Theorem 5.13. we obtain that the vectors u and v can be recovered if the number
of measurements is on the order of s3/2, thus below the order of s2 that has been established for
arbitrary sparse signals in [LS15.] (cf. next item). In contrast, applying Theorem 5.13. with k = 1

would yield that the number of measurements would have to be on the order of s5/2, which is worse
than the state-of-the-art.

Arbitrary Sparse Signals. Applying Theorem 5.13. to non-peaky signals yields suboptimal results.
Indeed, let u ∈ Cn1 s1-sparse and v ∈ Cn2 s2-sparse be generic vectors. Observe that

∥v∥∞ ≍ 1
√
s2

∥v∥2.

Consequently, Theorem 5.13. applied with ξ = 1, k = s1, and µ = 1√
s2

yields that with high
probability a generic s1-sparse u and a generic s2-sparse v can be recovered from y = A (uv∗)+z,
if the number of measurements satisfies

m ≥ C max
{
s1; s

2
2

}
(s1 + s2) log

(
max

{
n1
s1
,
n2
s2

})
,

and if the noise level ν is on the order of O
(
max

{
1
s2
; 1√

s1

})
. Previous results (see, e.g., [LS15.]),

in contrast, require m ≥ C max
{
s21; s

2
2

}
log
(
max

{
n1
s1
, n2
s2

})
samples.

The peakiness assumptions in Theorem 5.13. may seem arbitrary at first sight, but in certain appli-
cations they are reasonable. Namely, when u is the signal transmitted via a wireless channel and
v is the unknown vector of channel parameters it is natural to assume that v has a large entry, as
the direct path will always carry most of the energy. The signal u can be modified by the sender,
so some large entries can be artificially introduced. In this regard, being able to consider multiple
entries of comparable size is of advantage as adding a single very large entry will result in a dramatic
increase of the peak to average power ratio.
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Part IV.

Application:
X-Ray Nanoscale Imaging

The topic of Phase Retrieval concerns itself with the inversion of phase loss, i.e. the mapping

Cm×n −→ Rm×n
+

(zi,j)i,j 7−→
(
|zi,j |2

)
i,j

which maps any given input entrywise to its squared modulus. While in the real case this leads to
loss of the sign, in the complex plane we lose an entire dimension. Thus, generally speaking, this
problem is highly ill-posed and any inversion attempts have to make further assumptions in order
to become feasible. Global uniqueness of recovery is often impossible, but in many applications one
is satisfied with the remaining ambiguities, cf. [BP15 ., Bei17.].

Based on my collaboration with X-ray physicists, this part focusses on reconstructing images created
from nanoscale X-ray imaging. In this context, we will restrict ourselves to the following setup. We
assume a monochromatic light source which illuminates a thin, so-called pure phase object. By
passing through said object, the electromagnetic wave will only shift its phase but will stay short
of reducing the light intensity in a significant way. Hence, the light behind the object possesses
unchanged energy but the phase shift enables sucessive interference. The thusly modified wave
front is then measured by one or multiple detector planes which register the intensities at given
coordinates.

Bearing this setup in mind, we split this part into two chapters.

First, in Chapter 6. we provide a very brief glance into the physical pricinples of light as an elec-
tromagnetic wave. We then use this understanding to form a simple mathematical model of light
propagation. More in relevance to this thesis, we also discuss what kind of images we would like to
propagate and what kind of priors for inversion schemes this will yield.

Second, in Chapter 7. we discuss algorithmic concepts that could potentially ensure successful recov-
ery. Based upon Part III ., we apply a relaxed Douglas-Rachford scheme with exploitation of frame
sparsity in Section 7.1. and discuss applicability of phase retrieval through lifting and matrix recovery
by Sparse Power Factorization in Section 7.2..





6. Physical Circumstances

In this chapter, we provide the context for phase retrieval in X-ray nanoscale imaging. For the
diffraction imaging setup presented in the preamble of this part, we first have to understand the
physical properties that govern the propagation and measurement of light – in our case in the form
of X-rays. Bearing in mind that this is a work of mathematics and in the interest of brevity we will
allow for some abridgement of the presentation, as well as simplification of the underlying matter.
For a more extensive treatise I recommend the reading of [Kre15.], especially the first two chapters.

The first part of this chapter, Section 6.1., is concerned with an – admittedly compendious – summary
of how physicists describe the propagation of electromagnetical waves mathematically. To that end,
we state Maxwell’s differential equations that describe wave propagation in vacuum and sketch how
to derive the idea of Fresnel propagation from that.

