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SUMMARY 

The objective of the research is to design a general blind deconvolution framework that 
can effectively utilize all available information, tackle severe degradations and be applicable 
to a wide-range of applications, degradations, signal types and dimensionality with small 
adaptation. The particular application of greatest interest is the problem of autofocusing in 
synthetic aperture radar (SAR) and in inverse SAR (ISAR). The motivation comes from the 
awareness that most of the blind deconvolution schemes available in the literature can only 
deal with relatively mild degradations [1-8]. This limitation arises from the fact that most 
schemes cannot easily incorporate all of the information that is available to them. 
Furthermore, most can guarantee convergence only to a locally optimal solution. For more 
severe degradations, there are more unknowns and more locally optimal solutions exist; 
therefore, converging to a globally optimal solution becomes much more difficult. A 
common remedy to ease the problem is to incorporate known information about the point 
spread function causing the degradation. Unfortunately, in most cases only very limited 
information of the point spread function is available, which is not enough to steer the 
solution to the global optimum. 

In this work, we have identified the potential of the Bussgang blind deconvolution 
framework [1-4] to converge to the globally optimal solution despite its other limitations. 
As shown by the Benveniste-Goursat-Ruget theorem [2], the Bussgang blind 
deconvolution framework converges to a globally optimal solution as long as the 
probability density function of the input signal is non-Gaussian and the support size of the 
equalization filter size tends to infinity. While it is not possible to have an infinitively long 
equalization filter support, intuitively, if the signal can be processed in frames instead of in 
an infinite stream, the support size of the equalization filter should not need to be greater 
than the frame size. In addition, in the multi-channel case, the attribute of the 
deconvolution noise on which the Bussgang blind deconvolution framework relies 
becomes easier to realize. Unlike the requirement of an infinite support size for the 
equalization filter, the multi-channel implementation is, in fact, both practical and feasible. 
For example, in the optical imaging case, multiple degraded shots can result from the 
motion of the targeted subject, or in the synthetic aperture radar (SAR) imaging case, 
multiple similar flight paths can result in similar, but differently degraded, SAR images. 
Furthermore, the Bussgang blind deconvolution framework also achieves the goal of 
having one framework that is applicable to multiple applications. A different application 
with a different probability density function (pdf) only changes the nonlinearity in the 
Bussgang blind deconvolution framework. Therefore, we utilize the multi-channel 
Bussgang blind deconvolution framework as our fundamental building block for the design 
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of a blind deconvolution procedure that can cope with severe degradations and a wide 
variety of applications.  

To achieve our goal, two obstacles associated with the Bussgang blind deconvolution 
procedure need to be overcome. These are the requirement that the probability density 
function (pdf) of the original signal be known and that the original signal be white, which 
can greatly limit the applicability of the technique.  

In this research, we relax the iid requirement and modify the multi-channel Bussgang blind 
deconvolution framework to allow the pdf of the original signal to be estimated iteratively. 
We call our proposed modification of the multi-channel Busssgang blind deconvolution 
framework the self-correcting multi-channel Bussgang (SCMB) blind deconvolution 
framework. The modifications include a non-conventional feedback mechanism, 
parameterization of the pdf utilizing a Gaussian mixture model, and parameter estimation 
using the expectation maximization (EM) algorithm that iterates simultaneously with the 
original multi-channel Bussgang estimator.  

In the dissertation, we demonstrate the effectiveness of the proposed SCMB blind 
deconvolution framework on two very different problem: the binary image restoration 
problem and the SAR/ISAR autofocus problem. In the binary image restoration case, our 
approach recovers severely blurred binary images flawlessly. In the SAR/ISAR autofocus 
case, our approach outperforms popular autofocus algorithms including phase gradient 
algorithm (PGA) and minimum entropy autofocus consistently, especially in the ground 
moving-target ISAR autofocus scenario with both significant translational and rotational 
motion. 
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1 Introduction 
The blind deconvolution or blind equalization problem seeks to undo the convolution 
between an input signal ( )x ⋅  and the impulse response of a linear shift-invariant system 

( )h ⋅  when only the convolved output signal ( )y ⋅  is available. The term “blind” is used 
when the impulse response of the system is unknown. 

It is assumed that the observed signal ( )y ⋅  can be modeled as 

 ( ) ( ) ( ) ( )y h x v⋅ = ⋅ ∗ ⋅ + ⋅ , (1.1) 

where ∗  denotes the convolution operation and ( )v ⋅  is additive measurement noise. The 
arguments of the functions in this equation have been intentionally omitted, since they vary 
with the application. In some cases the signals are one-dimensional time functions; in 
others they might be two-dimensional images, for example. A linear system (impulse 
response) ( )h ⋅  is adequate for modeling a wide range of physical phenomena including 
superpositions of signals in multipath communications systems, linear communication 
channels, and optical degradations such as out-of-focus blurs and motion blurs. In 
telecommunications applications the problem is often called blind equalization. This is 
merely terminology; the two problems are the same, although equalization typically requires 
a “real-time” implementation. 

A slightly more complicated model might be needed to account for nonlinear physical 
phenomena such as channel saturation or the nonlinear sensitivity of film. In these 
situations, the convolved output signal ( )y ⋅  with a nonlinearity might be modeled as 

 ( ) { ( ) ( )} ( )y g h x v⋅ = ⋅ ∗ ⋅ + ⋅ , (1.2) 

where {}g ⋅  is a pointwise nonlinearity and ∗  again denotes convolution. 

Applications of blind deconvolution arise in a number of diverse fields including 
communication signal transmission, digital microscopy, reflection seismology in oil 
exploration, acoustic reverberation cancellation, photographic image restoration and 
astronomical image restoration and autofocusing in synthetic aperture radars. This latter 
application is of particular interest in this dissertation. 

From equation (1.1), it is quite obvious that if both ( )h ⋅  and ( )x ⋅  are completely 
unconstrained, there will be infinitely many solution pairs for ( )h ⋅  and ( )x ⋅  that satisfy 
the model and yield the same output signal ( )y ⋅ . The same is true for the nonlinear case in 
(1.2). To limit the space of possible solutions in blind deconvolution or blind equalization, 
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some constraints on ( )x ⋅ or ( )h ⋅ or knowledge of the statistics of the inaccessible input 
( )x ⋅ are assumed. Even when the solution is constrained, however, the solutions may still 

not be unique. If it is unique, iterative procedures for finding it may converge to a local 
optimum rather than a global one.  

Many blind deconvolution algorithms have been presented in the literature. Some of these 
procedures are completely general and are not tied to any particular application. Popular 
blind deconvolution or equalization techniques include, but are not limited to, a maximum 
likelihood approach implemented using the expectation maximization (EM) algorithm [5, 6] 
for photographic image restoration, the bispectrum iterative reconstruction algorithm 
(BIRA) [7] also for photographic image restoration, the tricepstrum equalization algorithm 
(TEA) [8, 9] for communication channel equalization, Sato’s algorithm [10, 11] and 
Godard’s algorithm, both of which are treated as special cases of the Bussgang algorithm [4, 
12-17] for communication channel equalization, and finally, stochastic gradient-based blind 
deconvolution using different figures of merit including minimum entropy [18, 19] and 
minimum kurtosis [16, 20].  

All these algorithms work well when certain assumed conditions are met but, nevertheless, 
have their limitations when applied to general image restoration. The expectation 
maximization (EM) algorithm often becomes trapped at a local optimum, especially when 
the assumed support size of the blur impulse response is large (severe blur); there is no 
guarantee that the algorithm will converge to the global optimum. Also, the EM algorithm 
can only work with blurs and input signals that are real because its cost function does not 
depend upon phase. With the bispectrum iterative reconstruction algorithm (BIRA), the 
distortion must be one-dimensional. That method also cannot deal with phase distortion. 
The tricepstrum equalization algorithm (TEA), explicitly assumes that the samples of the 
unknown are independent and identically distributed (iid). Thus, this algorithm is not 
applicable to image restoration where this assumption does not hold. With blind 
equalization using the Bussgang framework, the unknown input signal is again assumed to 
be iid and its probability density function (pdf) is assumed to be completely known. This is 
unrealistic for the image restoration problem. Blind image deconvolution utilizing criteria 
such as minimum entropy or minimum kurtosis assumes that the image blur is a form of 
lowpass filtering of the original image that results in an increase in the entropy or 
Gaussianness of the blurred image, so that the pdf of the blurred image will have heavier 
tails than the pdf of the original image. Thus, minimizing the entropy or kurtosis reverses 
the blurring process and steers the solution in the right direction. However, there is no 
inherent stopping mechanism with these criteria. Convergence to the right solution 
depends solely on the available knowledge of the impulse response ( )h ⋅ or the availability 
of additional constraints that can be imposed.  
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Our goal is to place multiple classes of image restoration (autofocus) problems under one 
framework, from two-level (binary) images to complex gray-level (SAR) images and for 
potentially very severe distortion. By understanding the limitations of the algorithms 
mentioned above, we have decided to base our approach on the Bussgang framework with 
relaxed constraints. The reasons are the following: (1) Different classes of images can be 
handled by changing the pdf. (2) The direct inverse filter solution in the Bussgang 
framework avoids the ill-conditioning problems that are associated with the other methods. 
This enables it be appropriate for a wider class of distortions. (3) The 
Benveniste-Goursat-Ruget Theorem [2] guarantees that the algorithm will converge to the 
global optimum under some mild conditions. This is important for the severely blurred 
case. (4) Finally, the nonlinearity inherent in the Bussgang framework provides the 
necessary hook for dealing with the nonlinear blind deconvolution problem as formulated 
in (1.2), even though that is beyond the scope of this dissertation.   

In this dissertation, we propose a self-correcting multi-channel Bussgang blind 
deconvolution framework that is theoretically applicable to a wide variety of applications. 
This proposition can be better explained by breaking it down into a number of smaller 
theses as listed below: 

(1) We propose that the independent and identically distribution (iid) requirement on the 
samples of the input signal with the Bussgang algorithm can be removed. 

(2) We propose that the complete knowledge of the probability density function (pdf) of 
the input signal can be relaxed by simultaneously estimating the pdf and cancelling the pdf 
estimation error through a feedback structure. 

(3) We propose using maximum likelihood implemented using the expectation 
maximization (EM) algorithm and a Gaussian mixture model to iteratively estimate the pdf 
parameters of the input signal within the Bussgang framework. 

(4) We propose extending the algorithm to the multi-channel case. This improves upon the 
zero mean, white Gaussian noise requirement on the deconvolution noise and outperforms 
the single channel case. 

(5) We propose applying the self-correcting multi-channel Bussgang blind deconvolution 
framework on blurred binary images. 

(6) We propose applying the self-correcting multi-channel Bussgang blind deconvolution 
framework to the complex synthetic aperture radar (SAR) autofocus problem. 
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(7) We propose applying the self-correcting multi-channel Bussgang blind deconvolution 
framework to the complex inverse synthetic aperture radar (ISAR) autofocus problem. 

The remainder of the dissertation is organized as follows: Chapter 2 gives some 
background on blind deconvolution and techniques that we employ in this thesis. It also 
provides some background on SAR/ISAR image formation and autofocus. Chapter 3 lays 
out the self-correcting mult-channel Bussgang (SCMB) blind deconvolution algorithm that 
we propose. Chapter 4 applies our algorithm to the specific problem of blind binary image 
restoration, while Chapter 5 applies it to the SAR/ISAR autofocus problem. Chapter 6 
concludes the thesis and gives suggestions for future work. Finally, Chapter 0 is an 
appendix, containing some of the mathematical details that lie behind the algorithm. 
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2 Background 
In this section, we give a brief history of blind deconvolution and blind equalization and 
state the similarities and differences between the two problems. We divide blind 
deconvolution and blind equalization approaches into two classes: the impulse response 
estimation methods and the direct inverse impulse response estimation methods. We then 
address issues related to each class and their remedies. A representative example for each 
class will be given and discussed. Finally, some common impulse responses (PSF) grouped 
by applications are presented, which mark the end of this section. 

2.1 Blind deconvolution and equalization 
The name blind deconvolution was first used by Stockham [21] for the restoration of old 
acoustic records in 1975 and the first example of blind equalization was the algorithm 
proposed by Sato [10] for multilevel amplitude-modulated data transmission in the same 
year. In both the blind deconvolution and blind equalization problems, the input data is 
unknown except for its statistics. Only the measurable output and possibly some crude 
information about the impulse response is accessible depending on the individual 
algorithm. While blind deconvolution is not tied to a particular application or field, blind 
equalization usually refers to a data communication application, which is one-dimensional, 
and where the input data values are assumed to be independent and identically distributed 
(iid). The iid assumption in data communication is a reasonable one since sequences of 
independent symbols are typically transmitted in a communication system. Higher order 
statistics (HOS) approaches, specifically polyspectral-based approaches such as the 
tricepstrum equalization algorithm (TEA) which relies on the iid assumption explicitly, are 
not suited to problems like blind image restoration because images rarely have a white 
spectrum. Furthermore, for HOS-based methods, the complexity increases rapidly with the 
increase in the dimensionality of the problem. Notwithstanding the similarities and 
differences between blind deconvolution and blind equalization, we can always classify 
these approaches into those that estimate the impulse response or the point spread 
function (PSF) and those that do not. 

2.2 Blind deconvolution methods that estimate the 

impulse response (PSF) 
Blind deconvolution or blind equalization algorithms that explicitly solve for the impulse 
response or the point spread function (PSF) are referred to as impulse response (PSF) 
estimation-based methods. Some form of inversion of the impulse response is required to 
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deconvolve the observed signal in order to estimate the unknown input. This inverse 
process is problematic when the impulse response inversion is ill-posed. An ill-posed 
condition arises when there are deep nulls in the spectrum of the impulse response. 
Different classical deconvolution algorithms have different ways of dealing with this 
ill-posed condition, but most can be viewed as some form of regularization technique that 
trades fidelity for stability.  

2.2.1 The ill-posed condition 
The mathematical term “well-posed problem” stems from a definition given by Jacques 
Hadamard in 1902. He believed that mathematical models of physical phenomena should 
have the properties that: 1) A solution exists, 2) The solution is unique. And 3) the solution 
depends continuously on the data in some reasonable topology and, therefore, is 
well-posed. However, the backward (inverse) problem of such a well-posed problem may 
well be ill-posed.  

For example, a data communication channel can be modeled using the linear model (1.1) in 
one dimension and written as 

 ( ) ( ) ( ) ( )y n h n x n v n= ∗ + , (2.1) 

where ∗  denotes convolution, ( )h n , ( )x n , ( )v n  and ( )y n  are respectively the channel 
point spread function (PSF), input data, channel additive noise and channel output data. 
This linear communication channel model (2.1) can also be written in matrix-vector form 
as, 

 = +y H x v ,  (2.2) 

where y , x , v  are N 1×  vectors and H  is an N N×  Toeplitz matrix. Here N  is the 
data length. 

(0) (0) (0)
(1) (1) (1)

, , ,

( 1) ( 1) ( 1)

y x v
y x v

y N x N v N

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = =
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

y x v  and 
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(0) 0 0 0 0 0
(1) (0) 0 0 0

0 ( 1) (1) (0) 0
0 0 ( 1) (1) (0)

h
h h

h M h h
h M h h

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎝ ⎠

H . 

Note that M  is the length of the channel point spread function (PSF) and H  becomes a 
block-Toeplitz matrix in the two-dimensional case. 

The physical phenomenon that yields the channel output vector y  from the inputs x  
and v  is a well-posed problem. However, the inverse problem of solving for the channel 
input vector x  is often ill-posed. That problem can be stated as 

 -1 -1x = H y - H v .  (2.3) 

Depending on the properties of the inverse matrix 1−H , a bounded perturbation 
introduced by the noise v  can result in an unbounded perturbation in the solution x . 
The degree of ill-posedness can be measured by the condition number of H ; the higher 
the condition number, the more ill-posed the inverse problem. When the 2l -norm is used, 
a common definition for the condition number of H , ( )κ H , is  

 max max

min min

( ) ( )
( )

( ) ( )

H

H

σ λ
κ

σ λ
= =

H H H
H

H H H
, (2.4) 

where maxσ  and minσ  are the largest and smallest singular values, maxλ  and minλ  are the 
largest and smallest eigenvalues and the superscript H  denotes the Hermitian transpose 
of a matrix. 

The degree of ill-posedness can also be measured in terms of the magnitude spectrum of 
the impulse response ( )h n  when its support is small compared to the data length, 
M N<< . In this case, the Toeplitz matrix H  can be approximated by a circulant matrix, 
so that 

 H =F H F D ,  (2.5) 

where F  is the N N×  one-dimensional discrete Fourier transform (DFT) kernel and D  
is a diagonal matrix with the diagonal entries equal to the DFT coefficients of the impulse 
response ( )h n . By recognizing F  as the matrix of eigenvectors of H  and D  as the 
diagonal matrix of eigenvalues of H , it is clear that the condition number can be evaluated 
as 
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 max{ ( ( )) }
( )

min{ ( ( )) }
N

N

DFT h n
DFT h n

κ =H , (2.6) 

where the DFT can be evaluated efficiently using the fast Fourier transform (FFT) 
algorithm. Thus, it can be observed that the whiter the magnitude spectrum of the impulse 
response, the smaller the condition number and the more well-posed the inverse problem 
becomes. 

