5 research outputs found

    Shared Control Policies and Task Learning for Hydraulic Earth-Moving Machinery

    Get PDF
    This thesis develops a shared control design framework for improving operator efficiency and performance on hydraulic excavation tasks. The framework is based on blended shared control (BSC), a technique whereby the operator’s command input is continually augmented by an assistive controller. Designing a BSC control scheme is subdivided here into four key components. Task learning utilizes nonparametric inverse reinforcement learning to identify the underlying goal structure of a task as a sequence of subgoals directly from the demonstration data of an experienced operator. These subgoals may be distinct points in the actuator space or distributions overthe space, from which the operator draws a subgoal location during the task. The remaining three steps are executed on-line during each update of the BSC controller. In real-time, the subgoal prediction step involves utilizing the subgoal decomposition from the learning process in order to predict the current subgoal of the operator. Novel deterministic and probabilistic prediction methods are developed and evaluated for their ease of implementation and performance against manually labeled trial data. The control generation component involves computing polynomial trajectories to the predicted subgoal location or mean of the subgoal distribution, and computing a control input which tracks those trajectories. Finally, the blending law synthesizes both inputs through a weighted averaging of the human and control input, using a blending parameter which can be static or dynamic. In the latter case, mapping probabilistic quantities such as the maximum a posteriori probability or statistical entropy to the value of the dynamic blending parameter may yield a more intelligent control assistance, scaling the intervention according to the confidence of the prediction. A reduced-scale (1/12) fully hydraulic excavator model was instrumented for BSC experimentation, equipped with absolute position feedback of each hydraulic actuator. Experiments were conducted using a standard operator control interface and a common earthmoving task: loading a truck from a pile. Under BSC, operators experienced an 18% improvement in mean digging efficiency, defined as mass of material moved per cycle time. Effects of BSC vary with regard to pure cycle time, although most operators experienced a reduced mean cycle time

    Trust-Based Control of (Semi)Autonomous Mobile Robotic Systems

    Get PDF
    Despite great achievements made in (semi)autonomous robotic systems, human participa-tion is still an essential part, especially for decision-making about the autonomy allocation of robots in complex and uncertain environments. However, human decisions may not be optimal due to limited cognitive capacities and subjective human factors. In human-robot interaction (HRI), trust is a major factor that determines humans use of autonomy. Over/under trust may lead to dispro-portionate autonomy allocation, resulting in decreased task performance and/or increased human workload. In this work, we develop automated decision-making aids utilizing computational trust models to help human operators achieve a more effective and unbiased allocation. Our proposed decision aids resemble the way that humans make an autonomy allocation decision, however, are unbiased and aim to reduce human workload, improve the overall performance, and result in higher acceptance by a human. We consider two types of autonomy control schemes for (semi)autonomous mobile robotic systems. The first type is a two-level control scheme which includes switches between either manual or autonomous control modes. For this type, we propose automated decision aids via a computational trust and self-confidence model. We provide analytical tools to investigate the steady-state effects of the proposed autonomy allocation scheme on robot performance and human workload. We also develop an autonomous decision pattern correction algorithm using a nonlinear model predictive control to help the human gradually adapt to a better allocation pattern. The second type is a mixed-initiative bilateral teleoperation control scheme which requires mixing of autonomous and manual control. For this type, we utilize computational two-way trust models. Here, mixed-initiative is enabled by scaling the manual and autonomous control inputs with a function of computational human-to-robot trust. The haptic force feedback cue sent by the robot is dynamically scaled with a function of computational robot-to-human trust to reduce humans physical workload. Using the proposed control schemes, our human-in-the-loop tests show that the trust-based automated decision aids generally improve the overall robot performance and reduce the operator workload compared to a manual allocation scheme. The proposed decision aids are also generally preferred and trusted by the participants. Finally, the trust-based control schemes are extended to the single-operator-multi-robot applications. A theoretical control framework is developed for these applications and the stability and convergence issues under the switching scheme between different robots are addressed via passivity based measures