In the second part, Section 6.2., we discuss the problem of phase loss and the resulting illposedness
of the recovery problem. This leads to the necessity of additional a priori knowledge that manifests
itself in mathematically exploitable priors for reconstruction methods. We further briefly touch on
the subject of noise, as distortions obviously will make reconstruction much harder to do, yet are
unavoidable in practice.

6.1. Propagation of Light

The physical understanding of the propagation of light – as an electromagnetic wave – can be de-
scribed by a set of PDEs, known as Maxwell’s Equations. There exist numerous approaches that
provide (approximate) solutions to those equations that still exhibit an approachable propagation
operator. While this is an interesting topic in its own right, this part of the dissertation is focussed
rather on enhancing existing recovery schemes by applying results of the preceding sections. Hence,
we will touch this rather briefly in this thesis. The interested reader finds a comprehensive presen-
tation in [Loo16., Kre15., Goo 5.], of which this chapter serves as a summarizing excerpt. For putting
this topic into the larger context of physics generally the obvious reading recommendation would
be the standard work The Feynman Lectures on Physics, [FLS1 .]. We will first present a mathe-
matical description for electromagnetical waves and then derive approximative forward propagation
operators based on the Fresnel kernel.
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Maxwell and Helmholtz Equations

In order to derive and describe the propagation of light by physical terms, we need to fix some
notations first.

We begin by introducing the magnetic and electrical fields and their inherent elementary physical
constants.

6.1 Notation (Magnetic and Electrical Fields).
We denote the Electrical Field by E and the Magnetic Induction by B. Both are dependent on
a three dimensional coordinate vector r ∈ R3 and a time value t ∈ R.

We further denote ε0 the Electric Field Constant and µ0 the Magnetic Field Constant. With
these we define the Vacuum Wave Velocity c := 1/

√
ε0µ0.

Next, we shortly state some derivational concepts for vector operators. We will not concern ourselves
with these mathematically but only use them to state Maxwell’s equations in Theorem 6.3.. For the
interested reader, I recommend the reading of [Mat98.] for a detailed view on vector calculus, and
especially chapter three for the topics of this section.

6.2 Notation (Derivational Operators).
Let Φ: R3 −→ C a partially differentiable function. We then denote its Gradient by ∇Φ, its
Divergence by divΦ and its Curl by curlΦ.

We also use the shorthand ∂t := ∂/∂t for the derivative with respect to the time coordinate.

This now allows us to state the so-called Maxwell’s Equations. These are a set of coupled partial
differential equations that are able to describe the spatial distribution of electromagnetic waves.
We will settle for the vacuum case here, because, altough the introduction of matter will distinctly
change many physical aspects of the wave propagation, the phase retrieval problem we are interested
in solving will remain unchanged by that.

6.3 Theorem.
Denoting spatial coordinates by r ∈ R3 and the time by t ∈ R, in vacuum electromagnetic waves
satisfy this set of equations

divE(r, t) = 0,

divB(r, t) = 0,

curlE(r, t) + ∂tB(r, t) = 0,

curlB(r, t)− ε0µ0∂tE(r, t) = 0.
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From these equations, one can derive two so-called Independent Wave Equations

(ε0µ0∂
2
t −∇2)E(r, t) = 0,

(ε0µ0∂
2
t −∇2)B(r, t) = 0.

Seeing that this forces both magnetic induction and electric field to be of similar form, this motivates
the so-called scalar wave equation or D’Alembert Equation(

1
c2
∂2t −∇2

)
Ψ(r, t) = 0.

A special solution of this is the so-called Plane Wave with wavelength λ,

ΨPW(r, t) = exp (i⟨k, r⟩ − ωt) , (6.1)

with Wave Vector k ∈ R3 and ∥k∥2 = 2π/λ such that ∥k∥2 = ω/c.

We now assume that we have such a wave Ψ. This can be decomposed using the spectral Fourier
transform as in Definition 1.4.1.

Ψ(r, t) =

∫ ∞

0
ψω(r) exp(−2πiωt) dω.

for frequency weights ψω.

Combining the above equations yields∫ ∞

0

[(
∇2 +

ω2

c2

)
ψω(r)

]
exp(−2πiωt) dω = 0.

For general functions ψω this means(
∇2 + ∥k∥22

)
ψω(r) = 0, (6.2)

which is known as the Helmholtz Equation.