2.2.2 Regularization techniques 
Regularization is a well-studied method for solving ill-posed problems. It turns an ill-posed 
problem into a well-posed one by sacrificing some fidelity of the solution for stability 
(Hadamard’s third condition). Incorporating prior knowledge about the input data is the 
main idea behind regularization. Depending on how the prior knowledge is being utilized, 
there are two types of regularization methods: deterministic regularization techniques and 
stochastic regularization techniques. 

Deterministic regularization techniques limit or regulate the possible solution space using 
deterministic constraints. One deterministic constraint that is often used in image 
restoration is a smoothness constraint, which imposes the prior knowledge that the original 
image is dominated by its low-frequency content. In the classical deconvolution problem 
where the impulse response is assumed to be known, deterministic constraints like a 
smoothness constraint are often included as a Lagrange multiplier as shown below 

 2 2ˆ arg{min{ }}k= +
x

x y - Hx Cx . (2.7) 

Here k  is the Lagrange multiplier, or regularization parameter, and C  is a regularization 
operator. One example of a non-optimal choice of the regularization operator C  for the 
image restoration problem is the discrete Laplacian operator which is the sum of the 
second spatial derivatives in the horizontal and vertical directions. The larger the 
regularization parameter k , the smoother the solution becomes.  

Stochastic regularization techniques limit or regulate the possible solution space using a 
stochastic model of the input data. Like its deterministic counterpart, the stochastic model 
constrains the feasible solution to a smaller set of candidates. In most cases, a stochastic 
model of the input data is not available and must be estimated from the output data or 
from prototypical training data. One example of such a stochastic model commonly used 
in image restoration is an auto-regressive (AR) model  
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 x = Ax + w ,  (2.8) 

where A  is a block-Toeplitz matrix representing a two-dimensional linear shift invariant 
filtering operation and w  is a white Gaussian noise vector. The matrix ( )I - A  can be 
interpreted as a regularization operator while the inverse of the variance of w , 2

wσ
− , can 

be interpreted as the regularization parameter. The larger the variance of w , the AR 
modeling error, the smaller the regularization parameter and, therefore, the less effective is 
the constraining effect of the AR model (regularization operator).  

2.2.3 The expectation maximization (EM) algorithm 
The expectation maximization (EM) algorithm is a popular approach for solving the blind 
deconvoluton problem which belongs to the category of impulse response or PSF 
estimation-based methods. The impulse response ( )h ⋅  is iteratively and explicitly 
estimated (together with other parameters). Each iteration consists of two steps. At the 
k-th iteration, the expectation step (E-step) estimates the input data ( )( ) kx ⋅ or ( )kx , and the 
maximization step (M-step) estimates the parameter set ( )kφ  which includes the impulse 
response ( )( ) kh ⋅ , the noise variance 2 ( )k

vσ  and possibly other parameters. In the E-step, the 
conditional mean of the input data is estimated using the parameter set from the previous 
iteration ( ) ( 1){ ; }k kE φ −=x x y ; in the M-step this estimate is used to update the parameter set.  

The expectation maximization (EM) algorithm is an iterative computation of the 
maximum-likelihood (ML) estimate of ( )x ⋅ . The output data y  is viewed as incomplete 
data that is related to some complete data z  through a non-invertible many-to-one 
transformation {}T ⋅ , { }T=y z . One possible choice of the complete data is a 
concatenation of the input and output data, [ ]T T T=z x y . The EM algorithm iteratively 
chooses the parameter set φ  so as to maximize the logarithm of the likelihood 
(probability density) function of the complete data, log( ( ; ))p φz . However, since the 
complete data is not accessible, the conditional expectation of the log-likelihood function 

( 1)( | )kQ φ φ −  is maximized instead, as shown below. 

 ( 1) ( 1)( | ) {log( ( ; )) | ; }k kQ E pφ φ φ φ− −= z y , (2.9) 

and 

 ( ) ( 1)arg{max{ ( | )}}k kQ
φ

φ φ φ −= . (2.10) 

Convergence of the EM algorithm is guaranteed if ( 1)( | )kQ φ φ −  is continuous with respect 
to both φ  and ( 1)kφ −  at each iteration. However, it does not necessarily converge to the 
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global maximum. The larger the number of parameters in the parameter set φ , the more 
likely the algorithm is to converge to a local maximum. In the blind image restoration 
problem, constraints such as the conservation of energy, symmetry and smoothness are 
commonly used to reduce number of parameters and hence the likelihood of converging to 
a local maximum.  

When the probability density function (pdf) of the complete data z  has a multivariate 
Gaussian distribution, the EM algorithm has a closed-form solution. Therefore, no 
numerical optimization technique of any kind is required. In this case, the algorithm 
becomes extremely efficient. The complete data z  has a multivariate Gaussian 
distribution if the following conditions hold: 1) The noise term of the blind deconvolution 
model v  in (2.2) is white and Gaussian. 2) The complete data is chosen as [ ]T T T=z x y .  
3) The input data model in (2.8) is employed for which the input data modeling noise w is 
white and Gaussian. 

2.3 Direct inverse impulse response estimation-based 

blind deconvolution 
Blind deconvolution or blind equalization algorithms that solve for the inverse impulse 
response or equalization filter directly are referred to as direct inverse impulse response 
estimation-based methods. Unlike the impulse response or PSF estimation-based methods, 
no inversion of an estimated impulse response or PSF is involved. Therefore regularization 
techniques that limit ill-posedness by trading fidelity for stability, both of which arise from 
the inverse problem, can be avoided. Algorithms belonging to this category include 
stochastic gradient-based methods with different figures of merit such as minimum 
entropy [18, 19] and minimum kurtosis [16, 20]. Sato’s algorithm [10, 11] and Godard’s 
algorithm, under the umbrella of the Bussgang algorithm [1, 12, 15] for communication 
signal equalization, also belong to this category. 

2.3.1 Adaptive filtering 
Adaptive filtering is a recursive procedure for estimating the filter coefficients so that the 
filter’s output signal matches the known desired signal. Unlike the optimal Wiener filter, it 
is possible for the adaptive filter to perform this task without knowing the statistical 
characteristics of the input data. An adaptive filtering algorithm starts with an initial guess 
of the filter coefficients and iteratively converges to the optimal Wiener solution in a 
statistical sense. For a streaming input signal with nonstationary statistics, adaptive filtering 
acts as a tracker. The Bussgang technique for streaming input data can be viewed as an 
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extension of the adaptive filtering technique with the desired signal generated by a 
nonlinearity function that utilizes available statistical characteristics of the input data.  

2.3.2 Bussgang technique 
The Bussgang technique is a member of the class of nonlinear blind equalization 
algorithms. It is a very popular blind equalization framework that iteratively and directly 
estimates the inverse impulse response. Different choices of the cost function for the 
Bayes’ risk result in a different Bussgang zero-memory nonlinearity. Popular algorithms for 
the data communication blind equalization problem including Sato’s algorithm [10], 
Godard’s algorithm [22] and the constant modulus algorithm (CMA) [23-25], all of which 
result from different choices of the cost function. Thus, they can all be viewed as special 
cases of the Bussgang blind equalization algorithm. 

 

Figure 2-1   Functional block diagram of Bussgang blind equalization  

Figure 2-1 shows a general block diagram of Bussgang blind equalization where the 
nomenclature is as follows: 

( )x n  - Unknown input data. 
( )h n  - Unknown impulse response or point spread function (PSF). 
( )v n  - Additive noise. 
( )y n  - Measurable output data. 
( )f n  - Inverse filter impulse response or equalization filter. 
( )x n  - Deconvolved output. 

)(nx ( )h n  ( )f n {}g ⋅  

LMS 

-

 Σ

 Σ

)(nv  

)(ny )(nx )(ˆ nx  

( )e n
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{}g ⋅  - Zero-memory nonlinearity. 
ˆ( )x n  - Output of the Bussgang algorithm (estimate of ( )x n ) 

  (the desired signal in the context of adaptive filtering). 
( )e n  - Estimation error (in the context of adaptive filtering). 

LMS  - Least mean square adaptive algorithm. 

           
The goal of the Bussgang blind equalization algorithm is to match the distribution (pdf) of 
the output of the Bussgang algorithm (the recovered input signal), ˆ( )x n , with the pdf of 
the unknown input signal ( )x n . The name “Bussgang” comes from the fact that the 
procedure converges in the mean to the desired result when the deconvolved output ( )x n  
is a so-called Bussgang process. A Bussgang process is a stochastic process whose 
autocorrelation is equal to its cross-correlation with the output of the zero-memory 
nonlinearity {}g ⋅  as shown below:  

 { ( ) ( )} { ( ) { ( )}}E x n x n m E x n g x n m+ = + . (2.11) 

Bussgang blind deconvolution can also be viewed as an adaptive filtering [26] problem 
which in the context of adaptive filtering theory has an unknown desired output. The 
absence of the desired output is addressed by a zero-memory nonlinearity designed to 
estimate the signal which most closely matches the distribution of the input signal.  

Bussgang blind equalization assumes and requires 1) that the input signal samples ( )x n  are 
independent and identically distributed (iid) with a white power spectrum and 2) that pdf 
of those samples is known and non-Gaussian. In the data communication application, 
since a sequence of independent symbols is usually transmitted, the iid assumption is 
generally appropriate. Furthermore, a non-Gaussian distribution, such as a uniform 
distribution, usually models the input sequence in that application quite well. However, 
these restrictions severely limit the applicability of the Bussgang algorithm in other 
applications.  

2.3.2.1 Nonlinearity 
The zero-memory nonlinearity {}g ⋅  in the Bussgang algorithm results from the Bayesian 
estimation of the unknown input data. It depends upon 1) the non-Gaussian probability 
density function (pdf) of the unknown input data, 2) the deconvolution noise, ( )w n , 
having a zero mean, white Gaussian distribution, and 3) the choice of the cost functional 

( )C ⋅  for the Bayes risk ˆ( )J x . The expression for the Bayes risk is given by 

 ( )ˆ ˆ( ) ( ; ) ( )x,xJ x C x - x x p x,x dx dx= Φ∫∫ , (2.12) 
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Here Φ  is the vector containing the parameters that model the pdf of the unknown input 
data and the variance of the deconvolution noise, 2

wσ . The output of the Bussgang 
algorithm, which minimizes the Bayes risk, is  

 ( )( ){ }{ }ˆ
ˆ ˆ{ ; } arg min ;

x
x g x J x x= Φ = Φ , (2.13) 

where x , x  and x̂  are respectively the random variables of the unknown input data, the 
nonlinearity input and the nonlinearity output ( )x n , ( )x n  and ˆ( )x n . ( )C ⋅  is the cost 
functional for the Bayes risk, ˆ( )J x , and ( )x,xp x,x  is the joint probability density function 
of x  and x . If the cost functional is chosen to be the 2l -norm, that is, 

2
( )C ⋅ = ⋅  then 

Bayesian estimation becomes identical to minimum mean square error (MMSE) estimation. 

The deconvolution noise ( )w n  in the context of Bussgang blind deconvolution is defined 
as the output of the equalization filter ( )x n  minus the unknown input data ( )x n , that is, 

( ) ( ) ( )w n x n x n= − . The pdf of the deconvolution noise ( )w n  is used in deriving the 
nonlinearity {}g ⋅  of the Bussgang algorithm. The requirement of the input data samples 
to be independent and identically distributed ensures that the deconvolution noise will be 
zero mean, white Gaussian noise. Thus, the only free parameter associated with ( )w n  is 
its variance. 

The adaptation of the equalization filter ( )f n  can be achieved using any of a variety of 
well-studied approaches including the steepest descent algorithm, the stochastic gradient 
algorithm from adaptive filtering (LMS, NLMS, RLS) or Wiener-based algorithms [27]. 
LMS is particularly popular for a one-dimensional signal stream because of its simplicity 
and its low memory requirement, since no correlation matrix or matrix inverse calculation 
is needed.  

In 1980 Benveniste [2] derived sufficient conditions for the global convergence of the 
Bussgang algorithm for an infinite length equalizer. The Benveniste-Goursat-Ruget 
theorem states that global convergence of the Bussgang algorithm is guaranteed if the pdf 
of the unknown input data sequence ( )x n  is sub-Gaussian distributed (shorter tail than 
the Gaussian distribution) and the second derivative of the estimation error ( )e n , " ( )e n , as 
defined in Figure 2-1 is negative. As shown in the pdf  

 ( )

v
x

p x K e β
−

= ,  (2.14) 

for 2v > , x  is sub-Gaussian distributed and for v →∞ , x  is uniform distributed. 
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2.4 Gaussian mixture estimation using the EM 

algorithm 
Assume that we have multidimensional data, z , that can be modeled by a multivariate 
Gaussian mixture model, as shown below: 

 /
1

( ) ( / ) ( )
c c

C

c c
c

p p p
=

=∑z z x xz z x x , (2.15) 

where x  is a hidden variable and c=x x  when the data point z  is generated by the thc  
component of the mixture. The conditional probability density function, ( )/ /

c cpz x z x , is 

the probability of the data point z  given that it is generated from the thc  Gaussian 
component. It has a Gaussian form. Thus, 

 ( ) ( ) ( )1 11
2 2

/ / 2
T

c c c
c ccp eπ

−− − − Λ −
= Λ x x xz μ z μ

z x xz x , (2.16) 

where 
cxμ  and 

c
Λx  are, respectively, the mean vector and the covariance matrix for the 

thc  component. Moreover, the weights (probabilities) of the C components add to one, 
so that  

 ( )
cc cw px x ,  (2.17) 

and 
1 1

( ) 1
c

C C

c c
c c

w p
= =

= =∑ ∑ x x . (2.18) 

Therefore (2.15) can be written as  

 /
1

( ) ( / )
c

C

c c
c

p w p
=

=∑z z xz z x . (2.19) 

The expectation maximization (EM) algorithm, as described in Section 2.2.3, can be used 
to estimate the parameters of the Gaussian mixture. Using the terminology of the EM 
algorithm, the available data z  is the incomplete data and together with the hidden data 
x  forms the so called complete data. The parameter set in this case is 

{ }, , , [1, ]
c ccw c Cφ = ∀ ∈x xμ Λ . By taking the derivative of the conditional expectation of the 

log-likelihood function ( )( | )kQ φ φ , as defined in (2.9), with respect to the parameter set, we 
generate the update equations for the E-step and the M-step as follows: 



 15

E-step: 

 ( ) ( )11 ( ) ( ) ( )1
2 2 ( ) ( )( ) ( ) ( )( ) 2

Tk k k
c c ci ik k k

c cy i w eπ
−

− − − −
=

z μ Λ z μ
Λ  (2.20) 

M-step: 

 ( 1) ( )

1

1 ( )
N

k k
c

i

w y i
N

+

=

= ∑  (2.21) 

 

( )

( 1) 1

( )

1

( ) ( )

( )

N
k

k i
c N

k

i

i y i

y i

+ =

=

=
∑

∑

z
μ  (2.22) 

 
( ) ( ) ( )

( 1) 1

( )

1

( ) ( ) ( )

( )

N
T k

c c
k i

c N
k

i

i i y i

y i

+ =

=

− −

=
∑

∑

z μ z μ
Λ , (2.23) 

where k  is the iteration number and N  is the number of available multidimensional data 
points z . 

2.5 Synthetic/Inverse synthetic aperture radar 

(SAR/ISAR) 
In a conventional radar, resolution in the azimuth (cross-range) direction improves as the 
antenna aperture or the radar central frequency increases, and resolution in the range 
direction improves as the radar signal bandwidth increases. A radar in motion can combine 
echoes from multiple pulses transmitted at different spatial locations to improve azimuth 
resolution. This signal synthesis can achieve an azimuth resolution that would require a 
much larger antenna aperture in a conventional radar. This concept is called synthetic 
aperture radar (SAR) [28, 29]. Alternatively, instead of having the radar moving and the 
target stationary, as in the SAR mode, the inverse synthetic aperture radar (ISAR) mode 
operates with the target moving and the radar stationary. While the signals are similar in 
both cases, image formation in the ISAR mode is more challenging simply because the 
motion of the target is not known. The motion of the radar platform in SAR mode can be 
estimated quite well when an inertial measurement unit (IMU) and/or global positioning 
system (GPS) are available.  
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Figure 2-2 Synthetic aperture radar (SAR) in spotlight mode 

Figure 2-2 shows the operation of a synthetic aperture radar (SAR) in spotlight mode. The 
size of the synthetic aperture increases with a longer flight path. The larger the synthetic 
aperture, the finer the azimuth resolution becomes. In spotlight mode, the radar constantly 
points to the scene center from pulse to pulse. The scene center is the center of the SAR 
image that is formed. 

