9 research outputs found

    Convergence of packet communications over the evolved mobile networks; signal processing and protocol performance

    Get PDF
    In this thesis, the convergence of packet communications over the evolved mobile networks is studied. The Long Term Evolution (LTE) process is dominating the Third Generation Partnership Project (3GPP) in order to bring technologies to the markets in the spirit of continuous innovation. The global markets of mobile information services are growing towards the Mobile Information Society. The thesis begins with the principles and theories of the multiple-access transmission schemes, transmitter receiver techniques and signal processing algorithms. Next, packet communications and Internet protocols are referred from the IETF standards with the characteristics of mobile communications in the focus. The mobile network architecture and protocols bind together the evolved packet system of Internet communications to the radio access network technologies. Specifics of the traffic models are shortly visited for their statistical meaning in the radio performance analysis. Radio resource management algorithms and protocols, also procedures, are covered addressing their relevance for the system performance. Throughout these Chapters, the commonalities and differentiators of the WCDMA, WCDMA/HSPA and LTE are covered. The main outcome of the thesis is the performance analysis of the LTE technology beginning from the early discoveries to the analysis of various system features and finally converging to an extensive system analysis campaign. The system performance is analysed with the characteristics of voice over the Internet and best effort traffic of the Internet. These traffic classes represent the majority of the mobile traffic in the converged packet networks, and yet they are simple enough for a fair and generic analysis of technologies. The thesis consists of publications and inventions created by the author that proposed several improvements to the 3G technologies towards the LTE. In the system analysis, the LTE showed by the factor of at least 2.5 to 3 times higher system measures compared to the WCDMA/HSPA reference. The WCDMA/HSPA networks are currently available with over 400 million subscribers and showing increasing growth, in the meanwhile the first LTE roll-outs are scheduled to begin in 2010. Sophisticated 3G LTE mobile devices are expected to appear fluently for all consumer segments in the following years

    Spatial filtering for pilot-aided WCDMA systems: a semi-blind subspace approach

    Get PDF
    This paper proposes a spatial filtering technique for the reception of pilot-aided multirate multicode direct-sequence code division multiple access (DS/CDMA) systems such as wideband CDMA (WCDMA). These systems introduce a code-multiplexed pilot sequence that can be used for the estimation of the filter weights, but the presence of the traffic signal (transmitted at the same time as the pilot sequence) corrupts that estimation and degrades the performance of the filter significantly. This is caused by the fact that although the traffic and pilot signals are usually designed to be orthogonal, the frequency selectivity of the channel degrades this orthogonality at hte receiving end. Here, we propose a semi-blind technique that eliminates the self-noise caused by the code-multiplexing of the pilot. We derive analytically the asymptotic performance of both the training-only and the semi-blind techniques and compare them with the actual simulated performance. It is shown, both analytically and via simulation, that high gains can be achieved with respect to training-onlybased techniques.Peer Reviewe