Fresnel Propagation

Now consider a solution ψ of Equation (6.2.), known in a plane perpendicular to the optical axis at
position z. Further denote R3 ∋ r :=(r⊥, z) ∈ R2 × R. We then decompose this into lateral

1Apparently, in physical application the negative path of integration is often left out to better mimic physical observations
as there are no negative frequencies in real-word descriptions. For more background, we refer to [Pag 6., Kre15.].
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Fourier components, cf. Definition 1.4.,

ψ(r⊥, z) =

∫
R2

ψ̂(k⊥, z) exp (2πi⟨k⊥, r⊥⟩) dk⊥. (6.3)

In combination with the Helmholtz equation, this yields a second-order differential equation in
terms of z for ψ̂(k⊥, z). This problem has the general solution

ψ̂(k⊥, z1) = ψ̂(k⊥, z0) exp
(
i(z1 − z0)

√
∥k∥22 − ∥k⊥∥22

)
,

for wave vector k as before.

Plugging this into Equation (6.3.), we see

ψ(r⊥, z1) =

∫
R2

ψ̂(k⊥, z0) exp
(
i(z1 − z0)

√
∥k∥22 − ∥k⊥∥22

)
exp (2πi⟨k⊥, r⊥⟩) dk⊥.

This is a propagator from z0 to z1. For simplicity, let us assume that z0 = 0. Then with z = z1
we get

ψ(r⊥, z) =

∫
R2

ψ̂(k⊥, 0) exp
(
iz
√

∥k∥22 − ∥k⊥∥22
)
exp (2πi⟨k⊥, r⊥⟩) dk⊥.

In the case of X-ray imaging, we can assume that ∥k∥22 ≫ ∥k⊥∥22 which enables a Taylor expansion√
∥k∥22 − ∥k⊥∥22 = ∥k∥2 −

∥k⊥∥22
2∥k∥2

+O(∥k⊥∥42).

Omission of the remainder leads to

ψ(r⊥, z) =

∫
R2

ψ̂(k⊥, 0) exp
(
iz
√
∥k∥22 − ∥k⊥∥22

)
exp (2πi⟨k⊥, r⊥⟩) dk⊥

≈
∫
R2

ψ̂(k⊥, 0) exp
(
iz
(
∥k∥2 −

∥k⊥∥22
2∥k∥2

))
exp (2πi⟨k⊥, r⊥⟩) dk⊥

= exp (i∥k∥2z)
∫
R2

ψ̂(k⊥, 0) exp
(
−iz ∥k⊥∥

2
2

2∥k∥2

)
exp (2πi⟨k⊥, r⊥⟩) dk⊥

= −i exp (i∥k∥2z)
∫
R2

ψ̂(k⊥, 0)i exp
(
−iz 1

∥k∥2
∥k⊥∥22

2

)
exp (2πi⟨k⊥, r⊥⟩) dk⊥

= −i exp (i∥k∥2z)
∫
R2

ψ̂(k⊥, 0)i exp
(
−iz λ

2π

∥k⊥∥22
2

)
exp (2πi⟨k⊥, r⊥⟩) dk⊥
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= −i exp (i∥k∥2z)
∫
R2

ψ̂(k⊥, 0)i exp
(
−iπ λz

4π2
∥k⊥∥22

)
exp (2πi⟨k⊥, r⊥⟩) dk⊥

= −i exp (i∥k∥2z)
∫
R2

ψ̂(k⊥, 0)K̂√
λz

2π

(k⊥) exp (2πi⟨k⊥, r⊥⟩) dk⊥

= −i exp (i∥k∥2z)
[
ψ(·, 0) ∗K√

λz
2π

]
(r⊥)

with Kτ = 1
τn exp

( iπ
τ2
∥ · ∥22

)
as in Section 1.5. and we recall that ∥k∥2 = 2π/λ.

6.4 Definition.
We call the operator

Dλ,z : ψ(·, 0) 7−→ −i exp (i∥k∥2z)
[
ψ(·, 0) ∗K√

λz
2π

]
the Fresnel Propagation Operator by frequency λ onto distance z.

Often, the frequency is fixed for a given context, and we hence refer to the operator as Dz .

From a mathematical point of view, the Fresnel propagation is a handy approximation as it consists
of a convolution and a multiplication with a unitary factor with respect to the ℓ2-norm. Also the
kernel exhibits a closed form both in spatial and frequency domain.

As a consequence, in many applications based on the propagation of measurable light, considered
as an electromagnetic wave, the recovery problem is modelled as reconstructing a signal X from its
Fresnel convolution |Kτ ∗X|2 or even its Fourier magnitudes |F(X)|2.

