3,133 research outputs found

    Self-correcting multi-channel Bussgang blind deconvolution using expectation maximization (EM) algorithm and feedback

    Get PDF
    A Bussgang based blind deconvolution algorithm called self-correcting multi-channel Bussgang (SCMB) blind deconvolution algorithm was proposed. Unlike the original Bussgang blind deconvolution algorithm where the probability density function (pdf) of the signal being recovered is assumed to be completely known, the proposed SCMB blind deconvolution algorithm relaxes this restriction by parameterized the pdf with a Gaussian mixture model and expectation maximization (EM) algorithm, an iterative maximum likelihood approach, is employed to estimate the parameter side by side with the estimation of the equalization filters of the original Bussgang blind deconvolution algorithm. A feedback loop is also designed to compensate the effect of the parameter estimation error on the estimation of the equalization filters. Application of the SCMB blind deconvolution framework for binary image restoration, multi-pass synthetic aperture radar (SAR) autofocus and inverse synthetic aperture radar (ISAR) autofocus are exploited with great results.Ph.D.Committee Chair: Dr. Russell Mersereau; Committee Member: Dr. Doug Willams; Committee Member: Dr. Mark Richards; Committee Member: Dr. Xiaoming Huo; Committee Member: Dr. Ye (Geoffrey) L

    Estimation and detection techniques for doubly-selective channels in wireless communications

    Get PDF
    A fundamental problem in communications is the estimation of the channel. The signal transmitted through a communications channel undergoes distortions so that it is often received in an unrecognizable form at the receiver. The receiver must expend significant signal processing effort in order to be able to decode the transmit signal from this received signal. This signal processing requires knowledge of how the channel distorts the transmit signal, i.e. channel knowledge. To maintain a reliable link, the channel must be estimated and tracked by the receiver. The estimation of the channel at the receiver often proceeds by transmission of a signal called the 'pilot' which is known a priori to the receiver. The receiver forms its estimate of the transmitted signal based on how this known signal is distorted by the channel, i.e. it estimates the channel from the received signal and the pilot. This design of the pilot is a function of the modulation, the type of training and the channel. [Continues.

    Bit-Error-Rate-Minimizing Channel Shortening Using Post-FEQ Diversity Combining and a Genetic Algorithm

    Get PDF
    In advanced wireline or wireless communication systems, i.e., DSL, IEEE 802.11a/g, HIPERLAN/2, etc., a cyclic prefix which is proportional to the channel impulse response is needed to append a multicarrier modulation (MCM) frame for operating the MCM accurately. This prefix is used to combat inter symbol interference (ISI). In some cases, the channel impulse response can be longer than the cyclic prefix (CP). One of the most useful techniques to mitigate this problem is reuse of a Channel Shortening Equalizer (CSE) as a linear preprocessor before the MCM receiver in order to shorten the effective channel length. Channel shortening filter design is a widely examined topic in the literature. Most channel shortening equalizer proposals depend on perfect channel state information (CSI). However, this information may not be available in all situations. In cases where channel state information is not needed, blind adaptive equalization techniques are appropriate. In wireline communication systems (such as DMT), the CSE design is based on maximizing the bit rate, but in wireless systems (OFDM), there is a fixed bit loading algorithm, and the performance metric is Bit Error Rate (BER) minimization. In this work, a CSE is developed for multicarrier and single-carrier cyclic prefixed (SCCP) systems which attempts to minimize the BER. To minimize the BER, a Genetic Algorithm (GA), which is an optimization method based on the principles of natural selection and genetics, is used. If the CSI is shorter than the CP, the equalization can be done by a frequency domain equalizer (FEQ), which is a bank of complex scalars. However, in the literature the adaptive FEQ design has not been well examined. The second phase of this thesis focuses on different types of algorithms for adapting the FEQ and modifying the FEQ architecture to obtain a lower BER. Simulation results show that this modified architecture yields a 20 dB improvement in BER