    Advanced receivers for high data rate mobile communications

    Get PDF
    Improving the spectral efficiency is a key issue in the future wireless communication systems since the spectrum is a scarce resource. Both the number of users as well the demanded data rates are increasing all the time. Furthermore, in mobile communications the wireless link is required to be reliable even when the mobile is in a fast moving vehicle. Using Multiple-Input Multiple-Output (MIMO) antennas is a well known technique to provide higher spectral efficiency as well as better link reliability. Additionally, higher order modulation methods can be used to provide higher data rates. In order to benefit from these enhancements in practise, sophisticated signal processing methods as well as accurate estimates of time-varying wireless channel parameters are needed. This thesis addresses the problem of designing multi-antenna receivers in high data rate systems. The case of multiple transmit antennas is also considered. System specific features of High Speed Downlink Packet Access (HSDPA) which is part of 3rd generation (3G) Wideband Code Division Multiple Access (WCDMA) evolution are exploited in channel estimation methods and in MIMO receiver design. Additionally, complexity reduction methods for Minimum Mean Square Error (MMSE) equalization are addressed. Blind channel estimation methods are spectrally efficient, since no extra resources are needed for pilot signals. However, in mobile communications accurate estimates are needed also in fast fading channels. Consequently, semi-blind channel estimation methods where the receiver combines blind and pilot based channel estimation are an appealing alternative. In this thesis blind and semi-blind channel estimation methods based on knowledge of multiple spreading codes are derived. A novel semi-blind combining scheme for code multiplexed pilot signal and blind estimation is proposed. Another important factor in receiver design criteria is the structure of interference in the received signals. Interference mitigation techniques in MIMO systems have been shown to be potential methods for providing improved performance. A chip level inter-antenna interference cancellation method has been developed in this thesis for HSDPA. Furthermore, this multi-stage ordered interference canceler is combined with the semi-blind channel estimation scheme to enhance the system performance further.Langattomassa tiedonsiirrossa radiospektrin tehokas käyttö on tulevaisuuden suuria haasteita. Taajuuksia on käytössä vain rajoitetusti, kun taas käyttäjien määrä sekä vaaditut siirtonopeudet kasvavat jatkuvasti. Lisäksi langattomien yhteyksien on toimittava luotettavasti myös nopeasti liikkuvissa kulkuneuvoissa. Moniantennijärjestelmät, joissa on useita antenneita sekä tukiasemissa että päätelaitteissa mahdollistavat radiospektrin tehokkaamman käytön sekä parantavat yhteyksien laatua. Tiedonsiirtonopeutta voidaan myös kasvattaa erilaisilla modulaatiotekniikoilla. Hyötyjen saavutamiseksi käytännössä tarvitaan sekä kehittyneitä vastaanotinrakenteita että tarkkoja estimaatteja aikamuuttuvasta radiokanavasta. Tässä työssä on kehitetty vastaanotinrakenteita ja kanavan estimointimenetelmiä kolmannen sukupolven (3G) nopeiden datayhteyksien (HSPA) järjestelmissä. Työssä on johdettu menetelmiä, jotka hyödyntävät HSPA järjestelmien erikoispiirteitä tehokkaasti. Lisäksi on kehitetty laskennallisesti tehokkaita menetelmiä vastaanottimien signaalinkäsittelyyn. Ns. sokeat menetelmät mahdollistavat taajuuskaistan tehokkaan käytön, koska ne eivät vaadi tunnettuja harjoitussignaaleja. Mobiileissa tietolikennejärjestelmissä radiokanava saattaa kuitenkin muuttua hyvin nopeasti, jonka vuoksi kanavan estimoinnissa on tyypillisesti hyödynnetty tunnettua pilottisignaalia. Yhdistämällä pilottipohjainen ja sokea kanavaestimointimenetelmä, voidaan saavuttaa molempien menetelmien edut. Tässä työssä kehitettiin sokeita kanavaestimointimenetelmiä, jotka hyödyntävät useita tunnettuja hajoituskoodeja. Sokean ja koodijakoiseen pilottisignaaliin pohjautuvien kanavan estimaattien yhdistämiseksi kehitettiin uusi menetelmä. Signaalin laatua ja siten vastaanottimen suorituskykyä voidaan langattomissa järjestelmissä parantaa vaimentamalla interferenssiä eli häiriöitä. Vastaanottimen toimintaa voidaan tehostaa oleellisesti, jos häiriösignaalin rakenne tunnetaan. Käytettäessä useampaa lähetysantennia HSPA järjestelmissä vastaanotetussa signaalissa olevia häiriötä voidaan kumota usealla eri tasolla. Tässä työssä on kehitetty chippitasolla häiriöitä kumoava vastaanotinrakenne, joka hyödyntää HSPA järjestelmän ominaisuuksia. Vastaanottimen suorituskykyä on edelleen parannettu yhdistämällä se aiemmin esitettyyn puolisokeaan kanavan estimointimenetelmään.reviewe

    Design of optimal equalizers and precoders for MIMO channels

    Get PDF
    Channel equalization has been extensively studied as a method of combating ISI and ICI for high speed MIMO data communication systems. This dissertation focuses on optimal channel equalization in the presence of non-white observation noises with unknown PSD but bounded power-norm. A worst-case approach to optimal design of channel equalizers leads to an equivalent optimal H-infinity filtering problem for the MIMO communication systems. An explicit design algorithm is derived which not only achieves the zero-forcing (ZF) condition, but also minimizes the RMS error between the transmitted symbols and the received symbols. The second part of this dissertation investigates the design of optimal precoders which minimize the bit error rate (BER) subject to a fixed transmit-power constraint for the multiple antennas downlink communication channels under the perfect reconstruction (PR) condition. The closed form solutions are derived and an efficient design algorithm is proposed. The performance evaluations indicate that the optimal precoder design for multiple antennas communication systems proposed herein is an attractive/reasonable alternative to the existing precoder design techniques

    Semi-blind channel estimation for multiuser OFDM-IDMA systems.