2.5.1 The SAR image formation process (IFP) 
SAR image formation consists of the processing operations required to produce an image 
from a SAR signal and flight path information. This data processing includes IMU and 
GPS data processing to extract the flight path information, matched filtering and 
demodulation processing to obtain the baseband in-phase and quadrature phase (IQ) 
signals, motion compensation to ensure that the signal is referenced to the desired scene 
center correctly and that the coherence between echoes is correct, image formation from 
the IQ signal (for example using the polar format algorithm (PFA) or back projection 
algorithm), and SAR autofocus to compensate for motion error from the IMU and GPS, 
which is more apparent for high frequency band radars [28, 29]. 

2.5.2 SAR autofocus 
SAR autofocus corrects the defocused SAR image by compensating for phase errors from 
pulse to pulse. This phase error can be created by uncompensated motion between the 

Scene center

cross-range or azimuth

range

Synthetic aperture
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SAR antenna phase center (APC) and the scene being imaged, algorithm approximations, 
hardware limitations and jitter in the demodulation timing. For high resolution SAR 
imagery, tight tolerances are required for flight platform positioning errors which may not 
be achievable even with today’s technology. Furthermore, some sources of phase error 
such as atmospheric turbulence can cause the demodulation timing error to become 
independent of the precision of the onboard IMU and GPS. The use of autofocus 
techniques in SAR imaging eliminates the significant hardware cost associated with the 
ultra-high-accuracy navigation system needed to keep the flight platform positioning error 
down. At the same time, it can also take care of other sources of defocusing error. As a 
result, SAR autofocus is an indispensable part of the SAR image formation process.  

The phase gradient algorithm (PGA) [29-31] is the most popular and widely utilized 
algorithm for SAR autofocus. Unlike other SAR autofocus approaches, which depend 
upon a low-order phase error model such as a quadratic or cubic phase error model, PGA 
does not use any phase error model. Thus, it can deal with an arbitrarily high-order phase 
error. The theory behind the PGA uses a range profile model in the range-compression 
(range-azimuth, range-pulse or range-doppler) domain. It makes the following assumptions: 
(1) the range profiles of two adjacent pulses are the same; (2) the phase error is range 
invariant or pulse dependent only; (3) white additive complex Gaussian noise adequately 
models the range profile noise. Apart from these, in the algorithm a circular shift in the 
cross-range dimension of the SAR image is performed so that the strongest scatterer at 
each range gate is aligned at the center. Under these conditions, we have, 

 
( )

( 1)

( , ) ( ) ( , )

( , 1) ( ) ( , 1)

i p

i p

g r p a r e n r p

g r p a r e n r p

φ

φ +

= +

+ = + +
 (2.24) 

where r  and p  are, respectively, the range and pulse indexes, ( )a r  is the ideal range 
profile, ( )pφ  is the phase error for pulse p , ( , )n r p  is two-dimensional white complex 
Gaussian noise and ( , )g r p  is the actual measured range profile. Define 

 ( , )
( , 1)
g r p

g r p
⎡ ⎤

= ⎢ ⎥+⎣ ⎦
x  and ( 1) ( )p pφ φ φΔ = + − . (2.25) 

We see that x  has a zero-mean bivariate complex Gaussian distribution. By maximizing 
the log-likelihood function, ( )ln ( ; )p x φΔx , with respect to the phase gradient, φΔ , we have  

 *

1

ˆ ( 1) ( , ) ( , 1)
N

ML
r

p g r p g r pφ
=

⎡ ⎤
Δ + = ∠ +⎢ ⎥

⎢ ⎥⎣ ⎦
∑ . (2.26) 
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Correction of the phase error using the phase gradient ˆ ( )ML pφΔ  can focus the SAR image 
but a constant phase error across all pulses can still exist. This can cause a shift in the SAR 
image. PGA autofocus works well if the error that causes the defocusing can be adequately 
modeled by pulse dependent phase errors across pulses only. In general, this condition 
does not apply in the ISAR autofocus case.  

Minimum entropy autofocus [19, 32, 33] assumes that the entropy of a focused SAR image 
is lower than the entropy of a defocused one. This is equivalent to the assumption that the 
spikiness of a focused SAR image is higher than the spikiness of a defocused one, since 
minimizing the entropy is equivalent to increasing the spikiness of a SAR image. Based on 
this reasoning, minimizing the entropy is expected to bring the SAR image in focus. 
Minimum entropy autofocus is applied in the complex image space, where the entropy 
H is defined as follows: 

 
,

1( , ) ln
( , )r c

H p r c
p r c

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑ , (2.27) 

and  

 
2

2

,
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r c

x r c
p r c

x r c
=
∑

. (2.28) 

In these expressions, r  and c  are, respectively, the range and cross-range indexes of a 
pixel in the image, ( , )x r c  is the complex intensity of a pixel, and ( , )p r c  is the 
normalized power of a pixel. The normalization is such that the power of all pixels in the 
image sums to one. As a result, the normalized power, ( , )p r c , has the attributes of a 
probability associated with pixel ( , )r c . Unlike PGA, where the calculation of the phase 
gradient of each pulse depends only on two adjacent pulses as shown in equation (2.26), 
with minimum entropy autofocus the phase corrections along the entire cross-range data 
set have to be found simultaneously. Because there can be hundreds to thousands of phase 
corrections (unknowns) which have to be solved simultaneously depending on the 
cross-range dimension of the SAR image, the method is often not feasible. One remedy 
that is frequently implemented is to fit the phase corrections with a low-order polynomial 
or basis functions so as to drastically reduce the number of unknowns as shown below 

 ( ) ( )
0

,
N

i
c c

i
b k b i kφ

=

= ∑  , (2.29) 
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where N  is the order of the polynomial, ( )b i  and b  are respectively the i th−  
coefficient and the coefficient vector of the polynomial, and ck  is the index of the 
k -space in the cross-range dimension. The coefficient vector meb  obtained by minimizing 
the entropy of the SAR image ( )H x  becomes 

 ( ){ },1arg min ( , ) cj b k
me r cb

b H X k k e φ−⎧ ⎫⎧ ⎫⎛ ⎞= ⎨ ⎨ ⎬⎬⎜ ⎟
⎝ ⎠⎩ ⎭⎩ ⎭
F , (2.30) 

where 1−F  is the two-dimensional inverse Fourier transform and ( , )r cX k k  is the IQ 
signal on the k -space rectangular grid. 

2.5.3 ISAR autofocus 
ISAR autofocus [34, 35] forms a focused SAR image of a moving target instead of a static 
scene as in the SAR case. On the surface, the ISAR autofocus problem should be very 
similar to the SAR autofocus problem since it is only the relative motion between the radar 
and the target (scene) that matters and it doesn’t depend on which one is actually moving. 
What makes the ISAR autofocus problem more difficult than the SAR autofocus problem 
is the uncertainty of both the translational and rotational motion of the target, which 
results in uncertainty of the azimuth angle with respect to the target body axis for each 
radar pulse. The azimuth error is depicted in Figure 2-3, where the red line is the actual line 
of sight (LOS), the blue line is the estimated line of sight, and the azimuth error is the angle 
difference between the red and the blue line for each pulse.  
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Figure 2-3   Illustration of azimuth errors w.r.t. the target body axis from pulse to pulse (the 
red line is the actual LOS and the blue line is the estimated LOS). 

This means that, in general, the ISAR autofocus problem not only has to compensate for 
the range errors (phase error) as in the SAR autofocus problem, but it also has to 
compensate for this azimuth error. Depending on the complexity and characteristics of the 
target motion within the dwell time, the azimuth error corresponding to a constant speed 
linear target motion might be no more than a simple azimuth scaling, which should not 
create any defocusing other than a scaling error of the ISAR image itself. In general, 
however, ISAR autofocus requires a two-dimensional phase and amplitude error 
compensation. 

2.6 Characteristic of the point spread function (PSF) 
In the blind deconvolution or blind equalization problem, the point spread function (PSF) 
or impulse response of the degradation process is estimated either directly or implicitly, but 
nevertheless simultaneously, with the unknown input data. Different applications naturally 
have different point spread functions associated with the underlying physical process. Here, 
we list a few of the common ones encountered in the fields of data communication, 
photographic imaging and synthetic aperture radar (SAR) imaging.  
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2.6.1 PSF in data communication 
Data communication generally deals with complex signals, where both the transmitted data 
sequence and the point spread function are complex. An example of a complex 
communication signal is a quadrature amplitude modulated (QAM) signal. The point 
spread function describes the communication channel dispersion, which is a 
one-dimensional signal that is usually non-minimum phase and is ill-posed. This channel 
dispersion is typically a lowpass process that satisfies the conservation of energy as shown 
below 

 2( ) 1
hn S

h n
∈

=∑ ,   (2.31) 

where hS  is the support of the point spread function ( )h n . Conservation of energy here 
means if the channel has a white noise input, channel dispersion that satisfies equation 
(2.31), guarantees the channel output is also white noise with the same energy. 

2.6.2 PSFs in photographic imaging 
In photographic imaging, common degradations are due to out-of-focus, diffusion and 
motion. Out-of-focus degradations result from focusing to the wrong depth. Diffusion 
degradation is caused by imperfection of the lens or by atmospheric turbulance. Finally, 
motion degradation is the result of relative motion between the camera and the subject in 
the picture during the integration time of the sensor. The point spread functions or 
impulse responses of out-of-focus, diffusion and motion are all two-dimensional, real 
signals satisfying the unity D.C. gain constraint given by 

 
( , )

( , ) 1
hm n S
h m n

∈

=∑ .  (2.32) 

The impulse response of out-of-focus blur is often modeled as a pillbox-shaped function, 
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The impulse response of diffusion blur, is often modeled as a Gaussian blur, 
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and the impulse response of motion blur with an angle θ , a directional blur is, 

 
2 2 21 & {tan( ) }

( , )
0

if m n r n integer m
h m n k

elsewhere

θ⎧ + < =⎪= ⎨
⎪⎩

. (2.35) 

In these expressions k  is a normalizing factor so that the unity D.C. gain in (2.32) is 
satisfied and r  is the radius of the blur. 

 

Figure 2-4   Examples of impulse responses of (a) pillbox-shaped out-of-focus blur, (b) 
diffusion (Gaussian) blur and (c) motion (directional) blur at 25 degrees. 

Example of impulse response of pillbox-shaped out-of-focus blur in (2.33), impulse 
response of diffusion blur in (2.34), and impulse response of motion blur in (2.35) are 
depicted, respectively, in (a), (b) and (c) of Figure 2-4.  

2.6.3 PSF in SAR autofocus 
The point spread function in SAR [28, 29] is naturally defined in the spatial frequency 
(angular wavenumber) domain or so called the k -space. The k -space for 
two-dimensional SAR imaging has two orthogonal axes, say rk  and ck , which are 
frequency variables for range and cross-range respectively. The PSF for the SAR autofocus 
problem [31, 32, 36-40] in the spatial frequency domain is expressed as 

(b)(a)

(c)

Pillbox-shaped out-of-focus blur

Motion blur

Diffusion blur 
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 ( )( , ) cj k
r cH k k e φ= .  (2.36) 

Note that the point spread function in SAR autofocus is generally phase only and in the 
cross-range dimension. However, for inverse synthetic aperture radar (ISAR) autofocus, a 
more general model is usually required due to non-uniform target rotation. 

2.6.4 PSF in ISAR autofocus 
In Section 2.5.3, we described the ISAR autofocus problem. This interpretation suggests 
that in order to capture both the azimuth and range(phase) error the point spread function 
can be modeled by a two-dimensional complex impulse response in the spatial domain, 

( , )h r c , with finite support. In the spatial frequency domain, this PSF can be expressed as 

 ( , )( , ) ( , ) r ci k k
r c r cH k k A k k e φ=  (2.37) 

where ( , )r cA k k  is the amplitude and ( , )r ck kφ  is the phase component of the PSF in the 
spatial frequency domain.  

This error model is crucial for our proposed ISAR autofocus approach. It justifies our 
belief that the Bussgang deconvolution framework is fundamentally applicable to the ISAR 
autofocus problem. 
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3 Self-correcting multi-channel Bussgang 

(SCMB) blind deconvolution 
In this chapter, we introduce the idea of extending the Bussgang blind deconvolution 
framework to applications that do not meet both the independent and identically 
distributed (iid) and known probability density function (pdf) requirements on the input 
signal. We start by investigating the possibility of relaxing the iid requirement and then 
follow by modifying the original Bussgang algorithm by adding a feedback loop and a pdf 
parameter estimator so as to remove the known pdf requirement. The input signal is 
modeled using a Gaussian mixture model; the expectation maximization (EM) algorithm is 
used for the parameters estimation. In addition, a link between the multi-channel Bussgang 
algorithm and the longer equivalent equalizer length is established which suggests that the 
multi-channel Bussgang blind deconvolution algorithm converges more reliably to the 
global optimum [2] than its single-channel counterpart. We call the resulting design the 
self-correcting multi-channel Bussgang (SCMB) blind deconvolution algorithm. Its 
functional block diagram is shown in Figure 3-1 below.  

 

Figure 3-1   Functional block diagram of the self-correcting multi-channel Bussgang 
(SCMB) blind deconvolution algorithm 
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The variables in the functional block diagram of the self-correcting multi-channel Bussgang 
(SCMB) blind deconvolution algorithm in Figure 3-1 are as follow: 

( )x ⋅  - Unknown input data. 
( )ih ⋅  - Unknown impulse response or point spread function (PSF) at channel i . 
( )iv ⋅  - Additive noise at channel i . 
( )iy ⋅  - Measurable output data at channel i . 
( )if ⋅  - Inverse impulse response or equalization filter at channel i . 

( )x ⋅  - Deconvolved output before normalization. 
( )x ⋅  - Deconvolved output with unity variance. 

( )xΔ ⋅  - Feedback signal for pdf error cancellation. 
{}g ⋅  - Zero-memory nonlinearity. 
{}K ⋅  - Process for estimation of pdf parameters using EM algorithm. 
{}P ⋅  - Feedback mechanism for pdf parameters error cancellation.   

ˆ( )x ⋅  - Output of the Bussgang algorithm (estimation of ( )x n ) 

   (the desired signal in the context of adaptive filtering). 
1z−  - Unit frame (iteration) delay. 

 
Note that in the SCMB blind deconvolution algorithm, as shown in the above functional 
block diagram, the error cancellation feedback loop, the pdf estimation and, of course, the 
Bussgang nonlinearity will vary with applications. More application-specific details of these 
modules will be discussed in later chapters. In Chapter 4, details specific to the binary 
image restoration problem will be discussed, and in Chapter 5, details specific to the 
SAR/ISAR autofocus problem will be discussed. 

3.1 Relaxing the iid requirement for Bussgang blind 

deconvolution 
The independent and identically distributed (iid) requirement of the input data, ( )x n , is 
imposed in implementations of the Bussgang algorithm discussed in the literature [1, 12, 
41], so that the deconvolution noise, ( ) ( ) ( )w n x n x n= − , will be zero mean, white and 
Gaussian. We suggest here that while the iid requirement on the input data is a sufficient 
condition, it is not a necessary one. Therefore, it can be relaxed. We illustrate our assertion 
for the single channel case with no additive noise, as shown in Figure 3-2, for simplicity. 
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Figure 3-2   Functional block diagram for generating the deconvolution noise for the single 
channel case with no additive noise  

Note that ( )of n  is the ideal inverse impulse response such that ( ) ( ) ( )oh n f n nδ∗ = , where 
∗  represents convolution and ( )nδ  represents the unit impulse function with (0) 1δ =  
and ( ) 0nδ =  for all 0n ≠ . We can then express the deconvolution noise as 
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f
h
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i L

w n l x n l
= +
∈ −
∈ −

= ∇ −∑ , (3.1) 

where ( ) [ ( ) ( )] ( )ol f k f k h i∇ = −  is a noise-like equalization residue, fL  is the filter length 
of the inverse impulse response and hL  is the filter length of the impulse response. For 
sufficiently long filter lengths hL  and fL , when close to convergence, we propose to 
approximate the noise-like equalization residue ( )l∇  by a zero-mean white Gaussian 
distribution. This is a weaker assumption than the iid assumption on the input data ( )x n  
that is found in the literature. Instead, we view the input ( )x n  as deterministic. Therefore, 
from (3.1) the deconvolution noise ( )w n  is a linear combination of zero-mean white 
Gaussian random variables ( )l∇  which means that it is zero mean, white, and Gaussian. 
As a result, Bussgang blind deconvolution should be applicable to a non-white, correlated 
input signal. 