    Overview of Constrained PARAFAC Models

    Get PDF
    In this paper, we present an overview of constrained PARAFAC models where the constraints model linear dependencies among columns of the factor matrices of the tensor decomposition, or alternatively, the pattern of interactions between different modes of the tensor which are captured by the equivalent core tensor. Some tensor prerequisites with a particular emphasis on mode combination using Kronecker products of canonical vectors that makes easier matricization operations, are first introduced. This Kronecker product based approach is also formulated in terms of the index notation, which provides an original and concise formalism for both matricizing tensors and writing tensor models. Then, after a brief reminder of PARAFAC and Tucker models, two families of constrained tensor models, the co-called PARALIND/CONFAC and PARATUCK models, are described in a unified framework, for NthN^{th} order tensors. New tensor models, called nested Tucker models and block PARALIND/CONFAC models, are also introduced. A link between PARATUCK models and constrained PARAFAC models is then established. Finally, new uniqueness properties of PARATUCK models are deduced from sufficient conditions for essential uniqueness of their associated constrained PARAFAC models

    Algorithms for Blind Equalization Based on Relative Gradient and Toeplitz Constraints

    Get PDF
    Blind Equalization (BE) refers to the problem of recovering the source symbol sequence from a signal received through a channel in the presence of additive noise and channel distortion, when the channel response is unknown and a training sequence is not accessible. To achieve BE, statistical or constellation properties of the source symbols are exploited. In BE algorithms, two main concerns are convergence speed and computational complexity. In this dissertation, we explore the application of relative gradient for equalizer adaptation with a structure constraint on the equalizer matrix, for fast convergence without excessive computational complexity. We model blind equalization with symbol-rate sampling as a blind source separation (BSS) problem and study two single-carrier transmission schemes, specifically block transmission with guard intervals and continuous transmission. Under either scheme, blind equalization can be achieved using independent component analysis (ICA) algorithms with a Toeplitz or circulant constraint on the structure of the separating matrix. We also develop relative gradient versions of the widely used Bussgang-type algorithms. Processing the equalizer outputs in sliding blocks, we are able to use the relative gradient for adaptation of the Toeplitz constrained equalizer matrix. The use of relative gradient makes the Bussgang condition appear explicitly in the matrix adaptation and speeds up convergence. For the ICA-based and Bussgang-type algorithms with relative gradient and matrix structure constraints, we simplify the matrix adaptations to obtain equivalent equalizer vector adaptations for reduced computational cost. Efficient implementations with fast Fourier transform, and approximation schemes for the cross-correlation terms used in the adaptation, are shown to further reduce computational cost. We also consider the use of a relative gradient algorithm for channel shortening in orthogonal frequency division multiplexing (OFDM) systems. The redundancy of the cyclic prefix symbols is used to shorten a channel with a long impulse response. We show interesting preliminary results for a shortening algorithm based on relative gradient

    Blind adaptive equalization for QAM signals: New algorithms and FPGA implementation.

    Get PDF
    Adaptive equalizers remove signal distortion attributed to intersymbol interference in band-limited channels. The tap coefficients of adaptive equalizers are time-varying and can be adapted using several methods. When these do not include the transmission of a training sequence, it is referred to as blind equalization. The radius-adjusted approach is a method to achieve blind equalizer tap adaptation based on the equalizer output radius for quadrature amplitude modulation (QAM) signals. Static circular contours are defined around an estimated symbol in a QAM constellation, which create regions that correspond to fixed step sizes and weighting factors. The equalizer tap adjustment consists of a linearly weighted sum of adaptation criteria that is scaled by a variable step size. This approach is the basis of two new algorithms: the radius-adjusted modified multitmodulus algorithm (RMMA) and the radius-adjusted multimodulus decision-directed algorithm (RMDA). An extension of the radius-adjusted approach is the selective update method, which is a computationally-efficient method for equalization. The selective update method employs a stop-and-go strategy based on the equalizer output radius to selectively update the equalizer tap coefficients, thereby, reducing the number of computations in steady-state operation. (Abstract shortened by UMI.) Source: Masters Abstracts International, Volume: 45-01, page: 0401. Thesis (M.A.Sc.)--University of Windsor (Canada), 2006
    • …
    corecore