    Get PDF
    M. Sc. Eng. University of KwaZulu-Natal, Durban 2014.Over the last decade, the data rate and spectral efficiency of wireless mobile communications have been significantly enhanced. OFDM technology has been used in the development of advanced systems such as 3GPP LTE and terrestrial digital TV broadcasting. In general, bits of information in mobile communication systems are conveyed through radio links to receivers. The radio channels in mobile radio systems are usually multipath fading channels, which cause inter-symbol interference (ISI) in the received signal. The ability to know the channel impulse response (CIR) and Channel State Information (CSI) helps to remove the ISI from the signal and make coherent detection of the transmitted signal at the receiver end of the system easy and simple. The information about CIR and CSI are primarily provided by channel estimation. This thesis is focused on the development of multiple access communication technique, Multicarrier Interleave Division Multiple Access (MC-IDMA) and the corresponding estimation of the system channel. It compares various efficient channel estimation algorithms. Channel estimation of OFDM-IDMA scheme is important because the emphasis from previous studies assumed the implementation of MC-IDMA in a perfect scenario, where Channel State Information (CSI) is known. MC-IDMA technique incorporates three key features that will be common to the next generation communication systems; multiple access capability, resistance to multipath fading and high bandwidth efficiency. OFDM is almost completely immune to multipath fading effects and IDMA has a recently proposed multiuser capability scheme which employs random interleavers as the only method for user separation. MC-IDMA combines the features of OFDM and IDMA to produce a system that is Inter Symbol Interference (ISI) free and has higher data rate capabilities for multiple users simultaneously. The interleaver property of IDMA is used by MC-IDMA as the only means by which users are separated at the receiver and also its entire bandwidth expansion is devoted to low rate Forward Error Correction (FEC). This provides additional coding gain which is not present in conventional Multicarrier Multiuser systems, (MC-MU) such as Code Division Multiple Access (CDMA), Multicarrier-Code Division Multiple Access (MC-CDMA) systems, and others. The effect of channel fading and both cross-cell and intra-cell Multiple Access Interference (MAI) in MC-IDMA is suppressed efficiently by its low-cost turbo-type Chip-by-Chip (CBC) multiuser detection algorithm. We present the basic principles of OFDM-IDMA transmitter and receiver. Comparative studies between Multiple Access Scheme such as Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), CDMA and IDMA are carried out. A linear Minimum Mean Square Error (MMSE)-based estimation algorithm is adopted and implemented. This proposed algorithm is a non-data aided method that focuses on obtaining the CSI, remove ISI and reduce the complexity of the MMSE algorithm. However, to obtain a better and improved system performance, an improved MMSE algorithm and simplified MMSE using the structured correlation and reduced auto-covariance matrix are developed in this thesis and proposed for implementation of semi-blind channel estimation in OFDM-IDMA communication systems. The effectiveness of the adopted and proposed algorithms are implemented in a Rayleigh fading multipath channel with varying mobile speeds thus demonstrating the performance of the system in a practical scenario. Also, the implemented algorithms are compared to ascertain which of these algorithms offers a better and more efficient system performance, and with less complexity. The performance of the channel estimation algorithm is presented in terms of the mean square error (MSE) and bit error rate (BER) in both slow fading and fast fading multipath scenarios and the results are documented as well

    Spatial Modulation for Generalized MIMO:Challenges, Opportunities, and Implementation

    Get PDF
    A key challenge of future mobile communication research is to strike an attractive compromise between wireless network's area spectral efficiency and energy efficiency. This necessitates a clean-slate approach to wireless system design, embracing the rich body of existing knowledge, especially on multiple-input-multiple-output (MIMO) technologies. This motivates the proposal of an emerging wireless communications concept conceived for single-radio-frequency (RF) large-scale MIMO communications, which is termed as SM. The concept of SM has established itself as a beneficial transmission paradigm, subsuming numerous members of the MIMO system family. The research of SM has reached sufficient maturity to motivate its comparison to state-of-the-art MIMO communications, as well as to inspire its application to other emerging wireless systems such as relay-aided, cooperative, small-cell, optical wireless, and power-efficient communications. Furthermore, it has received sufficient research attention to be implemented in testbeds, and it holds the promise of stimulating further vigorous interdisciplinary research in the years to come. This tutorial paper is intended to offer a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges leading to the analysis of the technological issues associated with the implementation of SM-MIMO. The paper is concluded with the description of the world's first experimental activities in this vibrant research field

    Diversity Combining under Interference Correlation in Wireless Networks

    Get PDF
    A theoretical framework is developed for analyzing the performance of diversity combining under interference correlation. Stochastic models for different types of diversity combining and networks are presented and used for analysis. These models consider relevant system aspects such as network density, path loss, channel fading, number of antennas, and transmitter/receiver processing. Theoretical results are derived, performance comparisons are presented, and design insights are obtained
    corecore