3.2 Dealing with the unknown pdf in Bussgang blind 

deconvolution  
In digital communication, the pdf of the transmitted signal can quite often be adequately 
modeled by a uniform distribution, because the transmitted symbols are independent and 
identically distributed (iid). In this case, the pdf can be completely known. However, for 
applications other than digital communication, such as image restoration, the pdf of the 
input data won’t be completely known and will vary from application to application. To 

)(nx ( )h n  ( )f n)(ny ( )x n

-
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demonstrate the problem of an unknown pdf in Bussgang blind deoconvolution, we apply 
the algorithm to a binary image restoration problem for which the pdf of the original 
binary image is not completely known. Even though the pdf of the binary image can be 
expressed in the form 0 0( ) ( ) (1 ) ( )xp x p x p x aδ δ= + − −  with the pixel value of either 0  or 
a , the probability of the background op  will not be known, since the original, undistorted 
image will not be available. In this example, the original binary image has a background 
probability of 0.913op =  and is blurred by a 7x7 and a 9x9 out-of-focus point spread 
function (PSF) as defined in (2.33), respectively, in channels one and two, as shown in 
Figure 3-3(a) and Figure 3-3(b). The multi-channel Bussgang algorithm is applied with 
different guesses for op  and the restored images are shown in Figure 3-3 (c-f). In Figure 
3-3 (c), we show that the multi-channel Bussgang blind deconvolution algorithm restores 
the original image flawlessly as in the literature [42] when the correct value of op  is 
known. However, this is actually not very meaningful or useful, since, we will not know 
what the background probability op  should be in reality. Guesses with deviations of 0.213, 
0.113 or even as little as 0.027 from 0.913op =  give bad restoration results as shown in 
Figure 3-3 (d-f), respectively. As a result, we conclude that Bussgang blind deconvolution 
cannot be applied to binary image restoration without modification. 



 28

   

 

Figure 3-3   Problem of unknown pdf in Bussgang blind deconvolution 
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(a) Blurred image in channel 1 (b) Blurred image in channel 2  

(c) Recovered image 0.913op =  (d) Recovered image 0.7op =  

(f) Recovered image 0.94op =  (e) Recovered image 0.8op =  
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3.3 Design of a feedback mechanism for the Bussgang 

algorithm  
In Section 3.2, we illustrated the problem of the multi-channel blind deconvolution 
algorithm, when total knowledge of the pdf of the input signal is not available, using a 
binary image restoration example. In fact, most blind deconvolution problems do not have 
complete knowledge of the pdf of the input signal. Therefore, despite the many theoretical 
advantages of the Bussgang blind deconvolution algorithm, its popularity is very limited. 
To change this picture, we attempt here to remove the known pdf limitation by designing a 
feedback loop to cancel out, or self-correct, the output error caused by the incomplete 
knowledge of the pdf. The intent of this feedback mechanism is to estimate the pdf 
simultaneously and harmoniously with the estimation of the equalization filters in the 
original Bussgang algorithm without jeopardizing its convergence. To explain the concept 
more precisely, let the pdf of the input signal be paramterized by a vector Φ . The 
Bussgang nonlinearity can then be expressed as, 

 { }ˆ( ) ( );x g x⋅ = ⋅ Φ .  (3.2) 

An estimation error in Φ  at iteration i , ( )iΔΦ , will result in a nonlinearity output error 
( )ˆ( ) ixΔ ⋅ . That is, 

 { }( ) ( )?( ) ( ) ( );i ix x g x⋅ + Δ ⋅ = ⋅ Φ + ΔΦ . (3.3) 

Therefore, we introduce the negative feedback term, ( )( ) ixΔ ⋅ , in an attempt to cancel out 
the nonlinearity output error such that,  

 { }( ) ( )ˆ( ) ( ) ( ) ;i ix g x x⋅ = ⋅ − Δ ⋅ Φ + ΔΦ . (3.4) 

The question now is how to find the negative feedback signal ( )( ) ixΔ ⋅ . This unconventional 
feedback loop design is application dependent. A more detailed discussion of the design 
for the binary image restoration problem and for the SAR/ISAR autofocus problem are 
postponed to Chapters 4 and 5, respectively. 
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3.4 Gaussian mixture pdf modeling and estimation 

using the EM algorithm 
In the SCMB blind deconvolution algorithm, a Gaussian mixture model is used to 
parameterize either a portion of or the whole pdf of the input signal depending on the 
application. For example, in the binary image restoration problem, the binary image is 
modeled by a two-component Gaussian mixture model, while in the SAR/ISAR autofocus 
problem, the logarithmic amplitude of the complex SAR/ISAR image is modeled by a 
three-component Gaussian mixture model. Therefore, estimating the unknown pdf is 
reduced to estimating the parameters of the Gaussian mixture model. The general formula 
for the pdf of a Gaussian mixture model of random variable z  is 
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where  
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=

=∑ .  (3.6) 

The number of Gaussian components, C , depends on the application. The parameters of 
the Gaussian mixture model are the means, standard deviations and weights respectively 

cμ , cσ  and cw . They are estimated utilizing the expectation maximization (EM) 
algorithm as described in Section 2.2.3. 

3.5 Global convergence for the multi-channel case 
The global convergence of the original Bussgang blind deconvolution algorithm was 
proved by Albert Benveniste in 1980 [2] for an infinite length equalization filter. The 
multi-channel Bussgang algorithm effectively increases the equalization filter length 
compared to its single-channel counterpart and, therefore, can be expected to converge 
better. The approximation of the deconvolution noise ( )w ⋅  by a zero-mean, white 
Gaussian distribution is also expected to be more appropriate in the multi-channel case, 
since multiple noise-like equalization residues, ( )c l∇ , are summed as compared to the 
single-channel case in (3.1). In the one-dimensional multi-channel case, the expression for 
the deconvolution noise becomes 
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where the equalization residue for each channel is 

 ( ) ( ) ( ) ( )o
c c c cl f k f k h i⎡ ⎤∇ = −⎣ ⎦ . (3.8) 

3.6 Bussgang nonlinearity in SCMB algorithm 
In the derivation of Bussgang blind deconvolution algorithm, the nonlinearity {}g ⋅  results 
from Bayesian estimation, in which the Bayes risk ˆ( )J x , defined in (2.12), is minimized. 
The nonlinearity depends on the choice of the cost functional ( )C ⋅  in the Bayes risk. 

3.6.1 Bayesian estimation with quadratic cost 
In our self-correcting multi-channel Bussgang (SCMB) blind deconvolution algorithm, we 
choose a quadratic cost functional for the Bayes risk. That is, 

 2ˆ ˆ( )) ( ))C x - x(x x - x(x= , (3.9) 

where, x , x  and x̂  are the random variables for the unknown original signal (input 
signal), the output of the equalization filters and the output of the Bussgang nonlinearity, 
respectively. With the choice of a quadratic cost functional, the Bayesian estimate is also 
the minimum mean square error (MMSE) estimation. By using variational calculus and 
substituting (3.9) into (2.12), we have 

 |ˆ ) { } ( | ) { }x xx(x E x | x x p x x dx g x
∞

−∞

= = ∫ , (3.10) 

where | ( | )x xp x x  is the conditional probability density function of x  when x  is known. 

Therefore, the output of the SCMB blind deconvolution algorithm, which is the Bussgang 
nonlinearity, { }g x , is the conditional mean of the inaccessible input signal, x , under the 
condition that the equalization filter output x  is known; its derivation is given in 
Appendix Error! Reference source not found.. 
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3.6.2 Expressing the nonlinearity in terms of the pdf 
The nonlinearity { } { | }g x E x x  in the previous section is more usefully expressed in terms 
of the pdf of the input signal x  and the pdf of the deconvolution noise, w . By using 
Bayes’ rule, the definition of the deconvolution noise w x x= − , and the relationship of the 
probability density functions ( ) ( ) ( )x w xp x p x p x= ∗  caused by the sum of independent 
random variables x w x= + , it can be shown that 

 
( ) ( )

{ } { | }
( ) ( )
x w

x w

x p x p x x dx
g x E x x

p x p x x dx

−
=

−
∫
∫

. (3.11) 

The derivation of the above fundamental Bussgang nonlinearity equation is given in 
Appendix Error! Reference source not found.. 

3.7 Equalization filter updating in the SCMB 

algorithm 
The equalization filter update in the Bussgang algorithm usually employs a stochastic 
gradient-based adaptive filtering technique. A stream-based digital signal processing (DSP) 
technique such as the least mean square (LMS) algorithm is often used. The choice 
between stream-based versus frame-based approaches for updating the equalization filter is 
analogous to the direct convolution versus an FFT implementation of an FIR filter. The 
price that frame-based approaches impose is that the output is delayed by a frame interval. 
However, with the self-correcting multi-channel Bussgang (SCMB) algorithm, a 
frame-based approach is more suitable, since the feedback mechanism already requires a 
frame delay to exploit the statistics collected from the previous frame. Also for 
frame-based applications, such as image or video processing, a frame-based approach fits 
the problem naturally.  

3.7.1 Estimated deconvolution noise 
To develop an update rule for the equalization filter ( )cf ⋅ , it is reasonable to seek to 
minimize the energy of the deconvolution noise ( ) ( ) ( )w x x⋅ = ⋅ − ⋅ . However, the 
deconvolution noise is not computable since the input signal ( )x ⋅  is always unknown. 
Instead we minimize the energy of the so- called estimated deconvolution noise, ( )ε ⋅ , that 
we define as 
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 ˆ( ) ( ) ( )x xε ⋅ = ⋅ − ⋅ ,  (3.12) 

which is the difference between the normalized deconvolution output and the nonlinearity 
output. 

By using variational calculus, the mean square error (MSE) *{ ( ) ( ) }E ε ε⋅ ⋅  of the estimated 
deconvolution noise is minimized with respect to the equalization filter coefficients under 
the assumption that the equalization filters are independent of the estimated deconvolution 
noise. We conclude that the estimated deconvolution noise is orthogonal to the input of 
the equalization filter. That is, in the two-dimensional case,  

 *{ ( , ) ( , ) } 0,cE y m k n l m n cε− − = ∀  (3.13) 

where ( , )cy m n  is the input of the equalization filter ( , )cf m n  at the c -th channel.  

3.7.2 Multi-channel Wiener filter 
Beginning with the orthogonality principle in (3.13) and substituting for the estimated 
deconvolution noise ( , )m nε ,  
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m n f p q y m p n q x m nε = − − −∑∑ , (3.14) 

then after some minor manipulation of the equation the equalization filter coefficients that 
minimize the estimated equalization error can be seen to satisfy the equations  
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= =− =−
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⎣ ⎦
∑ ∑ ∑ , (3.15) 

where the channel index [1, ]i C∈ . The equalization filter coefficient indexes m  and n  
extend over the range [ , ]m P P∈ −  and [ , ]n Q Q∈ − , and the two-dimensional 
cross-correlations are given by  

 *( , ) { ( , ) ( , ) }
c iy y c ir p q E y m n y m p n q= − − , (3.16) 

and 

 *
ˆ ˆ( , ) { ( , ) ( , ) }

ix y ir p q E x m n y m p n q= − − . (3.17) 
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It is clear that solving for the equalization filter cf  is equivalent to finding the solution for 
the multi-channel Wiener-Hopf equation in (3.15). In the actual implementation, equation 
(3.15) is expressed in a compact matrix form as shown below,  

 ˆy x yf R=R ,  (3.18) 

where the dimension of yR  is (2 1)(2 1) (2 1)(2 1)C P Q C P Q+ + × + +  and the dimensions of f  

and x̂ yR  are both (2 1)(2 1) 1C P Q+ + × .  

 

The multi-channel equalization filter vector f  is formed by stacking the column scan of 
the two-dimensional equalization filter jf  from each channel as described below, 
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where {}Vec ⋅  represents the column scan of a matrix. 

The multi-channel input correlation matrix yR  used in the compact matrix form of the 

multi-channel Wiener-Hopf equation in (3.18) is composed of a hierarchy of matrices as 
shown below, 
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( , )i j m nR  is a Toeplitz matrix, i jR  is a block Toeplitz matrix and yR  is a tiled block 
Toeplitz matrix. 

Similar to the procedure used to construct the multi-channel equalization filter vector f , 
the multi-channel cross-correlation vector between the output and the input, x̂ yR , is 
formed by stacking the column scan of the two-dimensional cross-correlation ˆ cx yR  from 

each channel as shown below, 

 
?

? �

?

( , ) ( , )

, { }
( , ) ( , )

c c

c c c

c c

x y x y

x y x y x y

x y x y

r P Q r P Q

R Vec
r P Q r P Q

− − −⎡ ⎤
⎢ ⎥

= =⎢ ⎥
⎢ ⎥−⎣ ⎦

R R  and  
1ˆ

ˆ

ˆ C

x y

x y

x y

R

R
R

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (3.23) 

By solving the compact matrix form of the Wiener-Hopf equation using direct matrix 
inverse of yR  in (3.18), the multi-channel equalization filter update for the SCMB 

algorithm can be accomplished. 

3.7.3 Efficient multi-channel Wiener filter solver utilizing the 

FFT 
The update of the single-channel or the multi-channel equalization filter of the proposed 
SCMB algorithm requires solving the Wiener-Hopf equation. When the support of the 
two-dimensional equalization filter is large, especially in the multi-channel case, solving for 
the equalization filter using (3.18) directly, which does not exploit the structure of the input 
correlation matrix yR , can be exceptionally costly in terms of both the memory and the 

computation time required. For example, in some cases, it is desirable to have a 
two-dimensional equalization filter with the support size as large as the image, say 
512 512× . Assuming a two-channel scenario, the matrix yR  that needs to be inverted in 

(3.18) would have a dimension of 524288 524288× . Thus, it is obviously worthwhile to 
pursue a more memory efficient approach to solving for the equalization filter.  

In the single-channel case, the multi-channel input correlation matrix, yR  in (3.18), 
reduces to 11R as shown in (3.22), which is a block Toeplitz matrix. Fast algorithms exist in 
the literature that take advantage of the block Toeplitz structure [43-46]. Most of these fast 
algorithms are deterministic, iterative methods that make use of both the matrix inverse 
lemma and the fact that both the block Toeplitz matrix, 11R , and its inverse, 1

11
−R , are 

block persymmetric matrices. That is,  

 ( ) ( )(2 1),(2 1) 11 (2 1),(2 1) 11
T

P Q P QJ J+ + + + =R R , (3.24) 
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and 

 ( ) ( )1 1
(2 1),(2 1) 11 (2 1),(2 1) 11

T

P Q P QJ J− −
+ + + + =R R , (3.25) 

where (2 1),(2 1)P QJ + +  is the block exchange matrix as shown below, 

 

(2 1)

(2 1)
(2 1),(2 1) (2 1)

(2 1)

(2 1)(2 1)

0 0 0 0 1
0 1 0

,
0 0

0 0 1 0 0

P

P
P Q P

P

PQ

J
J

J J

J

+

+
+ + +

+

++

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

. (3.26) 

These fast algorithms can be generalized into the Trench algorithm and the reverse Trench 
algorithm. In the Trench algorithm approach, the column scan of the two-dimensional 
equalization filter 1f , 1f , of dimension (2 1)(2 1) 1P Q+ + × , starts with the dimension of a 
single column of length (2 1)P +  and grows by adding (2 1)P +  elements to its length with 
each iteration for 2Q  iterations. In contrast, for the reverse Trench algorithm approach, 
the algorithm first patches the block Toeplitz matrix 11R  into a block circulant matrix, 

11R , with a dimension of (2 1)P + (4 1)Q + × (2 1)P +  (4 1)Q + . Because of the block 
circulant structure, its inverse 11Q  is also a block circulant matrix, which can be efficiently 
obtained by using the Fast Fourier Transform (FFT). The dimension of 11Q  then shrinks 
by a dimension of (2 1)P +  elements with each iteration for 2Q  iterations before 
reaching the final solution.  