6.2. Phase Retrieval

While the Fresnel propagation operator Dz as a convolution operator is comparatively manageable
from a mathematical point of view, problems arise when this step is followed by phase loss. When
modelling light as a complex wave ψ : R −→ C, losing its phase information means a reduction on
the non-negative real line |ψ|2 : R −→ R+. While in one dimension the ambiguities have been
fully understood, [BP15 .], in higher dimensions this is very much incomprehensible.

Nanoscale imaging, e.g. of living cells, however is clearly two-dimensional. Hence we imperatively
need additional priors to be integrated into recovery schemes. The realization of some of these
recovery methods will be discussed in Chapter 7.. Here we follow Loock in his presentation of
[LP14.] where he detailedly compares the results of the integration of different priors into his recovery
scheme, which is based on DRλ, cf. Sections 2.3. and 7.1..

Next, we give a short reiteration on noise as inherent to nanoscale imaging. Due to the desired
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Figure 6.1.: Cell Image and Simulation2 .

low exposure of living material to X-rays, the imaging regime becomes low illuminated. When
considering non-destructive imaging, in the biological sense, the power of the light source will
be effectively reduced to a degree where single deviant photons will become measureable. This
phenomenon is referred to as shot noise.

Exploitable Priors for Recovery

As this obviously makes the recovery problem ill-posed, we need to consider additional priors on
the original wave to make inversion feasible. In our context of nanoscale X-ray imaging, there are a
number of commonly used assumptions.

For the sake of simplicity of this part, let us examplarily consider a test image, representing a living
cell. In Figure 6.1. we see a cell cross section alongside a more organized, simulated version. From
this, a number of characteristic properties comes to mind. The image of a single intact cell clearly
is compact and often one can describe a rectangular area in the interior of which the cell is located.
Further, different regions appear to be properly and smoothly bounded while their interiors are
almost constant. From a computational perspective, it can also be desirable to scale the matrix
encoding the 2D image such that all values lie in the interval [0, 1] without altering any other
properties.

This motivates to include the priors of compactness, support constraints, cartoon-likeness and pos-
itivity. Loock has done a comparison of these in [LP14.], see Figure 6.2.. He performed experiments
without imposing noise with the objective to analyze the priors of a rectangular support set, posi-
tivity, shearlet sparsity. For the numerical details, we quote [LP14.],3 .

The parameters for the Fresnel transform are λ = .1 nm, d = 1 mm, the pixel size is

2Images courtesy of Tim Salditt, Institute for X-ray Physics, Georg-August-Universität Göttingen
3I have adapted the references to point to the bibliography of this thesis as well as change units to SI standards.
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Figure 6.2.: Recovery Priors4.

dx = 1 nm and the images are 256 × 256 pixels in size. These parameters correspond to
coherent imaging experiments using hard x-rays, see [KBS13.]. In all cases, we apply [DRλ]
with N = 25 iterations.

Figure 6.2a. displays the synthetic cell image considered before and Figure 6.2b. represents Loock’s
simulated measurements of the magnitudes of the Fresnel transform. Figure 6.2c. shows the recov-
ered image with an inexact support constraint which clearly is insufficiently recovering the original
image. Adding positivity as a constraint leads to the reconstruction in Figure 6.2d., which appears to
be acceptable to the human eye. However, when using a shearlet sparsity constraint in Figure 6.2e.,
the obtained solution is very close to the original image. Still, adding the positivity constraint
here as well improves the recovery further, as shown in Figure 6.2f.. While differences between the
images in the second row are hardly perceptible by the human eye, in [LP14.] Loock supports the
above findings by analyzing the distinct behavior of the corresponding methods with respect to the
convergence rate of the reconstruction error.

This serves as a good example on how additional priors can be crucial to successful recovery without
having to occupy ourselves too much with the underlying algorithmic scheme. We once more come
back to the approach taken by Loock in Section 7.1. where we will look into the mathematical part
of the phase retrieval process.

4Images courtesy of Stefan Loock, [LP14.]
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Noise

In application, one often is concerned about the power of the light source, especially in the X-
ray regime, as too strong illumination might alter or even destroy a biological sample. Naturally,
the process of measuring diffraction patterns with low illumination makes the obtained intensities
dependent on the photon density per pixel, [KVS+14.].

This accumulates to a difference from the theoretically modelled propagation and is considered a
distortion. This phenomenon is commonly referred to as Shot Noise and can be modelled as Possion
noise due to its dependency on the signal intensity. There exists research on how to quantitatively
predict such behavior or respectively reduce its impact, cf. [KVS+14., PMBBG2 .].