    Shared Control of Mobile Robots Using Model Predictive Control

    Get PDF
    With the world constantly driving towards attaining complete autonomy, there is still a major question of safety when it comes to trusting a machine completely. Autonomous systems of today also do not have the ability to perform flawlessly in an environment that is cluttered and unstructured. This calls for the need of having a human operate the machine at all times either remotely via tele-operation methods or by being physically present alongside the machine. With tele-operation of remote systems, the cognitive load required from the human operator is high, while also the perception of the remote systems environment is low. This can cause many undesirable human errors causing damage to machinery. For example, tele-operating a forestry machine in a forest can be a very daunting task as there will be many trees and not all trees around the machine can be seen by the operator during remote tele-operation. With this in context, a few industries and sectors have now largely started research with using shared control methodologies to aid their machine in tele-operation tasks. This thesis proposes a shared control methodology to provide a certain level of autonomy to the machine while still allowing the human operator to always be in control. The proposed methodology uses a Model predictive controller as the base controller to control the robot and perform obstacle avoidance tasks. The robot considered for implementation is a differential drive mobile robot, in specific the MiR 100 from Mobile Industrial Robots. The key motivation behind the thesis is to evaluate the performance of the shared control approach against a manual tele-operation task, to better understand the advantages and possible disadvantages of using a shared control strategy. The proposed strategy is implemented using the CasADi optimization toolbox on Matlab and tested through user testings. The results obtained from the user test prove that shared control can largely help in improving the safety of the system, but not so much with performance, at least not with the proposed methodology

    Adaptive Shared Autonomy between Human and Robot to Assist Mobile Robot Teleoperation

    Get PDF
    Die Teleoperation vom mobilen Roboter wird in großem Umfang eingesetzt, wenn es für Mensch unpraktisch oder undurchführbar ist, anwesend zu sein, aber die Entscheidung von Mensch wird dennoch verlangt. Es ist für Mensch stressig und fehleranfällig wegen Zeitverzögerung und Abwesenheit des Situationsbewusstseins, ohne Unterstützung den Roboter zu steuern einerseits, andererseits kann der völlig autonome Roboter, trotz jüngsten Errungenschaften, noch keine Aufgabe basiert auf die aktuellen Modelle der Wahrnehmung und Steuerung unabhängig ausführen. Deswegen müssen beide der Mensch und der Roboter in der Regelschleife bleiben, um gleichzeitig Intelligenz zur Durchführung von Aufgaben beizutragen. Das bedeut, dass der Mensch die Autonomie mit dem Roboter während des Betriebes zusammenhaben sollte. Allerdings besteht die Herausforderung darin, die beiden Quellen der Intelligenz vom Mensch und dem Roboter am besten zu koordinieren, um eine sichere und effiziente Aufgabenausführung in der Fernbedienung zu gewährleisten. Daher wird in dieser Arbeit eine neuartige Strategie vorgeschlagen. Sie modelliert die Benutzerabsicht als eine kontextuelle Aufgabe, um eine Aktionsprimitive zu vervollständigen, und stellt dem Bediener eine angemessene Bewegungshilfe bei der Erkennung der Aufgabe zur Verfügung. Auf diese Weise bewältigt der Roboter intelligent mit den laufenden Aufgaben auf der Grundlage der kontextuellen Informationen, entlastet die Arbeitsbelastung des Bedieners und verbessert die Aufgabenleistung. Um diese Strategie umzusetzen und die Unsicherheiten bei der Erfassung und Verarbeitung von Umgebungsinformationen und Benutzereingaben (i.e. der Kontextinformationen) zu berücksichtigen, wird ein probabilistischer Rahmen von Shared Autonomy eingeführt, um die kontextuelle Aufgabe mit Unsicherheitsmessungen zu erkennen, die der Bediener mit dem Roboter durchführt, und dem Bediener die angemesse Unterstützung der Aufgabenausführung nach diesen Messungen anzubieten. Da die Weise, wie der Bediener eine Aufgabe ausführt, implizit ist, ist es nicht trivial, das Bewegungsmuster der Aufgabenausführung manuell zu modellieren, so dass eine Reihe von der datengesteuerten Ansätzen verwendet wird, um das Muster der verschiedenen Aufgabenausführungen von menschlichen Demonstrationen abzuleiten, sich an die Bedürfnisse des Bedieners in einer intuitiven Weise über lange Zeit anzupassen. Die Praxistauglichkeit und Skalierbarkeit der vorgeschlagenen Ansätze wird durch umfangreiche Experimente sowohl in der Simulation als auch auf dem realen Roboter demonstriert. Mit den vorgeschlagenen Ansätzen kann der Bediener aktiv und angemessen unterstützt werden, indem die Kognitionsfähigkeit und Autonomieflexibilität des Roboters zu erhöhen
    corecore