In the single channel implementation of the equalization filter update for the SCMB 
algorithm, both the Trench algorithm and the reverse Trench algorithm-based approaches 
are utilized to reduce the required memory and computation time. We will first outline the 
Trench algorithm-based approach here and will strip off the subscript representing the 
channel number that we use in the general multi-channel case. Then, equations (3.21) and 
(3.22) become   

 2 1

(0) ( 1) ( 2 1) ( 2 )
(1) (0) ( 2 2) ( 2 1)

(2 1) (2 2) (0) ( 1)
(2 ) (2 1) (1) (0)

Q

Q Q
Q Q

Q Q
Q Q

+

⎡ ⎤− − + −
⎢ ⎥− + − +⎢ ⎥
⎢ ⎥=
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥−⎣ ⎦

R R R R
R R R R

R
R R R R

R R R R

. (3.27) 
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Noticing that yR  is replaced by 2 1Q+R , we replace the subscript y  with the number of 
rows or columns of the Toeplitz matrices in yR  to facilitate a nested structure 

representation as shown below: 

 2 2
2 1

2 (0)
Q Q

Q T
Q

−
+

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

R R
R

R R
, (3.28) 

where  

 2

(0) ( 1) ( 2 1)
(1) (0) ( 2 2)

(2 1) (2 2) (0)

Q

Q
Q

Q Q

⎡ ⎤− − +
⎢ ⎥− +⎢ ⎥=
⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

R R R
R R R

R

R R R

, (3.29) 

and 

 2 2

( 2 ) (2 )
( 2 1) (2 1)

,

( 1) (1)

T

T

Q Q

T

Q Q
Q Q

−

⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥− + −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

R R
R R

R R

R R

. (3.30) 

The Wiener-Hopf equation in (3.18) can be expressed in the single channel case with the 
channel number dropped,  

 ˆ2 1Q x yf R+ =R   (3.31) 

where,     

 

ˆ

ˆ
ˆ

ˆ

(1)(1)
(2)(2)

,

(2 1)(2 1)

xy

xy
x y

xy

f and R

QQ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ++ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Rf
Rf

Rf

. (3.32) 

Note that f  and x̂yR  are, respectively, the two-dimensional equalization filter and the 

cross-correlation matrix, as defined in (3.19) and (3.23), with the channel subscript dropped. 
( )nf  and ˆ ( )xy nR  are the n th−  column of the matrix f  and x̂yR , respectively. ( )nf  

and ˆ ( )xy nR  are, respectively, the vectorized forms of f  and x̂yR , such that, 
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ˆ

ˆ
ˆ

ˆ

(1)(1)
(2)(2)

( ) , ( )

( )( )

xy

xy
xy

xy

n and n

nn

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

Rf
Rf

f R

Rf

. (3.33) 

Equations (3.28), (3.29) and (3.30) can be rewritten in their iterative form at the n th−  
iteration, respectively as, 

 1 (0)
n n

n T
n

−
+

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

R R
R

R R
  (3.34) 

 

(0) ( 1) ( 1)
(1) (0) ( 2)

( 1) ( 2) (0)

n

n
n

n n

⎡ ⎤− − +
⎢ ⎥− +⎢ ⎥=
⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

R R R
R R R

R

R R R

 (3.35) 

 

( ) ( )
( 1) ( 1)

,

( 1) (1)

T

T

n n

T

n n
n n

−

⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥− + −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

R R
R R

R R

R R

 (3.36) 

With the variables needed defined above, the Trench algorithm-based approach [46] used 
to solve the Wiener-Hopf equation in (3.31) for the equalization filter in the SCMB 
algorithm is given in the table below: 

Initialization 
 1 (0) ( 1)w = − −R R   

 1 (0) (1)T Tv −= −R R   

 1 1(0) (1)T wα = +R R   

 1
ˆ(1) (0) (1)xy

−=f R R   

Main iteration for [1, , 2 ]n Q= …  

 ? ( ) ( 1)T
n n xy xyv n nβ = + +R R  where, 

 1( ) ( )
( 1)

0 n n

n w n
n

I
α β−⎡ ⎤ ⎡ ⎤

+ = +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

f
f  

 ? ( ( 1))T
n n nw nβ+ −= + − +R R  

(2 1),( )

(2 1)

(2 1)

ˆ

ˆ ( ( 1)) ( ( 1))
ˆ

n P n n

P

P

J

n J n

I J I

− + −

+

+

=

− + = − +

=

R R

R R
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1

ˆ0
ˆ

T
n n n

n n

Iw
w v

α β−
+ +

⎡ ⎤⎡ ⎤
= − ⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦
 

 ? ( 1)T T
n n nv nβ = + +R R  

 1
1

ˆ
ˆ

0
nn

n n n

wv
v

I
α β−

+ −

⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 

 1
T T

n n n n nα α β α β−
+ − += −  

Table 3-1   Iterative solution of a doubly block Toeplitz set of linear equations (Trench 
algorithm-based approach) 

It turns out that there is a typographical error in one of the key equations in the original 
paper [46]. Instead of the step  

 1

ˆ0
ˆ

T
n n n

n n

Iw
w v

α β−
+ +

⎡ ⎤⎡ ⎤
= − ⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦
 (3.37) 

as shown in the table above, the paper erroneously has,  

 1

0
ˆ

T
n n n

n n

I
w

w v
α β−

+ +

⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (3.38) 

with (2 1)
ˆ

PI J I+=  replaced by I . We determined this by re-deriving all the equations in [46] 
and comparing the differences. 

In the multi-channel case, the multi-channel input correlation matrix yR  is a tiling of  
block Toeplitz matrices ijR but itself is not a block Toeplitz matrix. As a result, both the 

Trench algorithm and the reverse Trench algorithm-based approaches are not applicable. 
Therefore, we developed an extremely efficient gradient-based method that can handle 
both the single channel and the multi-channel cases and does not require any matrix 
operations with a dimension of (2 1)(2 1) (2 1)(2 1)C P Q C P Q+ + × + +  as required by the direct 
method in (3.18). Instead, an FFT and an IFFT of dimension (2(2 1) 1) (2(2 1) 1)P Q+ − × + −  
are used.  

The outline of the derivation of our multi-channel gradient-based equalization filter update 
is given below. For simplicity, the support of the equalization filter is assumed to be 

1 2D D×  instead of (2 1) (2 1)P Q+ × + , and the support of the input of the equalization filter 
is assumed to be 1 2N N× , such that 1 1N D≥  and 2 2N D≥ , without loss of generosity. 
From the functional block diagram of the self-correcting multi-channel Bussgang (SCMB) 
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blind deconvolution algorithm in Figure 3-1, we define the error between the deconvolved 
output and the Bussgang nonlinearity output in the two-dimensional case as 

 1 2 1 2 1 2ˆ( , ) ( , ) ( , )e n n x n n x n n= − , (3.39) 

where 1 10 1n N≤ ≤ −  and 2 20 1n N≤ ≤ − , which can be more conveniently expressed in its 
vector form given by 

 ˆ= −e x x .  (3.40) 

To update the equalization filter ( )n
if of channel i  at the n th−  iteration, the cost J , 

defined as the sum of the error energy samples, is minimized using a steepest descent 
approach, 

 ( 1) ( )
( )

n n
i i n

i

Jf f
f
δμ

δ
+

⎡ ⎤
= − ⎢ ⎥

⎢ ⎥⎣ ⎦
, (3.41) 

where μ  is the step size and  

 HJ = e e .  (3.42) 

The deconvolved output, x , can be written in terms of the input of the equalization filter, 

1 2( , )iy n n , and the equalization filter, 1 2( , )if n n , in its matrix-vector form as 

 
1

C

i i
i=

= ∑x Y f .  (3.43) 

iY  is a 1 2 1 2N N N N× , block circulant matrix,  

 

2

2

2

2

(0) ( 1) (1)
(1) (0)

( 1)
( 1) (0)

i i i

i i
i

i

i i

N terms

N

N
N

⎡ ⎤−
⎢ ⎥
⎢ ⎥= ⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

Y Y Y
Y Y

Y
Y

Y Y

, (3.44) 

and ( )i sY  is a 1 1N N×  circulant matrix,  

 

1

1

1

1

(0, ) ( 1, ) (1, )
(1, ) (0, )

( )
( 1, )

( 1, ) (0, )

i i i

i i
i

i

i i

N terms

y s y N s y s
y s y s

s
y N s

y N s y s

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥

−⎣ ⎦

Y . (3.45) 
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if  is a 1 2 1N N ×  vector and is the column scan of the matrix iF  formed by zero-padding 
the equalization filter 1 2( , )if n n from a support size of 1 2D D×  to a support size of 1 2N N×  
which can be expressed as 

 { }i ivec=f F ,  (3.46) 

and 

 

1 2

2

1 1 2

(0,0) (0, 1) 0

( 1,0) ( 1, 1) 0

0 0 0

i i

i i i

N N matrix

f f D

f D f D D

×

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= − − −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

F . (3.47) 

Now substituting (3.40) and (3.43) into (3.42), we have 

 
1 1

?
HC C

i i j j
i j

J
= =

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑x Y f x Y f . (3.48) 

By applying variational calculus on J , the gradient, 
i

Jδ
δ f

, becomes 

 ˆ2 2H H H
i i i i i j j

j ii

J
≠

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑Y x Y Y f Y Y f
f

δ
δ

. (3.49) 

Notice that H
i jY Y  from the expression above represents the two-dimensional circular 

cross-correlation between 1 2( , )iy n n  and 1 2( , )jy n n , which can be expressed as 

 
1 2 1 2 1 2

{ }
i j

H
i j y y

N N N N N xN

BC
×

=Y Y R , (3.50) 

where {}BC ⋅  is the block circulant operator. The cross-correlation matrix and its elements 
are respectively, 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 1 1 2

2 2

1 2 1 1 2

1 2

1 1 1 1 1
2 2 2 2 2

1 1
2 2

1 1 1 1 1
2 2 2 2 2

( , ) ( ,0) ( , )

(0, ) (0,0) (0, )

( , ) ( ,0) ( , )

i j i j i j

i j i j i j i j

i j i j i j

N N N N N
y y y y y y

N N
y y y y y y y y

N N N N N
y y y y y y

N N matrix

r r r

r r r

r r r

− − − − −

− −

− − − − −

×

⎡ ⎤− − − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

R , (3.51) 
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and 

 { }( , ) ( , ) ( , )
i jy y i jr r s E y m n y m r n s= − − , (3.52) 

where  is the ceiling operator. 

Similarly, H
i iY Y  and ˆH

iY x  can be expressed as functions of the correlation matrices 

i iy yR  and ˆ ix yR which are 

 
1 2 1 2 1 2

{ }
i i

H
i i y y

N N N N N xN

BC
×

=Y Y R   (3.53) 

and 

 ˆˆ { }
i

H
i x yvec=Y x R .  (3.54) 

 Where the auto-correlation matrix 
i iy yR and the cross-correlation function ˆ ixyR are 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 1 1 2

2 2

1 2 1 1 2

1 2

1 1 1 1 1
2 2 2 2 2

1 1
2 2

1 1 1 1 1
2 2 2 2 2

( , ) ( ,0) ( , )

(0, ) (0,0) (0, )

( , ) ( ,0) ( , )

i i i i i i

i i i i i i i i

i i i i i i

N N N N N
y y y y y y

N N
y y y y y y y y

N N N N N
y y y y y y

N N matrix

r r r

r r r

r r r

− − − − −

− −

− − − − −

×

⎡ ⎤− − − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

R  (3.55) 

and 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 1 1 2

2 2

1 2 1 1 2

1 2

1 1 1 1 1
? � 2 2 2 2 2

1 1
ˆ ? � 2 2

1 1 1 1 1
? � 2 2 2 2 2

( , ) ( ,0) ( , )

(0, ) (0,0) (0, )

( , ) ( ,0) ( , )

i i i

i i i i

i i i

N N N N N
x y x y x y

N N
xy x y x y x y

N N N N N
x y x y x y

N N matrix

r r r

r r r

r r r

− − − − −

− −

− − − − −

×

⎡ ⎤− − − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

R . (3.56) 

Substituting (3.50), (3.53) and (3.54) into (3.49), we have, 

 ˆ2 { } 2 { } { }
i i i ji y y i y y jx y

j ii

J vec BC BC
≠

= − + +∑R R f R f
f

δ
δ

, (3.57) 
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which can be written in terms of the 2D-DFT, {}⋅F  and its inverse 1{}− ⋅F  as shown 
below, 

 { } { }{ } { } { }{ }1 1
ˆ2 2

i i i ji y y i y y jx y
j ii

J vec − −

≠

⎧ ⎫⎪ ⎪= − + +⎨ ⎬
⎪ ⎪⎩ ⎭

∑R R F R F
f

δ
δ

F F F F F F . (3.58) 

From (3.58), the gradient needed for the steepest descent approach involves a few forward 
and backward 1 2N N×  2D-DFTs of the correlation matrices. However, the gradient that 

we really want is the gradient of the cost, J , with respect to if  , 
i

J
f

δ
δ

, with no 

zero-padding and not 
i

J
f

δ
δ

. We incorporate the independence between the input of the 

equalization filter, 1 2( , )iy n n , and the error between the deconvolution output and the 
Bussgang nonlinearity output, 1 2( , )e n n into the steepest descent algorithm, that is, 

*
1 1 2 2 1 2{ ( , ) ( , ) } 0iE y n k n k e n n− − = , 1 2,k k∀ . As a result, only the center 1 2(2 1) (2 1)D D− × − terms 

of the correlation matrices are needed. By reflecting this fact into (3.58), the expression 
becomes 

( ) ( )
{ } { }{ }{ } ( ) ( ) { } { }{ }{ }1 2 1 2 1 2

2 2 2 2

1 1
ˆ,

, ,
2 2

i i i ji D D D DD D y y i y y jx y
j ii

J vec C
f

− −

≠

⎧ ⎫⎧ ⎫⎪ ⎪ ⎪⎪= − + +⎨ ⎨ ⎬⎬
⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

∑R R F R Fδ
δ

S F F F S F F F

   (3.59) 

where 
1 2, {}D DC ⋅  is an operator to extract the center 1 2D D×  submatrix, and 

( ) ( )1 2
2 2,

{}
D D

⋅S  

performs a down and right circular shift of 1 2

2 2
D D⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟×
⎝ ⎠ ⎝ ⎠

. The correlation matrices, ˆ ix yR , 

i iy yR  and 
i jy yR are the center 1 2(2 1) (2 1)D D− × −  submatrices of ˆ ix yR , 

i iy yR  and 
i jy yR  

and finally iF  is a 1 2(2 1) (2 1)D D− × −  defined as 

 

1 2

2

1 1 2

(2 1) (2 1)

0 0 0

0 (0,0) (0, 1)

0 ( 1,0) ( 1, 1)

i i i

i i

D D matrix

f f D

f D f D D
− × −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

F  (3.60) 

In summary, our multi-channel equalization filter update approach as represented by 
equations (3.41) and (3.59) in practice requires only a few 1 2(2 1) (2 1)D D− × −  2D-FFTs. 
The order of complexity for our approach in the single channel case is 
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1 1 1 1{(2 1)(2 1) log[(2 1)(2 1)]}D D D D− − − −O  times the number of iterations, while the order of 
complexity in the direct method is 3 3

1 2{ }D DO . The number of iterations required in our 
equalization filter update approach is small (15-35) since x̂ , which is required in the 
gradient calculation, is itself evolving in the outer loop of the SCMB blind deconvolution 
algorithm. Our algorithm is also efficient in terms of memory usage: the memory storage 
required is 1 2{(2 1)(2 1)}D D− −O , while the memory storage required for the direct method 
is 2 2

1 2{ }D DO . Finally, the run time for a typical ISAR autofocus problem using our 
algorithm is about 17 times faster and the focused ISAR image is visually indistinguishable 
from that of the direct method. 

3.8 Self-correcting multi-channel Bussgang (SCMB)  
So far we have explained the key elements of the self-correcting multi-channel Bussgang 
(SCMB) blind deconvolution algorithm. Even though the general design philosophy 
should apply to all classes of signal, the actual form of the feedback and the way the input 
signal is modeled are application dependent. In Chapters 4 and 5, we go into more specific 
details of the SCMB algorithm for the binary image restoration problem and the 
SAR/ISAR autofocus problem respectively. 
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4 Binary image restoration using SCMB blind 

deconvolution 
In this chapter, we present the details of the self-correcting multi-channel Bussgang 
(SCMB) blind deconvolution that were not covered in Chapter 3 and which are specific to 
the binary image restoration problem. They include the design of the feedback loop, 
modeling the probability density function (pdf), and the Bussgang nonlinearity. Simulation 
results applying the SCMB blind deconvolution algorithm to binary images that have been 
blurred by point spread functions (PSF) including out-of-focus blurs, diffusion blurs and 
motion blurs conclude this chapter. 

4.1 Design of a feedback mechanism for SCMB blind 

deconvolution 
The purpose of the feedback loop is to cancel the output error, x̂Δ , caused by the 
incomplete knowledge of the pdf. In the binary image case, each pixel in the image is 
modeled by the pdf    

 ( ) ( ) (1 ) ( )x o op x p x p x aδ δ= + − − , (4.1) 

where the two binary levels 0 and a  correspond to the background with probability op  
and the foreground with probability (1 )op− . ( )xδ  is the Kronecker delta function. 

With the choice of a quadratic cost functional for the Bayes risk in (2.12), the binary image 
pdf model in (4.1) and the zero-mean white Gaussian model for the deconvolution noise, 
from (3.11) the Bussgang nonlinearity for binary image becomes, 
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−⎡ ⎤
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. (4.2) 

Equation (4.2) assumes that we know op  perfectly, which gives the correct nonlinearity 
output, x̂ . In reality, however, we have, 

 ˆ ˆ { , }o ox x g x p p+ Δ = + Δ , (4.3) 
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where the error in the pdf parameter, opΔ , results in the nonlinearity output error, x̂Δ . 
Therefore, we perturb the nonlinearity input x  with a feedback gain, xΔ , so that the 
effect of the pdf parameter error will be cancelled out. Thus, 

 ˆ { , }o ox g x x p p= + Δ + Δ . (4.4) 

The output error, x̂Δ , can be approximated from the partial derivatives of {}g ⋅ . Setting 
this approximated error to zero gives 

 { , } { , }ˆ 0o o
o

o

g x p g x p
x x p

x p
⎡ ⎤∂ ∂⎡ ⎤Δ = Δ + Δ⎢ ⎥⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

. (4.5) 

The gain, xΔ , is then equal to 
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g x p
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x p
g x p

x

⎡ ⎤∂
⎢ ⎥∂⎣ ⎦Δ = − Δ
∂⎡ ⎤
⎢ ⎥∂⎣ ⎦

. (4.6) 

Since the mean of the binary signal, x , is 

 (1 )ox a p= − ,  (4.7) 

the mean of the nonlinearity output, x̂ , with the pdf parameter error becomes 

 ˆ (1 )o ox a p p= − − Δ .  (4.8) 

From equations (4.7) and (4.8), we can estimate the pdf parameter error, opΔ , from the 

mean of the binary image, x , and the mean of the nonlinearity output, x̂ : 

 ˆ
o

x xp
a
−

Δ = .  (4.9) 

By utilizing equation (4.2), the partial derivatives of { , }og x p  with respect to op  and x  
are 
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 (4.10) 

 and 
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. (4.11) 

Dividing (4.10) by (4.11) gives 
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It is important to realize that the ratio of the derivatives in equation (4.12) does not depend 
on the deconvolved ouput, x , which will vary as the Bussgang algorithm iterates. This 
implies that the approach should be robust and independent of the initial guess.  