This can be counteracted when properties of the original data are known, as discussed above. Ad-
ditionally to including these into the algorithm, there also exists the possibility to add a post-
processing step to straighten out some further perturbations. This can be especially useful if there
exists the tendency for disturbances that might be irrecognizable from the viewpoint of the algo-
rithm but still discernible for the use case at hand.

When the end result is to be judged by a human eye, assessment by the Haar-PSI metric can
provide insight into the amount of perceived discrepancy, [RBK+18.]. With regards to content, one
might consider Savitzky-Golay filters for smoothing, [KJK15.], or promotion of cartoon-likeness,
[RGM+19.], to further close in on a perceivably acceptable result.

One might also want to consider to address the problem of denoising by application of learned
dictionaries. Both the method of dictionary learning for image representation [AEB 6.] and ap-
plication of learned dictionaries for image separation [LHX14 ., ID15.] are well studied. There also
exists research on improving this on piecewise stationary signals, [WZY12.]. However, patterns of
Fresnel-propagated cartoon-like images no longer adhere to easily describable patterns. Thus, as
denoising in the measurement plane becomes infeasible, there is no noticeable benefit in the object
plane as compared to, e.g., shearlet sparsity, as far as we are concerned.
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In this chapter we discuss two approaches for phase retrieval problems in the fashion of Chapter 6.

by making use of the achievements of Part III ..

First, we use the approach of [LP16.], that is, alternating between a measurement set M and a
suitable constraint set C with the help of an iterative procedure in Section 7.1.. Here, we use a
relaxed version of the Douglas-Rachford algorithm and improve the recovery scheme by upgrading
from projecting onto a constraint set to a more involved constraining proximity operator.

Second, we model phase retrieval form Fourier magnitudes through lifting as a rank-one sparse
matrix recovery problem in Section 7.2.. We then analyze if that problem can be fed into Sparse
Power Factorization to be solved.

7.1. Relaxed Douglas Rachford

In this section we investigate phase retrieval by means of a relaxed Douglas-Rachford algorithm
(DRλ) by Luke, [Luk 5., LM2 .]. Note that in earlier publications, e.g. [Luk 5.], this algorithm
has been referred to as Relaxed Averaged Alternating Reflections (RAAR).

Adjusting for Phase Retrieval

The idea of applying an iterative projection, or reflection, scheme in phase-retrievel problems can
be shortly summarized in the sense of [LP16., Loo16.].

First, recall the propagation of light of Section 6.1. and the phase loss inherent to magnitudial mea-
surements. In the most simple adaptation this gives rise to a discrete recovery scheme. Denote
x0 ∈ Cd the vectorized illuminated object and U ∈ Cd×d a unitary propagation operator, e.g. a
digitized version of the Fresnel propagator, cf. Definition 6.4.. Thus, the wavefront at the measure-
ment plane can be described as Ux0. This leaves us with the task of modelling the information loss
due to magnitudial measurements. To that end, we denote by

| · |◦ : Cd −→ Rd+

the pointwise modulus map and let m := |Ux0|◦ ∈ Rd the vectorized measured data.

93



7. Algorithmic Approaches

With that in mind we define the set of all possible specimens resulting in the obtained measurements

M := {x ∈ Cd : |Ux|◦ = m}.

As we have seen in Section 6.2., this is highly ambiguous, which is hardly surprising, given the
model-inherent information loss.

Now Loock suggests that for application of the relaxed Douglas-Rachford algorithm introduced
earlier, cf. Section 2.3., we choose the projection onto M as the first operator, i.e. letting JγB :=

PM . For the other resolvent and in order to reduce the ambiguity introduced byM , Loock offers
two choices of JγA. A simple choice would be to define a constraint set incorporating, realness,
positivity and a support constraint, e.g.

C := {x ∈ Rd+ : supp(x) ⊆ D},

for some bounded region D and then choose JγA as the projection onto C.

As shown in Figure 6.2., a support constraint set defined as an rectangular region, is rather unsat-
isfactory and can be improved perspicuously. In a first step, one might consider to instead enforce
sparsity. This means, replacing PC = proxιC by proxγ∥·∥1 , where the ℓ

1-norm acts as a convex
proxy for ∥ · ∥0, which is neither a norm nor convex. As we have seen in Example 2.12., this yields
the soft shrinkage operator, promoting sparsity as desired. However, as discussed in Chapter 4.,
naturally occuring data only tends to be sparse with respect to a suitable frame T rather than with
respect to the canonical basis, cf., e.g., [Loo16., Sal19.]. For example, in applications of medical
imaging as considered by Loock, cf. [LP14.] and Figure 6.2., shearlet sparsity may be desired as
it promotes cartoon-like functions as discussed in Section 1.4.. So, in a further improvement we
change JγA once more from proxγ∥·∥1 = Sγ to T †SγT .

Extending the Proof of Loock

Now, to allow frame soft shrinkage, i.e. T †SγT , as the operator JγA in the iterations of relaxed
Douglas-Rachford, we need to show that there exists a resolvent of that form. Commonly this
problem is approached by showing that frame soft shrinkage is a proximity operator. As a first step
into this direction, Loock provides a proof of this goal for Parseval frames, cf. Definition 1.9..

7.1 Theorem (4.4.6 in [Loo16.]).
Let T ∈ Rn×d, where n ≥ d, be a tight frame, i.e. T ∗T = ν id for some ν > 0. Then the
operator T †SγT is the proximity operator of a plc function.

Note that due to a small detail in the proof this actually only holds true for Parseval fames, i.e. if
ν = 1. Honoring his approach, we will sketch his proof here.
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7.1. Relaxed Douglas Rachford

Proof Sketch.
First, define a set-valued map

H : Rd −→ 2R
d

x 7−→ {y : νT ∗SγT (x+ y) = x}.

By lengthy, manual computation it can be shown that H is maximally cyclically monotone. Ap-
plication of Theorem 2.8. yields existence of some Φ ∈ Γ0(Rd) such that H = ∂Φ. Then by
Corollary 2.15., we see that for x, y ∈ Rd we have y ∈ H(x) if and only if

x = proxΦ(x+ y).

Now the definition of H clearly states that y ∈ H(x) if and only if

x = νT ∗SγT (x+ y).

Combining these two statements provides

T †SγT = ν−1 proxΦ .

Now, for ν = 1, the expression ν−1 proxΦ is clearly proximity operator itself without further
assumptions. qed

Now, in [GP19.], we were able to improve this idea and in Theorem 4.1 . proved that the operator
T †SγT is in fact a proximity operator for any frame T by an adaptive choice of norm.

Outlook

Whilst not a topic of this thesis, one may also want to make the algorithm even more robust,
especially with respect to noise. In the context of other recovery methods, this is done frequently
by incorporating multiple measurement distances, cf. [WTB1 ., RS13.]. While, e.g. Waller uses
multiple distances in order to approximate higher order derivatives, we might consider an extended
iteration scheme that projects onto all measuring planes in a cyclic manner. Serendipitously, Luke
has recently extended the two-step DRλ algorithm to a multi-level cyclic procedure, [LM2 .].

This allows for example to iterate through multiple measurement sets M1, . . . ,Mn or constraint
sets for achieving more stability when consistency has been lost because of noise. The topic of cyclic
Douglas-Rachford schemes is also still actively investigated, cf. [BT13., BT14., Tam16., ACG18.], so
more adaptations for applications in phase-retrieval may be anticipated.
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7.2. Matrix Recovery

In Chapter 5. we presented the SPF algorithm that can recover a set of doubly sparse vectors from
their bilinear measurements. Being able to present sparse preimages of a bilinear operator is a
powerful tool as generally this problem is really hard without further assumptions, [AKR18.]. For-
tunately, this tool provides numerous applications, one of the most prominent being multichannel
blind deconvolution, cf. [LYB13 .].

We will now show that the same idea of lifting, cf. Section 3.1., can also be used to model the
recovery from magnitude measurements, e.g. Fourier magnitudes. So, in order to formalize our
goal we formulate our problem.

7.2 Problem.
Given a set of vectors {ak}k ∈ Cn and measurements |⟨ak, x⟩|2, recover x ∈ Cn.

With the help of lifting we reformulate our problem to a matrix recovery. To that end let Ak :=

aka
∗
k ∈ Cn×n and define

Ak : Cn×n −→ C
X 7−→ tr(AkX).

Observe that now |⟨ak, x⟩|2 = tr(x∗aka∗kx) = tr(AkX) for X = xx∗. Now we reformulate the
problem by applying the reasoning of Section 2.2 in [CESV13.].

7.3 Problem.
Given a measurement Ak(X), find X subject to rk(X) = 1 and X positive semidefinite.

For the case of recovering from Fourier measurements, we recall the discrete Fourier transform of
Section 1.1.. For a signal f = (fj)

n
j=1 ∈ Cn, the Fourier transform reads f̂ = (f̂j)

n
j=1 := Fnf for

the Fourier matrix Fn. That is

f̂k =
n∑
j=1

fj exp(−2πi(j − 1)(k − 1)/n).