Substituting equations (4.9) and (4.12) into (4.6) gives 
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a p p a
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. (4.13) 

By recognizing the variance of the binary signal, 2
xσ , as, 

 ( )2 2 1x o oa p pσ = − ,  (4.14) 

we substitute equation (4.14) into (4.13) to get, 
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2
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ˆw

x
x x x

σ
σ
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.  (4.15) 

The signal-to-deconvolution-noise ratio, SDNR is defined as 
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x

w
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σ
σ

= .  (4.16) 

Notice that the feedback gain equation (4.15) can then be rewritten as 

 ˆx xx
SDNR

⎛ ⎞−
Δ = ⎜ ⎟⎜ ⎟

⎝ ⎠
.  (4.17) 

Since the SDNR  is unknown and may vary from iteration to iteration, we replace SDNR  
by 1/ k  and incorporate the iteration number, i . To improve the appearance of the result, 
we also switch the symbol that we used for the mean from an overbar to {}E ⋅ . With these 
changes, the feedback gain equation becomes 
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 ( ) ( 1)ˆ( { ( )} { ( ) })i ix k E x E x −Δ = ⋅ − ⋅ . (4.18) 

Note that ( )ixΔ  is a constant gain for the current frame (iteration), i , which requires the 
expected value of the output signal, ( 1)ˆ{ ( ) }iE x −⋅  from the previous frame (iteration). Even 
though the form of the feedback is known at this point, the gain, k , is not yet known and 
the expectation of the input (original) signal { ( )}E x ⋅  is not accessible.  

Before we address these issues, it is helpful to look at how the feedback loop gain in (4.18) 
fits into the rest of the Bussgang blind deconvolution framework. To better understand the 
problem, we reorganize the block diagram in Figure 3-1 slightly in order to facilitate the 
analysis in light of control theory, as depicted in Figure 4-1. However, because the 
closed-loop transfer function involves mixing stream (samples within a frame) and frame 
(iteration) information and simultaneously updating the nonlinearity and equalization filters, 
the feedback loop design is a difficult and unconventional task. 
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Figure 4-1   Self-correcting multi-channel Bussgang (SCMB) blind deconvolution algorithm 
in closed loop form 
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With the help of the closed-loop model shown in Figure 4-1, we continue with the design 
using a control theory context. The self-correcting multi-channel Bussgang (SCMB) 
algorithm is a discrete dynamic system in terms of the iteration number, where the plant is 
frame varying and nonlinear. The feedback loop gain ( )ixΔ in (4.18), can be seen in the 
steady state to satisfy the relation 

 ( )ˆlim { ( ) } { ( )}i

i
E x E x

→∞
⋅ = ⋅ . (4.19) 

Therefore, the steady-state feedback loop gain, ( )x ∞Δ , is equal to zero. Thus, in the steady 
state the closed-loop system becomes an open-loop system and the self-correcting 
multi-channel Bussgang (SCMB) algorithm becomes equivalent to the original 
multi-channel Bussgang algorithm. 

As mentioned earlier, even though the form of the feedback loop is clear, the gain k  and 
{ ( )}E x ⋅  are still unknown. By exploiting the fact that the deconvolution noise, ( )w ⋅ ,  is 

zero mean, and assuming that the nonlinearity {}g ⋅  has little affect on the mean at 
convergence, that is ˆ{ ( )} { ( )}E x E x⋅ ≈ ⋅ at convergence, we conclude that 

 1k ≈ .  (4.20) 

The derivation of this result is based on Figure 4-1. The deconvolution noise, ( )w ⋅  is 
known to be a zero-mean white Gaussian sequence, which by definition, is given by 

 ( ) ( ) ( )w x x⋅ = ⋅ − ⋅ .  (4.21) 

Since the output signal of the forward loop ( ) ( ) / xx x σ⋅ = ⋅  is, in fact, the normalized 
deconvolution output, the normalized deconvolution noise  

 ( ) ( ) ( )v x x⋅ ⋅ − ⋅ ,  (4.22) 

is also zero-mean white and Gaussian. From Figure 4-1, the input to the plant (Bussgang 
nonlinearity), ( )x ⋅ , can be expressed as 

 ( )( ) ( ) ( 1)ˆ( ) ( ) { ( )} { ( ) }i i ix x k E x E x −⋅ = ⋅ − ⋅ − ⋅ . (4.23) 

By substituting (4.23) into (4.22) and adding the frame (iteration) index i  to (4.22), we 
have 
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 ( )( ) ( ) ( 1)ˆ( ) ( ) { ( )} { ( ) } ( )i i iv x k E x E x x−⋅ = ⋅ + ⋅ − ⋅ − ⋅ . (4.24) 

By taking the expected values of both sides of this equation at convergence, we have 

 ( )( ) ( ) ( )ˆ{ ( ) } { ( ) } { ( )} { ( ) } { ( )}E v E x k E x E x E x∞ ∞ ∞⋅ = ⋅ + ⋅ − ⋅ − ⋅ . (4.25) 

By exploiting the fact that ( )v ⋅  has a zero mean and rearranging equation (4.25), we get 

 ( ) ( )ˆ0 { ( ) } { ( ) } ( 1) { ( )}E x k E x k E x∞ ∞= ⋅ − ⋅ + − ⋅ . (4.26) 

Therefore, with the assumption that the nonlinearity {}g ⋅  does not change the mean value 
significiantly at convergence, ( ) ( )ˆ{ ( ) } { ( ) }E x E x∞ ∞⋅ ≈ ⋅ , from (4.26) we conclude that 1k ≈  as 
stated in (4.20). 

Note that the impulse response of the normalized equalization residue ( )( ) ir ⋅  in the system 
is unknown and frame varying. There is no known control solution for this system. 
However, with the aid of methods like root locus and using the concept of envelope design, 
we can control the dynamic performance of the closed-loop system in Figure 4-1 so that 
the system is stable and converges quickly to the solution. The resulting design gives the 
optimal value of k  to be 1.2k = . 

In Figure 4-2 below, we give an example of the convergence of the algorithm for different 
choices of the feedback gain, k , ranging from 0.7 to 1.8. For feedback gains between 0.8 
and 1.5, the system is stable and converges to the highest 
signal-to-estimated-deconvolution-noise ratio (SEDNR). Also, in Figure 4-3, we show the 
convergence of the background probability, op , for different choices of the feedback gain. 
Again for feedback gains between 0.8 and 1.5, the background probability, op , converges 
to the correct value of 0.913. This confirms that our choice of the feedback gain of 1.2k =  
is reasonable. 

Now the unknown gain k  has been resolved, in order to finish the feedback loop design, 
we need to solve for the unknown expectation of the input (original) signal, { ( )}E x ⋅ . When 
the expectation of the input signal is expected to be small, we can just set it to zero and let 
the feedback loop account for it. Otherwise, we can get an estimate of { ( )}E x ⋅  using the 
Gaussian mixture model and expectation maximization (EM) algorithm to estimate the 
parameters of the pdf for updating the nonlinearity ( ){} ig ⋅ . 
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Figure 4-2   Convergence of the signal-to-estimated-deonvolution-noise ratio (SEDNR) for 
different choices of the feedback gain. 

 

Figure 4-3   Convergence of the background probability for different choices of the  
feedback gain.    

0 10 20 30 40 50 60 70 80
5

10

15

20

iteration

S
E

D
N

R
dB

Convergence of SEDNRdB w.r.t. different feedback gain k

 

 

k=0.7

k=0.8

k=0.9

k=1.0

k=1.1

k=1.2

k=1.3

k=1.4

k=1.5

k=1.6

k=1.7

k=1.8

10 20 30 40 50 60 70

0.84

0.86

0.88

0.9

0.92

0.94

0.96

iteration

p o

Convergence of po w.r.t. different feedback gain k

 

 

k=0.7

k=0.8

k=0.9

k=1.0

k=1.1

k=1.2
k=1.3

k=1.4

k=1.5

k=1.6

k=1.7

k=1.8



 53

4.2 Gaussian mixture pdf modeling and estimation 

using the EM algorithm 
In the binary image case, the binary pixel value, ( )x ⋅ , is real and can be modeled by a 
general two-component Gaussian mixture, 
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instead of the more obvious binary model used in (4.1). This is because the 
two-component Gaussian mixture pdf model can fit both the perfect and distorted binary 
images while the other cannot. As described in Section 2.4, the expectation maximization 
algorithm is used to estimate the parameters of the Gaussian mixture model so that the 
Bussgang nonlinearity, {}g ⋅ , can be updated. 

4.3 Nonlinearity of SCMB for binary images 
The general form of the nonlinearity of the SCMB algorithm is given in (3.11) for an input 
signal with an arbitrary distribution. For a binary signal the pdf is given by 

 ( ) ( ) (1 ) ( )x o op x p x p x aδ δ= + − − , (4.28) 

where op  is the probability of 0x =  (the background) and (1 )op−  is the probability of 
x a=  (the foreground). 

By using the zero-mean white Gaussian assumption for the deconvolution noise ( )w ⋅ , 
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the nonlinearity for the binary signal becomes 
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where xσ  is the standard deviation of the input signal. Because of the normalization in the 
functional block diagram of the SCMB algorithm shown in Figure 3-1, we can set 1xσ = . 

The signal to deconvolution noise ratio is defined as 
2

2 2

1x

w w

SDNR
σ
σ σ

= =  which reflects 

how good the solution will be and how well the Bussgang process assumption holds. We 
typically set 100000 50dBSDNR = = .  

4.4 Simulation results 
In this section, we experiment with the design of the self-correcting multi-channel 
Bussgang (SCMB) blind deconvolution algorithm for binary images. The original 
undistorted binary image, the “Text image”, used in the experiment is shown in Figure 4-4 
and the sensitivity of the SCMB algorithm with respect to the blurred signal to noise ratio 
(BSNR) for binary image restoration is shown in Figure 4-5 and Figure 4-6 below.  

 

Figure 4-4  The original binary image used in the experiment, the Text image. 
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Figure 4-5   Sensitivity of SCMB to BSNR for binary images 

(a) BSNR = 30 dB (b) BSNR = 23 dB 
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(c) BSNR = 16 dB (d) BSNR = 14dB 

(e) BSNR = 12 dB (f) BSNR = 10 dB 
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Figure 4-6  Sensitivity of SCMB to BSNR for binary images (continue) 

We conclude that, when the blurred binary images have a BSNR of 16 dB or greater, the 
SCMB algorithm is extraordinarily robust and capable of dealing with exceptionally severe 
blurs. The SCMB algorithm can recover information from seriously blurred images that are 
visually unrecognizable. In the interest of brevity, we show experiments with only two 
representative binary images here, namely the “Text image” (which has already been used 
in the example in Section 3.2) and the printed circuit broad image, “PCB image” shown in 
Figure 4-7 below.   

In the experiments that we report here, we always process the whole image as shown in 
Figure 4-7, but when showing the results, we often prefer to display multiple zoomed 
portions of the recovered image to clearly demonstrate the performance of the algorithm. 
Furthermore, we use a metric that we call the signal-to-estimated-deconvolution-noise ratio 
(SEDNR) to measure the convergence of the SCMB algorithm. That ratio is  

 

Figure 4-7   PCB image 
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where x̂σ  is the standard deviation of the nonlinearity output and εσ  is the standard 
deviation of the estimated deconvolution noise ( )ε ⋅  as defined in (3.12). This metric can 
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also reflect the performance of the SCMB algorithm. Typically with 8SEDNR ≥  the 
recovered image is visually almost indistinguishable from the original image. 

The simulation results on the “Text image” and “PCB image” are shown respectively in 
Table 4-1 and Table 4-2. The “Text image” is chosen to represent a type of binary image 
that has a high percentage of background pixels or a small mean value { ( )}E x ⋅ . Therefore, 
as described in Section 3.3, we do not estimate { ( )}E x ⋅  and instead set { ( )} 0E x ⋅ =  in the 
feedback structure. The “PCB image”, however, represents a binary image that does not fit 
that small mean value approximation and requires the explicit estimation of the mean 

{ ( )}E x ⋅ at each iteration. In our experiments, we use the common optical point spread 
functions defined in Section 2.6.2 for the testing. They are the out-of-focus (pillbox) blur, 
the diffusion (Gaussian) blur and the motion (directional) blur with support sizes as large 
as 17x17. The support size of the equalization filter is typically 25x25 but a maximum 
support size of 31x31 is used in one case. In any case, the SCMB algorithm should work 
with even higher support sizes for both the optical point spread function and the 
equalization filter; what interests us particularly is the readability of the image before and 
after the restoration under the severely blurred condition. 

While it is not possible to show all the restored images used to generate Table 4-1 
andTable 4-2, the blurred and restored images in Experiment #4 and Experiment #11 are 
shown in Figure 4-9 and Figure 4-10, respectively. In both cases, the recovered images are 
visually flawless. In addition, the estimated probability of background op  and the mean 

{ ( )}E x ⋅ are correct despite the severity of the blur. 

By comparing the result of Experiment #5 with #6, it is evident that the multi-channel 
case outperforms the single channel case. Experiment #6 is identical to Experiment #5 
except that channel #2 does not exist. The multi-channel case in Experiment #5 converges 
faster, has a significantly better estimate of the background probability op  and a much 
better estimate of the deconvolution noise ratio (SEDNR) than its single channel 
counterpart. 

Another important observation can be made by comparing Experiment #11 with 
Experiment #12. Experiment #11 is identical to Experiment #12 except that the support 
size of the equalization filter is significantly larger. For experiment #11, the support size of 
the equalization filter is 31x31 while for Experiment #12 it is 25x25. Although in 
Experiment #11, convergence requires more iterations to converge because of the 672 
extra filter coefficients that need to be estimated, the algorithm nonetheless manages to 
converge to the globally optimum solution. The equalization filters for both Experiment 
#11 and #12 are shown in Figure 4-8. 
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Figure 4-8   Equalization filters of Experiments #11 and #12 
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Ex
pe

rim
en

t n
um

be
r Initial guess 

of the 

background 

probability 

op  

Initial guess 

of the mean 

of the input 

data 

{ ( )}E x ⋅  

Channel #1 

Type of 

impulse 

response 

Channel #1 

Support of 

impulse 

response 

Channel #2 

Type of 

impulse 

response 

Channel #2 

Support of 

impulse 

response 

Support of 

equalization 

filter for all 

channel 

Number of 

iterations 

needed for 

convergence

Estimated 

background 

probability 

op   

Estimated 

mean of 

the input 

data 

{ ( )}E x ⋅  

Signal to 

estimated 

deconvolutio

n noise ratio 

(SEDNR) in 

dB 

1 0.8 0 Motion blur 

@ 134o  

11x11 Motion blur 

@ 135o  

13x13 25x25 28 0.913 NA 20.54 

2 0.8 0 Diffusion 

blur 

15x7 Diffusion 

blur 

7x15 25x25 28 0.914 NA 12.03 

3 0.8 0 Out of focus 

blur 

11x11 Out of focus 

blur 

9x9 25x25 22 0.913 NA 18.51 

4 0.8 0 Out of focus 

blur 

15x15 Out of focus 

blur 

11x11 25x25 28 0.913 NA 17.15 

5 0.8 0 Out of focus 

blur 

13x13 Motion blur 

@ 6o  

15x15 25x25 41 0.913 NA 14.22 

Te
xt

 im
ag

e 

6 0.8 0 Out of focus 

blur 

13x13 NA NA 25x25 63 0.936 NA 5.88 

Table 4-1   Simulation results of SCMB algorithm for Text image (k=1.2) 
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Support of 

equalization 

filter for all 

channel 

Number of 

iterations 

needed for 

convergence

Estimated 

background 

probability 

op   

Estimated 

mean of 

the input 

data 

{ ( )}E x ⋅  

Signal to 

estimated 

deconvolutio

n noise ratio 

(SEDNR) in 

dB 

7  0.97 0 Out of focus 

blur 

19x11 Motion blur 

@ 22o  

17x17 25x25 42 0.8 0.5 11.93 

8 0.97 0 Out of focus 

blur 

15x15 Diffusion 

blur 

13x13 25x25 18 0.797 0.5042 8.26 

9 0.97 0 Diffusion 

blur 

9x9 Diffusion 

blur 

13x13 25x25 18 0.8 0.4999 14.60 

10 0.97 0 Motion blur 

@ 125o  

15x15 Motion blur 

@ 120o  

17x17 25x25 49 0.8 0.4999 18.72 

11 0.97 0 Out of focus 

blur 

15x15 Out of focus 

blur 

17x17 31x31 51 0.8 0.4999 15.24 

PC
B

 im
ag

e 

12 0.97 0 Out of focus 

blur 

15x15 Out of focus 

blur 

17x17 25x25 31 0.8 0.4999 14.15 

Table 4-2   Simulation results of SCMB algorithm on PCB image (k=1.2)
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Figure 4-9   Blurred text image and SCMB results at different zoom levels. (a) [15x15] 
Out-of-focus blur in channel #1, (b) [11x11] Out-of-focus blur in channel #2, (c) SCMB blind 

deconvolution output 

 

Figure 4-10   Blurred PCB image and SCMB results at different zoom levels. (a) [15x15] 
Out-of-focus blur in channel #1, (b) [17x17] Out-of-focus blur in channel #2, (c) SCMB blind 
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5 SAR/ISAR Autofocus using SCMB Blind 

Deconvolution 
In this chapter, we present the details of the self-correcting multi-channel Bussgang 
(SCMB) blind deconvolution algorithm that were not covered in chapter 3 and which are 
specific to the SAR/ISAR autofocus problem. They are the feedback loop design, the 
modeling of the probability density function (pdf), and the selection of the Bussgang 
nonlinearity. We would like to point out that even though there are few differences in the 
design of the SCMB blind deconvolution algorithm for the SAR and ISAR autofocus 
problems, our primary interest is in the ISAR autofocus problem simply because ISAR 
autofocus techniques that are applicable to scenarios with significant non-uniform 
rotational motion estimation error are few and ineffective. Furthermore, the PSF model for 
the ISAR autofocus problem as described in (2.37) fits quite well with the two-dimensional 
non-separable complex equalization filters in the SCMB blind deconvolution algorithm. 
Since the PSF model for the SAR autofocus problem in (2.36) is a special case of the PSF 
model for the ISAR autofocus problem, the methodology should work for the SAR 
autofocus problem as well.  

5.1 Gaussian mixture pdf modeling and estimation 

using the EM algorithm 
To implement the Bussgang nonlinearity, the complex gray-level SAR signal is broken 
down into two parts: the natural logarithm of the amplitude, ( )z ⋅ , and the phase, ( )θ ⋅ , as 
shown in Figure 5-1, 

 

Figure 5-1   Non-linearity for SAR image 

Nonlinearity {}g ⋅
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Re{}⋅

Im{}⋅

ln( )⋅  
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ˆ( )z ⋅

ˆ( )θ ⋅
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where ln( )⋅ , Re{}⋅ , Im{}⋅ , j  and ( )e ⋅  are, respectively, the natural logarithm function, 

real part operator, imaginary part operator, 1−  and the exponential function.  

In the SAR imaging case, the input signal ( )( ) ( ) jx a e θ ⋅⋅ = ⋅  is complex. The pdf of the phase 
is modeled by a uniform distribution between 0 and 2π , without any unknown modeling 
parameters as shown below  

 1( ) , 0 2
2

pθ θ θ π
π

= ≤ ≤ . (5.1) 

The pdf of the natural logarithm of the amplitude, ( ) ln( ( ))z a⋅ ⋅ , is modeled using a 
three-component Gaussian mixture model, 
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2
( )3

2

1

1( )
2

c

c

z

z c
c c

p z w e
μ
σ

π σ

−
−

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟=
⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑ . (5.2) 

 
It is the error in the estimation of the Gaussain mixture parameters (the weights, iw , the 
means, iμ  and the standard deviations, iσ , where i  is the Gaussian component number) 
that the feedback loop is designed to remove.  

Because of the way the input signals are modeled, the nonlinearity {}g ⋅  decomposes into 
the nonlinearities {}zg ⋅ and {}gθ ⋅ , respectively, for the natural logarithm of the amplitude 
and the phase of the input signal. Their relationship is as shown in Figure 5-1. 

5.2 Nonlinearity of SCMB for SAR/ISAR images 
The general form of the nonlinearity of the SCMB algorithm was given in (3.11), where the 
nonlinearity output signal ( )g x  is the conditional expectation of the unknown input signal 
x  given the deconvolved output signal x . In the SAR/ISAR imaging case, the signal is 
complex and can be modeled by a complex Gaussian distribution. This is equivalent to 
modeling the magnitude by a Rayleigh distribution and the phase by a uniform distribution. 
However, neither a Gaussian nor a complex Gaussian input signal is allowed in the 
Bussgang technique.  Thus, instead of using the complex Gaussian model for the input 
signal x , we break down the nonlinearity into the two components as shown in Figure 5-1. 
We use a Gaussian mixture distribution to model the magnitude of the input signal instead 
of a Rayleigh distribution while retaining the uniform distribution model for the phase of 
the input signal. This avoids the widely used complex Gaussian model for the SAR/ISAR 
signal, which would result in a linear relationship between the deconvolved output signal 
x  and the nonlinearity output signal ( )g x , and violate the nonlinearity assumption in the 
Bussgang framework. The performance of the resulting system justifies our model. 
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With the magnitude of the input signal modeled by a three-component Gaussian mixture 
as shown in (5.2) and the phase modeled by a uniform distribution as shown in (5.1), and 
by defining the deconvolution noises for both magnitude and phase components 
respectively as 

 zw z z= − ,  (5.3) 

and  

 wθ θ θ= − ,  (5.4) 

where both deconvolution noises are assumed to be white and Gaussian distributed, we 
use the Bussgang nonlinearity expressed in terms of the pdf as in (3.11) and apply it to 
both the magnitude and phase signals. The derivation of the nonlinearity of the magnitude 
signal begins below. 

Applying the nonlinearity in (3.11) to the natural logarithm of the amplitude of x , z , as 
shown in Figure 5-1, we have 

 
( ) ( )

{ } { | }
( ) ( )
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z

z w
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z w

z p z p z z dz
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∫
∫

. (5.5) 

The pdf of the three-component Gaussian mixtures is 
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and the pdf for the zero-mean, white Gaussian deconvolution noise for the magnitude is 
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Substituting the definition of the deconvolution noise for the magnitude from (5.3) into 
(5.7), we have 
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Combining (5.6) and (5.8), the product of probabilities in the integrands of (5.5) becomes 
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Now, substituting (5.9) into the amplitude nonlinearity ( )zg z  equation in (5.5), we have 
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We reorganize the expression in (5.10) by pulling the summation outside the integrals and 
combining the exponential terms. Then, 
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. (5.11) 

To simplify the expression in (5.11) (specifically to remove the integration in both the 
numerator and the denominator), we reorganize the powers of the common exponential 
term inside the square brackets above by completing the square as  
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Using (5.12), we can evaluate the integral in the denominator of (5.11). We begin with 
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We now try to write the integral as an integral of the pdf of a Gaussian distribution. This 
gives 
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Since the remaining integral is equal to 1, we have 
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Similarly we can write the integral in the numerator of (5.11) as  
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Notice that the integral on the right-hand side of (5.16) is the first moment or the mean of 
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Substituting (5.17) into (5.16), we have 
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Now, substituting (5.18) and (5.15) into (5.11), we get 
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Finally, the expression for the nonlinearity of the amplitude is obtained by further 

simplifying (5.19) by writing out ib  explicitly and by defining 2
i

i
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c
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b
= , such that  
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zwσ  is the standard deviation of the 

deconvolution noise for the magnitude of the input signal. iw , iσ  and iμ  are, 
respectively, the weight, standard deviation and mean of the i th  Gaussian component. 

For the nonlinearity of the phase, θ , shown in Figure 5-1, we have  
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As already mentioned, the pdf of the phase is modeled as a uniform distribution between 
π−  and π , i.e.,  
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The pdf for the assumed zero-mean white Gaussian deconvolution noise for the phase is 
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Substituting the definition the deconvolution noise for the phase from (5.4) into (5.23), we 
have 
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Now, substituting (5.22) and (5.24) into (5.21) gives 
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We can simplify this expression by applying the identities below, respectively, to the 

numerator and the denominator with a θ=  and 2 wb
θ

σ= : 

 
( )2 2 2

2
2

2 2

a u a a
b bb a a bu e du b a erf erf e e

b b

π ππ

π

π π π− + −⎛ ⎞ ⎛ ⎞− −− ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−

⎡ ⎤⎛ ⎞ ⎡ ⎤+ −⎛ ⎞ ⎛ ⎞ ⎢ ⎥= − + −⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠ ⎣ ⎦
∫ , (5.26) 

 
( )2

2

2

a u

b a ae du b erf erf
b b

π

π

π π π
−

−

−

⎛ ⎞ ⎡ ⎤+ −⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠
∫ , (5.27) 

Here 2

0
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−= ∫  is the odd error function, such that, ( ) ( )erf u erf u− = − . The 

final form for the phase nonlinearity becomes 

 

 

( ) ( )2 2

2 22 22

ˆ

2
2 2

w w
w

w w

e e

erf erf

θ θ
θ

θ θ

π θ π θ

σ σσ

θ θ
π θ π θπ
σ σ

− + − −⎛ ⎞
⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟
⎝ ⎠= +

⎛ ⎞⎛ ⎞ ⎛ ⎞+ −⎜ ⎟⎜ ⎟ ⎜ ⎟+
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (5.28) 

The derivations of the identities (5.26) and (5.27) are given in Appendix Error! Reference 

source not found.. 
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5.3 Design of a feedback mechanism for SCMB blind 

deconvolution 
The feedback design for the SAR imaging case follows the same philosophy as in the 
binary imaging case. It tries to cancel the nonlinearity output error caused by the inaccurate 
estimation of the pdf of the input data or errors in the estimated parameters of the pdf 
model by altering the input to the nonlinearity with feedback. Although the philosophy 
behind the feedback loop design is very similar for both the binary and the SAR imaging 
case, the feedback design for the SAR imaging case is significantly more complicated than 
its binary imaging counterpart.  

We begin by looking at the relationship between the error of the nonlinearity output, ẑΔ , 
with respect to errors of the Gaussian mixture parameters, iwΔ , iμΔ , iσΔ and the change 
of the  nonlinearity input, zΔ . To a first order approximation, this relationship is given 
by the partial differential equation, 
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We then force this error, ẑΔ , to zero by perturbing the nonlinearity input zΔ  (the 
feedback signal) as follows:  
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The partial derivatives ˆ
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of (5.20) with respect to iw , iμ , iσ  and z  respectively. These partial derivatives will 
depend on the nonlinearity input, z . Therefore, the feedback gain will be a function of the 
nonlinearity input, z , and will not be a constant feedback gain as it was on the binary 
imaging case. Although these partial derivatives are realizable, the expressions and their 
derivations are quite involved. Therefore, Mathematica was used for their derivation and 
the results are presented separately in Appendix Error! Reference source not found.. 

Even with the partial derivatives in (5.30) available, we still need to estimate the Gaussian 
mixture parameterization errors, iwΔ , iμΔ  and iσΔ , in order to calculate the feedback 
gain function, ( )z zΔ . We proceed with the definition of the variance of the natural 
logarithm of the amplitude of the SAR signal, 2

zσ , given by, 
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 2 2( ) ( )z zz z p z dzσ = −∫ . (5.31) 

By substituting (5.2) into (5.31) and using the identity 
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we get 
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This relates the second-order statistics of the natural logarithm of the amplitude of the 
SAR signal to all of the parameters of the Gaussian mixture model with no 
parameterization errors. 

For the non-ideal case where there are parameterization errors, the second-order statistics 
of the natural logarithm of the amplitude of the SAR signal are replaced by the 
corresponding statistics of the nonlinearity output and all of the parameters of the 
Gaussian mixture model are perturbed by the parameterization error. That is, 
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By expanding the right-hand side of (5.34) and making the assumption that higher-order 
terms formed by the products of iwΔ , iμΔ  and iσΔ  are insignificant and incorporating 
the fact that the sum of the changes in the weights is constrained to be zero  

 
3

1

0i
i

w
=

Δ =∑ ,  (5.35) 

we conclude that 

 Tq = v Δp ,  (5.36) 

where 
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and 

 1 1 2 2 3 3 1 2
T w wμ σ μ σ μ σΔ Δ Δ Δ Δ Δ Δ Δ⎡ ⎤⎣ ⎦Δp  (5.39) 

Therefore, the minimum mean-squared estimates of the Gaussian mixture 
parameterization errors can be found by solving  

 ( ) 1T q
−

=Δp v v v   (5.40) 

 3 1 2w w wΔ = −Δ −Δ   (5.41) 

Equation (5.40) is the solution to (5.36) and (5.41) follows from (5.35). Notice that since 

( )Tv v  is of rank one, the matrix inverse in (5.40) must actually be replaced by the 

pseudo-inverse. Thus, the system of equations for solving for the Gaussian mixture 
parameterization errors is underdetermined and a unique solution does not exist. Unlike its 
binary imaging counterpart, this is not surprising, since the same second-order statistics for 
the Gaussian mixture can be realized by more than one combination of Gaussian signals 
when there is more than one Gaussian in the mixture. In any case, the feedback gain, 

( )z zΔ , for the SAR imaging case is found by using equations (5.30), (5.40) and (5.41). 

5.4 Simulation results 

5.4.1 SAR autofocus results 
The following simulation results use the pdf model proposed for SAR as shown in Section 
5.1, where the natural logarithm of the amplitude of the complex SAR signal is modeled by 
a three-component Gaussian mixture model and the phase is modeled by a uniform 
distribution model bounded between zero and 2π . The unknown parameters of the 
Gaussian mixture model used in the simulation are static and are extracted by employing 
the expectation maximization (EM)-based Gaussian mixture estimation technique as 
described in Section 2.4. The prototype SAR image on which the EM-based Gaussian 
mixture estimation technique is applied, is a synthetic SAR image generated from the back 
scatter of a three-dimensional CAD model by the polar format algorithm (PFA) SAR 
image formation technique. This prototype SAR image of a tank used in this simulation is 
shown in Figure 5-2. In the simulation, the proposed self-correcting multi-channel 
Busssgang (SCMB) blind deconvolution algorithm with the Bussgang nonlinearities as 
derived in Section 5.2 is applied simultaneously on two Ku-band, real SAR images with 
slightly different aspects. To the knowledge of the author, this is the first SAR autofocus 
technique that can take advantage of multiple defocused SAR images. 
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Figure 5-2   The synthetic SAR image of a tank for pdf extraction. 

The defocusing of the SAR image occurs naturally in the cross-range dimension (x-axis) 
because of the range error from one radar pulse to another caused by the inaccuracies of 
the IMU and GPS units onboard. This effect is especially important in high frequency 
bands such as Ku-band.  The two defocused SAR images are as shown below in Figure 
5-3 and Figure 5-4. 

Cross-range

Range 
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Figure 5-3   Defocused Ku-band SAR image #1. 

 

Figure 5-4   Defocused Ku-band SAR image #2. 

The resulting SAR image focused by our SCMB algorithm that takes advantage of both of 
the defocused SAR images from Figure 5-3 and Figure 5-4 is shown in Figure 5-5. 
Significant improvements in terms of the focusing, the contrast, and the signal-to-noise 
ratio (SNR) of the resulted SAR image are observed.  
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Figure 5-5   Focused Ku-band SAR image by SCMB with static prototype PDF. 

It is logical to compare this result with that of the phase gradient algorithm (PGA), a 
well-established SAR autofocus technique often considered the gold standard for SAR 
autofocus. This method was described in Section 2.5.2. Since PGA can only be applied to 
one defocused SAR image at a time, we applied PGA to the two defocused Ku-band SAR 
images separately. The two focused images are shown in Figure 5-6 and Figure 5-7. 

 

Figure 5-6   Focused image of defocused Ku-band SAR image #1 by PGA. 



 76

 

Figure 5-7   Focused image of defocused Ku-band SAR image #2 by PGA. 

 

In comparing the PGA autofocus results in Figure 5-6 and Figure 5-7 with that of SCMB 
in Figure 5-5, it is evident that the SCMB blind deconvolution algorithm surpasses the 
performance of PGA. In the SAR image focused by SCMB, the vehicles in the scene are 
more pronounced with more solid edges and the prominent point scatterers on the 
vehicles are more noticeable. The shadows cast by the vehicles, the building materials, and 
the trees in the scene are also darker than on the PGA focused images.  

In previous experiment we compared the two-channel SCMB blind deconvolution 
algorithm with the PGA autofocus algorithm. Now we want to compare the performance 
of SCMB blind deconvolution algorithm against itself. We zoom in on one of the vehicles 
from the scene in the previous simulation and compare the autofocus performance of the 
single-channel, two-channel and three-channel versions of the SCMB. The results are 
shown in Figure 5-8, where (a) is the defocused image used for the single-channel case, (a) 
and (b) were used for the two-channel case, (a), (b) and (c) we used in the three-channel 
case. The autofocus results of the single-channel, two-channel and three-channel SCMB 
autofocusing are shown respectively, in (d), (e) and (f). We conclude from this experiment 
that the two-channel case focused better than the single-channel case, while the 
three-channel case is visually indistinguishable from the two-channel case.     
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Figure 5-8   Focused Ku-band SAR images by SCMB with static prototype PDF, (a), (b), (c) 
are the defocused images (d) Single-channel result, (e) Two-channel result and (f) 

Three-channel result. 