So, with ωn := exp(−2πi/n) we obtain

f̂k =

n∑
j=1

fjω
(j−1)(k−1)
n =

⟨
f ;
(
ω(j−1)(k−1)
n

)n
j=1

⟩
.

To match our problem above we let ak =
(
ω
(j−1)(k−1)
n

)n
j=1

and Ak = aka
∗
k. Then using

Ak(X) = tr(AkX) this extends to
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A : Cn×n −→ Cn

X 7−→


tr(A1X)

tr(A2X)
...

tr(AnX)

 .

This allows us to contrast the original and lifted formulation as demonstrated in Figure 7.1..

Property Original Lifted
Signal x = (xj)

n
j=1 ∈ Cn X = xx∗ = (xjxk)

n
j,k=1 ∈ Cn×n

Measurement Functionals ⟨ak, ·⟩ for ak ∈ Cn tr(Ak·) for Ak ∈ Cn×n

Measurements (⟨ak, x⟩)nk=1 ∈ Cn (tr(AkX))nk=1 ∈ Cn

Figure 7.1.: Demonstrating the Lifting Process for Fourier Magnitudes

To now be able for SPF to recover X , we need A to satisfy the conditions of Theorem 5.6. as,
clearly, A is not a Gaussian. This especially requires A to fulfill a restricted isometry property, cf.
Definition 3.2.. Hence, we now investigate the relation of ∥A(X)∥22 and ∥X∥2F as their quotient is
required to be bounded within [1 − δ, 1 + δ] in order to satisfy the RIP of appropriate rank with
constant δ. On the one hand, we see with X = xx∗ and x̂ = (x̂j)

n
j=1

:= Fnx,

∥A(X)∥22 =
n∑
j=1

| tr(AjX)|2 =
n∑
j=1

∣∣∣|⟨aj , x⟩|2∣∣∣2 = n∑
j=1

|⟨aj , x⟩|4 =
n∑
j=1

|x̂j |4 = ∥x̂∥44

which in fact is the ℓ4-norm. This is troubling inasmuch as the Fourier matrix Fn is unitary, i.e.,
has ℓ2-norm one. This, however, will allow no generalization whatsoever for ℓ4.

On the other hand, we find

∥X∥2F =
n∑
j=1

n∑
k=1

|Xj,k|2 =
n∑
j=1

n∑
k=1

(|xjxk|)2 =
n∑
j=1

n∑
k=1

|xj |2|xk|2 = ∥x∥22 ∥x∥22 = ∥x∥42.

Unfortunately, it is easy to see that the quotient ∥Fnx∥4/∥x∥2 is unbounded in general, making
the RIP assumption unsatisfiable.

Alternative

As we have just seen, phase retrieval from Fourier magnitudes cannot be modelled as a problem
satisfying any restricted isometry property. Clearly, this is due to the phase loss step which allows
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components of the signal to amplify in an unbounded fashion.

There exist other approaches for realizing phase retrieval through matrix recovery without having to
rely on an algorithm depending on an RIP. For example, in [CESV13.] the authors detailedly present
a recovery scheme using convex programming.

7.3. Further Approaches

Phase retrieval is a very active field of research for a multitude of different applications. Besides lense-
less imaging considered in this thesis, this includes e.g. ptychography, [Sol19.], or crystallography
[Fri16.]. Expectably, this also has motivated numerous recovery schemes.

One very noteworthy concept is that of F-splines, introduced in Section 1.5.. They are unique in
the sense that the encoding of signals with respect to F-splines allows for both backpropagation
and denoising at the same time. When the unpropagated signal allows a sparse representation with
respect to the unpropagated spline wavelet, so will their propagated counterparts. Hence, enforcing
sparsity successfully within the diffraction patterns, will yield a cleaned up signal without having to
iterate back and forth between object and measurement plane.

Transport of Intensity Equation

Another popular modelling approach is the so-called Transport of Intensity Equation (TIE). Without
going into too much detail, we will describe this approximation of the propagation of electromag-
netic waves based on [KBS13., Kre15.].

The TIE is given as
∇⊥ (I∇⊥ϕ) = −∥k∥2

∂I

∂z
,

where I denotes the wave’s intensity, ϕ its phase and k a wave vector as before, e.g. in Equation (6.1.),
and ∇⊥ represents the gradient w.r.t. x and y direction. Thus, the TIE creates a relation between
the signal’s phase and intensity distributions.