5.4.2 ISAR autofocus results 
In this experiment, the SCMB algorithm was used to tackle the ISAR autofocus problem in 
a single channel setup. Data collection was carried out using an X-band radar mounted on 
a 300 feet high tower and pointing towards a moving vehicle at the scene center (the 
origin). The depression angle formed by the line of sight (LOS) between the radar and the 
scene center, at the center of the radar footprint, was about 17 degrees. The trajectory 
formed by the moving vehicle with the scene center at the origin is as shown in Figure 5-9.  

(a) (b) (c) 

(d) (e) (f) 
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Figure 5-9   Trajectory of moving vehicle (A or B) in the ISAR scenario. 

The trajectory was obtained by the GPS installed in the vehicle which had a precision of 5 
meters to approximate the position of the vehicle resolved by multiple radars. Two 
different vehicles (A and B) were used in the experiment. The heading of the vehicle is 
crudely approximated by the direction of the velocity vector which is calculated from the 
first derivative of the position vector (the trajectory). The moving vehicle evidently entered 
the radar footprint, made a turn, and left the radar footprint as observed from both the 
trajectory and range compressed pulse diagrams respectively in Figure 5-9 and Figure 5-10. 
In the range compressed pulse diagram, we select the pulses bounded by the two vertical 
red lines which correspond to a center azimuth angle of roughly 25 degrees with respect to 
the vehicle’s body axis. 

To form an ISAR image, we first motion compensate the IQ signal to account for the 
difference in range between the radar and the vehicle from pulse to pulse. Since phase is a 
much more significant contributor than amplitude, we motion compensate by phase only 
for simplicity. In order to show the importance of the motion compensation step, we show 
the ISAR image before and after motion compensation for vehicle A, respectively in Figure 
5-11 and Figure 5-12. 

Radar 

Start trajectory 

End trajectory 

Radar footprint 
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Figure 5-10   Range compressed pulse versus pulse number (vehicle A). 

It is evident that the ISAR image formed without motion compensation (Figure 5-11) has 
much more distortion than the one with motion compensation (Figure 5-12). Even with 
motion compensation, the ISAR image formed is expected to be defocused because of the 
uncompensated range (phase) error as well as the rotational or azimuth error. 

 

Figure 5-11   Non motion-compensated ISAR image before autofocus (vehicle A). 
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SCMB is used to focus the motion compensated ISAR image of vehicle A in Figure 5-12.  
We chose the size of the two-dimensional complex equalization filter that was used within 
SCMB to be 121x15 in this example, where 121 is the filter support in the cross-range 
dimension (y axis) and 15 is the support in the range dimension (x axis). 

 

Figure 5-12   Motion-compensated ISAR image before autofocus (vehicle A). 

 

Figure 5-13   ISAR autofocus using SCMB (vehicle A). 
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The result of the SCMB focused ISAR image of vehicle A is shown in Figure 5-13, where 
the point scatterers of the vehicle become apparent. For comparison purposes, we apply 
PGA and minimum entropy autofocus [19, 47, 48] to focus the same motion compensated 
ISAR image in Figure 5-12 and the results are shown, respectively, in Figure 5-14 and 
Figure 5-15. PGA evidently performs better than minimum entropy, but both results are 
inferior to the result of SCMB.  

 

Figure 5-14   ISAR autofocus using phase gradient algorithm (PGA), (vehicle A). 

 

Figure 5-15   ISAR autofocus using minimum entropy approach (vehicle A). 
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We repeat the experiment as described above for vehicle B for a different radar pass with 
the center azimuth angle of again roughly 25 degrees with respect to the vehicle’s body axis. 
In Figure 5-16, the range compressed pulse diagram for vehicle B appears to be noisier 
than that of vehicle A. Since the radar is stationary and the background does not change in 
both cases, this observation suggests that vehicle A has stronger back scatter, possibly 
caused by more and larger trihedrals than vehicle B.   

 

Figure 5-16   Range compressed pulse versus pulse number (vehicle B). 

By comparing the two range compressed pulse diagrams, it is also noticeable that vehicle B 
should be longer than vehicle A in the range dimension with the current orientation. The 
ISAR image of vehicle B formed without and with motion compensation are shown in 
Figure 5-17 and Figure 5-18 respectively. It is not surprising that much more distortion is 
found in the ISAR image formed without motion compensation than in the one with 
motion compensation.  
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Figure 5-17   Non motion-compensated ISAR image before autofocus (vehicle B). 

SCMB was then used on the motion-compensated ISAR image of vehicle B in Figure 5-18. 
Again, we chose the size of the two-dimensional complex equalization filter that was used 
within SCMB to be 121x15, where 121 is the support in the cross-range dimension (y axis) 
and 15 is the support in the range dimension (x axis). The resulting SCMB-focused ISAR 
image of vehicle B is shown in Figure 5-19. Again the point scatterers of the vehicle 
become apparent.  
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Figure 5-18   Motion-compensated ISAR image before autofocus (vehicle B) 

 

Figure 5-19   ISAR autofocus using SCMB (vehicle B) 
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We then apply PGA and minimum entropy autofocus to focus the motion compensated 
ISAR image of vehicle B in Figure 5-18 for comparision. The results are shown, 
respectively, in Figure 5-20 and Error! Reference source not found.. PGA again 
out-performs minimum entropy, but nevertheless both methods are clearly vastly inferior 
to the performance of the SCMB blind deconvolution algorithm. 

 

Figure 5-20   ISAR autofocus using phase gradient algorithm (PGA), (vehicle B). 

 

Figure 5-21   ISAR autofocus using minimum entropy approach (vehicle B). 
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We conclude that the non-uniform turning rate of the vehicle in this experiment makes the 
rotational (azimuth) error nontrivial comparing to the range (phase) error. Therefore, SAR 
autofocus techniques like PGA and minimum entropy which do not address the rotational 
error become quite unsuitable for the ISAR autofocus case when there is significant 
non-uniform rotational error. Finally, by comparing the ISAR autofocus results using 
SCMB blind deconvolution for vehicle A and vehicle B, respectively in Figure 5-13 and 
Figure 5-19, we can clearly distinguish vehicle A from vehicle B by the dimensions of the 
vehicle, and the characteristics and distribution of the point scatterers. That makes 
automatic target recognition (ATR) and ground moving target imaging (GMTI) more 
feasible when this method is used for preprocessing. 
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6 Conclusion 
In this dissertation, we present a unique multi-channel blind deconvolution framework 
derived from the Bussgang algorithm which is applicable to multiple disciplines. We named 
the algorithm the self-correcting multi-channel Bussgang (SCMB) blind deconvolution 
algorithm.  

6.1 Contributions 
1. A practical binary image restoration technique which does not assume the 

knowledge of the pdf of the original undistorted binary image. 

• We started our binary image restoration study focusing on Panci’s paper in 
[42] because of its amazing binary image restoration results. However, on 
closer study, we found that the pdf of the original binary images, which are 
practically inaccessible, are used to produce those results. We presented 
more realistic results obtained without knowing the pdf in Figure 3-3. In 
order to make this Bussgang-based binary image restoration approach  
work without prior knowledge of the pdf, we developed the SCMB blind 
deconvolution algorithm described in Section 3. 

2. The first known multi-channel binary image restoration technique applicable to 
severely blurred binary images. 

• This is to our knowledge the first multi-channel binary image restoration 
algorithm that can utilize multiple blurred binary images and restore 
severely blurred images as shown in the examples in Figure 4-9 and Figure 
4-10.  

3. The first known SAR/ISAR autofocus algorithm that can take advantage of 
multiple similar radar passes when available. 

• Unlike mainstream SAR/ISAR autofocus algorithms, this is the only 
algorithm that can take advantage of multiple similar radar passes to 
improve autofocus performance. An example using real data is shown in 
Figure 5-5 

4. An innovative SAR/ISAR autofocus technique not based on current popular 
techniques such as prominent scatterer tracking, minimum entropy and phase 
gradient algorithm (PGA) autofocus. Our algorithm was shown to out-perform 
PGA and minimum entropy. 
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• A comparision with Ku-band radar data between our SCMB blind 
deconvolution algorithm for SAR autofocus and PGA is shown in Figure 
5-5, Figure 5-6 and Figure 5-7. 

5. The first known ISAR autofocus technique validated with real data for ground 
moving target imaging under significant translational and rotational motion.  

• Results for ISAR autofocus that are validated with real data are quite 
uncommon. The only ISAR autofocus result that deals with real data, to 
our knowledge, is to focus a navy ship in linear motion with some mild 
rolling [35]. However, the defocusing was mild in the particular case 
presented. 

6. A unified approach for both SAR and ISAR autofocus. 

• Our SCMB blind deconvlution algorithm for SAR/ISAR autofocus is 
effective for both the SAR and ISAR autofocus problems. A 1D 
equalization filter support in the cross-range dimension is usually used for 
the SAR autofocus problem while a 2D equalization filter support is used 
in the ISAR autofocus problem, but the algorithm is the same in either 
case. 

6.2 Suggestions for future work 
1. Exploring applications for the binary image restoration technique in text printing, 

computer vision, or in communication with unknown or time-varying statistics. 

• The SCMB blind deconvolution framework for binary image restoration is 
a crucial step in our research for concept verification. However, unlike 
SAR/ISAR autofocus, its application is limited. Therefore, we would like 
to exploit any potential applications that can take advantage of the 
technique. 

2. Extending the technique to three-dimensional SAR formation with k -space 
sparsity. 

• For multiple radar passes with different depression angles it is possible to 
form a three-dimensional SAR image or volume using all passes 
simultaneously only if we can conquer the aliasing problem caused by 
k -space sparsity, that is, not enough passes to cover all the depression 
angles needed for the required dimensions of the imaged volume. 
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3. Extending the technique to photographic image restoration. 

• The SCMB blind deconvolution framework can potentially apply to 
photographic image restoration from multiple snap-shots to recover bad or 
blurred images caused by over or under exposure, motion, out-of-focus 
and more. 

4. Investigate the benefit of introducing a spatial constraint into the SCMB blind 
deconvolution framework such as an AR or ARMA model. 

• The SCMB blind deconvolution framework, like the original Bussgang 
framework, constraints the solution in a statistical sense in the form of the 
pdf or the Busggang nonlinearity. It will be interesting to investigate the 
effect of further constraining the solution using some spatial constraints 
when available such as an AR or ARMA model. 
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Appendix 

A.1 Partial derivatives for the feedback signal in the 

SAR/ISAR case 
 
We present the partial derivatives generated by Mathematica for equation (5.30). For 
completeness, (5.30) is restated here: 
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∑ . (7.1) 

In an actual implementation, it is more compact to have the feedback signal depend on the 
variances of the Gaussian components instead of their standard deviations. Therefore, the 
feedback signal, zΔ , can be rewritten as 
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where ( )p iν  is the variance of the i th−  component of the Gaussian mixture. 

We also rewrite the Bussgang nonlinearity output, ẑ , for SAR/ISAR in (5.20) here for 
completeness, 
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zwσ  is the standard deviation of the 

deconvolution noise for the magnitude of the input signal. 



 91

To simplify the expression for the derivatives in (7.2), we define the variables, 1( )T i , 2( )T i , 
3( )T i , 4( )T i  and ( )s i  as follows: 

 1( ) ( )T i z iμ= −   (7.4) 

 22( ) ( )
zp wT i iν σ= −   (7.5) 

 23( ) ( ) 2( )
zwT i i zT iμ σ= +  (7.6) 

 
21( )

2 ( )4( ) p

T i
iT i e ν

−

=   (7.7) 

 ( ) 2( )s i T i=   (7.8) 

By taking the derivatives of equation (7.2) with respect to iw , iμ , ( )p iν  and z  using 
Mathematica, we have the results in the following table in terms of 1( )T i , 2( )T i , 3( )T i , 

4( )T i  and ( )s i .
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Table 6-1   Partial derivatives for the feedback signal in the SAR/ISAR case generated by Mathematica. 
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Table 6-2   Partial derivatives for the feedback signal in the SAR/ISAR case generated by Mathematica (continued). 
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Table 6-3   Partial derivatives for the feedback signal in the SAR/ISAR case generated by Mathematica (continued). 
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Table 6-4   Partial derivatives for the feedback signal in the SAR/ISAR case generated by Mathematica (continued). 
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A.2 Derivation of the Bussgang nonlinearity w.r.t. pdf 
The Bussgang nonlinearity w.r.t. the pdf of the input signal and the deconvolution noise in 
(3.11),  

 
( ) ( )

{ } { | }
( ) ( )
x w

x w

x p x p x x dx
g x E x x

p x p x x dx

−
=

−
∫
∫

, 

is derived here. 

The Bayes’ risk defined in (2.12) is rewritten as   

 ?( ) ( )) ( )x,xJ x C x - x(x p x,x dx dx= ∫∫ . 

By choosing the Bussgang cost function ˆ( ))C x - x(x  as the 2 norml − , the Bayes’ risk 
becomes the mean square error (MSE) and is given by 

 ?( )) ( )) ( )T
x,xMSE x - x(x x - x(x p x,x dx dx= ∫∫ . (7.9) 

The nonlinearity output ˆ { }x g x  is chosen to minimize the MSE in (7.9). Therefore, we 
have 

 ( ) ,ˆ2 ( ) ( , ) 0
ˆ x x

MSE x x x p x x dxdx
x

∂
= − −

∂ ∫ ∫ . (7.10) 

The above equation can be written as 

 , ,ˆ( ) ( , ) ( , )x x x xx x p x x dxdx x p x x dxdx=∫∫ ∫∫ . (7.11) 

By reorganizing the integral on the left-hand side and applying the Bayes’ rule on the 
right-hand side, we have 

 , |ˆ( ) ( , ) ( | ) ( )x x x x xx x p x x dx dx x p x x p x dxdx⎡ ⎤ =⎢ ⎥⎣ ⎦∫ ∫ ∫∫ . (7.12) 

Again, by reorganizing the right-hand side of (7.12), it becomes 

 , |ˆ( ) ( , ) ( | ) ( )x x x x xx x p x x dx dx x p x x dx p x dx⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ ∫ ∫ . (7.13) 
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Now, by evaluating the expressions inside the square brackets on both side of (7.13), it can 
be more compactly written as 

 { }ˆ( ) ( ) | ( )x xx x p x dx E x x p x dx=∫ ∫ . (7.14) 

As a result, one feasible solution for (7.14) is to have the nonlinearity x̂  equal to the 
conditional expectation of x  given the deconvolved output x . That is, 

 { }ˆ |x E x x= .  (7.15) 

We can write the conditional expectation in term of integral and then apply Bayes’ rule, 
giving  

 { }
,

|

( , )
| ( | )

( )
x x

x x
x

x p x x dx
E x x x p x x dx

p x
= = ∫∫ . (7.16) 

From the definition of the deconvolution noise w x x= − , we have the deconvolved output 
x  expressed as 

 x w x= + .  (7.17) 

The pdf of the sum of two independent random variables is equal to the convolution of 
the pdf of the two random variables. That is, 

 ( ) ( ) ( ) ( ) ( )x w x x wp x p x p x p x p x x dx= ∗ = −∫ . (7.18) 

Notice also that  

 , ,( , ) ( , ) ( ) ( ) ( ) ( )x x x w x w x wp x x p x w p x p w p x p x x= = = − , (7.19) 

since x and w  are independent. By substituting (7.18) and (7.19) into (7.16), the 
conditional expectation becomes 
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( ) ( )

|
( ) ( )

x w

x w

x p x p x x dx
E x x
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−
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−

∫
∫

. (7.20) 

This concludes our derivation of the Bussgang nonlinearity in terms of the pdf of the input 
signal and the deconvolution noise. 
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A.3 Derivation of the identities used in SAR phase 

nonlinearity 
Proof of the identity in (5.26) as rewritten below,  
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b
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the left-hand side of the equation above, we have 
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Now, by separating the right-hand side of (7.21) into two terms, it becomes  
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Now break down the right-hand side of each term of (7.22) into two terms so that the 
lower limit of the integral is zero and apply the definition of the error function, 

2

0

2( )
u terf u e dt

π
−= ∫ . The resulting expression is given by   
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In order to get rid of the integrals in (7.23) of the form 2

0

c
tt e dt−∫ , we use the relation 

2 2dt t dt=  as follows: 

 2 2 2 22

0
0 0

1 1 1 1
2 2 2

c c c
t t t ct e dt e dt e e− − − −⎡ ⎤= = − = − −⎣ ⎦∫ ∫ .  (7.24) 
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By substituting (7.24) into (7.23) and making use of the fact that the error function is an 
odd function, we conclude that 
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This concludes the proof of the identity in (5.26). 

Proof of the identity in (5.27) as rewritten below,  
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Now break down the right-hand side of (7.26) into two terms, so that the lower limit of the 
integral is zero,  
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This can be rearranged as  
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By expressing (7.28) in terms of the error function, we conclude the derivation for identity 
(5.27). That is, 
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