In practice, the derivative in z-direction is approximated by a discrete derivative between (at least)
two close measurement planes. As this obviously is extremely sensitive to noise, applications often
consider an increased number of measuring distances. One such approach is used by e.g. [ZXX+12.,
ZCYA13., JCD+14.].

Indeed numerical examples suggest that an increased number of measurements results in a subjec-
tively better reconstructed image, as expected. It is, however, still an open research question how to
choose the number and distances of the measurement planes and whether to choose them randomly
or deterministically, cf. e.g. [JCD+14.] for exponential spacing.
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Part V.

Conclusion

In this thesis, I considered two approaches for feature extraction through promotion and enforce-
ment of sparsity. Additionally, I presented an exemplary application setting in the context of diffrac-
tive imaging, resulting in phase retrieval problems.

Chapter 4. chose the way of nested proximity operators, i.e. operators of the form

T † proxf T

for an (overcomplete) representation system T and some plc prior f .

In Section 4.1., we showed that in finite dimensions, i.e. for a frame T ∈ RL×N with L ≥ N and
full rank N and f = γ∥ · ∥1, i.e. proxf = Sγ , the Frame Soft Shrinkage operator T †SγT is indeed
a proximity operator. Key to this result was the consideration of a new, equivalent inner product
defined via

⟨x, y⟩T := ⟨Tx, Ty⟩.

We also considered a toy example in Lemma 4.3. that allowed visualization, cf. Figure 4.1.. This does
however in turn raise the question, in which settings and for which parametrizations there exists
some form of visual representation. Also, it would be interesting to know whether this is able to
yield some form of helpful heuristic, i.e. an intuition on what to expect from the design of such an
operator.

In Section 4.2., we advanced this idea to a much more general setting. Here we showed that the
nested proximity operator T † proxf T is again a proximity operator for any linear, injective operator
T with closed range between arbitrary Hilbert spaces. This statement posed no further restrictions
on f as long as proxf exists, e.g. if f is plc. Again the key ingredient to this was the weighted inner
product as above. Here, we also provided a formula for a prior g subject to proxg = T † proxf T ,
namely

g : x 7−→ f □
(
1
2∥ · ∥

2
K + ιN (T ∗)

)
(Tx).

While it does indeed look good to express g in terms of what looks like a closed expression, this in
fact is not. It is not clear at all, in which cases there does really exist a closed form for g. In analogy
to the proximity operator, which also only rarely possesses an explicit form, this can be bothersome
in practice. It would be nice to gain an understanding, at least heuristically, on how this formula
can practially be used and whether this result really is applicable in actual settings.



Chapter 5. was concerned with the Sparse Power Factorization algorithm (SPF). Here, we presented a
relaxed sufficient criterion for successful recovery of both singular vectors u and v from their (noisy)
bilinear measurement. Most notably, we relaxed the requirement on the mass distribution within
the signal so that we no longer need to require half of the mass to be concentrated in a single entry.
We were able to realize this by introducing a new norm

∥x∥[k] := max
I⊆{1,...,n}

|I|=k

(∑
i∈I

|xi|2
)1/2

that, for x ∈ Cn and some k ≤ n, quantifies the mass concentrated in the k biggest entries. This
allowed us to formulate a tradeoff between the number of required measurements and the peakiness
of the ground truth.

However, this result still leaves some questions unanswered, as we wrote in [GKS19.]. For instance,
our formula for the number of required measurements demands a very tight bound on the Noise-to-
Signal Ratio ν, which in practice may be unsatisfiable. Also, we only considered adversarial noise
and it might be reasonable to consider noise that adheres to a given distribution, e.g. classically
Gaussian noise or Poisson noise as considered in Section 6.2.. We also would like to broaden the
range of applicability towards settings that do not use random matrices or not even RIP operators
– which has exactly been the case in Section 7.2.. Research in this direction may have progressed in
recent years, cf. applications for blind deconvolution, e.g., [LJ15., LLJB17.], but to my concern is far
from resolving this issue.

Finally, in Chapter 7. we considered both above approaches in a phase retrieval setting from diffractive
imaging. As already reported by Loock in [LP14., Loo16.], the approach of Section 7.1. based on
DRλ yields good results and exhibits acceptable numerical properties, e.g. noise robustness. Yet
we would also like to know more about the dependency on the choice of number and placement
of measurement planes. We also are interested to understand if the new result of [GP19.], allowing
sparsification with respect to arbitrary frames, could yield new recovery ideas. Also, we would be
thrilled to reiterate the approach of Section 7.2. for an improved version of SPF that does no longer
require a (strict) RIP.
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