
Tarun Reddy Devalla

SHARED CONTROL OF MOBILE ROBOTS

USING MODEL PREDICTIVE CONTROL

Master of Science Thesis

Faculty of Engineering and Natural Sciences

Examiners: Associate Professor Reza Ghabcheloo

Associate Professor Roel Pieters

October 2020



i

ABSTRACT

Tarun Reddy Devalla: Shared Control of Mobile Robots using Model Predictive Control
Master of Science Thesis
Tampere University
Automation Engineering, Factory Automation and Robotics
October 2020

With the world constantly driving towards attaining complete autonomy, there is still a ma-
jor question of safety when it comes to trusting a machine completely. Autonomous systems of
today also do not have the ability to perform flawlessly in an environment that is cluttered and
unstructured. This calls for the need of having a human operate the machine at all times ei-
ther remotely via tele-operation methods or by being physically present alongside the machine.
With tele-operation of remote systems, the cognitive load required from the human operator is
high, while also the perception of the remote systems environment is low. This can cause many
undesirable human errors causing damage to machinery. For example, tele-operating a forestry
machine in a forest can be a very daunting task as there will be many trees and not all trees around
the machine can be seen by the operator during remote tele-operation. With this in context, a few
industries and sectors have now largely started research with using shared control methodologies
to aid their machine in tele-operation tasks.

This thesis proposes a shared control methodology to provide a certain level of autonomy
to the machine while still allowing the human operator to always be in control. The proposed
methodology uses a Model predictive controller as the base controller to control the robot and
perform obstacle avoidance tasks. The robot considered for implementation is a differential drive
mobile robot, in specific the MiR 100 from Mobile Industrial Robots. The key motivation behind
the thesis is to evaluate the performance of the shared control approach against a manual tele-
operation task, to better understand the advantages and possible disadvantages of using a shared
control strategy. The proposed strategy is implemented using the CasADi optimization toolbox on
Matlab and tested through user testings. The results obtained from the user test prove that shared
control can largely help in improving the safety of the system, but not so much with performance,
at least not with the proposed methodology.

Keywords: Shared Control, Mixed Control, Human-Robot Interaction, HRI, Human in the Loop,
Mobile Robot, Differential drive robot, Model Predictive Control, MPC, Receding Horizon Control,
Obstacle Avoidance, teleoperation
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1 INTRODUCTION

Today autonomous systems are peaking interests in quite many fields, with many dis-

ciplines seeking out autonomous solutions for automating processes thereby reducing

human labour. This approach might be pretty straight forward and an achievable dream

for fixed tasks in well-defined environments. But, when we take into consideration com-

pletely unstructured environments with dynamic changes, automated systems are still

not preferred. The drawbacks of today are not restricted just to the environmental factors,

but, also due to high complexity of some machinery that can make it difficult for complete

automation. Tele-operation of such machines will also require highly skilled and trained

operators [13].

There has been a rise in autonomous systems being deployed in various fields such as

defense, aviation and automobile without having high predictability of the environment and

a system where failure is completely acceptable [2]. At times such as this, humans are

in complete control of the vehicle either on the machine or through tele-operation as they

have the capability to perceive the environmental conditions well enough to control the

machine. Even so this poses a few problems with tele-operation like, limited situational

awareness of the environment and communications delays. This can lead to unexpected

collisions in the environment and damage to the machinery [40].

Tele-operation can be a task that requires high cognitive abilities from the human operator

demanding high levels of alertness at all times. This can become a very demanding job

especially in environment with many dynamically moving objects. Tasks like search and

rescue operations, require a human to be in control of the machine always, like in using

tethered underwater rescue robots which is just one example. The tele-operation of the

machine can prove to be a rather daunting task without the right system design and

providing a high situational awareness to the user [29].

With more data being transferred to the user, to provide a good feel of the real system, the

delays within the system can start drastically increasing as well. The user will, however,

not have complete feel of driving a real machine and can become very comfortable with

controlling the system at full throttle. When in fact, the system may at times not behave

as expected, causing an undesired movement of the robot.



2

Figure 1.1. A generalised representation of a Shared Control System.

1.1 Motivation

Shared control can be seen as a solution bridging the gap between completely au-

tonomous systems and completely manual systems by introducing an architecture that

has the human always in the loop, while also giving certain level of autonomy to the ma-

chine. This might now raise another question, what is shared control? Till date, shared

control does not have an outright definition. A shared control system can simply be recog-

nised as any system within which task execution collectively depends on both the human

input and input from an autonomous controller on the machine.

A generalised representation of a shared control system can be seen in Figure 1.1. The

controller, takes as input, the desired control inputs from the human operator, the inputs

calculated by the robot’s on-board PC and the robot’s current state. It uses these to

calculate a desirable control value for moving/manipulating the robot. The controller can

also give haptic force feedback to the operator to increase the operators perception on

the task execution. The system may also have additional aids for the human to increase

perception. For example, a video feed or visualization of the sensor data.

Shared control systems are by large increasing in popularity off late with 5% increase in

year-by-year number of publications. There has also been a diversification to the different

applications where shared control has been used, which include:

1. Automotive industry

2. Drone control and navigation

3. Robotic surgery

4. Brain Machine Interfaces (BMI) for prosthetic and wheelchair control

5. Mobile robots control and navigation

These are just a few of the prominent application areas where shared control is currently

in use [2]. But on a closer look, we can conclude that most of these tasks still require the
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human to be in the control loop simply because these tasks can be very time critical and

the human will have a better judgement and outlook towards the situation when compared

to using an autonomous system [39]. Then again, this raises the question of safety and

efficiency of using a manual tele-operation method.

This brings systems with shared control strategies into play, to enable more dynamic and

safe tele-operation of mobile machines and remote robotic systems. Shared control can

be implemented in various different methods as the concept is rather very broad. A few

different methodologies will be discussed later in the next chapter to give a good idea of

how a shared control approach can be adopted for the task at hand.

1.2 Research Questions

As mentioned above, shared control can be used for various applications. But to evaluate

a shared control architecture, a few questions need to be tended to.

1. How to include Human in the Loop control for shared control?

2. How can having a shared control approach help with more efficient robot control in

terms of maneuverability?

3. Can the use of a shared control approach help with increasing the safety of robot

during tele-operation?

1.3 Objectives

The key objective of the thesis is, to develop a shared control architecture to enable a

human-in-the-loop control scheme using a 3D simulation environment and a mobile robot.

A mobile robot can be either a small indoor mobile robot, like the MiR100 or a much larger

mobile machine, like a hydraulic wheel loader. For this thesis we use a non-holonomic

mobile robot, MiR 100, to test the implementation. But, the method should be portable to

any mobile machine using the appropriate system model.

To do so a suitable test environment needs to created to test the shared control system

that will be implemented. The main robot controller will be controlled using Model Pre-

dictive Control (MPC) approach and the user will provide inputs to the system using a

joystick of 2 DOF, as the current robot has only 2 controllable Degree of Freedom. After

implementation of the shared control architecture, the system is to be tested with users

of different skill level and technical backgrounds to achieve an unbiased analysis of the

system.
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1.4 Thesis Structure

The document has a total of 6 chapters, with the first being the introduction of the thesis,

giving an idea to shared control systems and scope of this thesis.

Chapter 2 gives a theoretical background to the different shared control implementations,

along with a short literature review on MPC approaches.

Chapter 3 presents the thesis methodology and implementation which will include the

kinematic modelling of the mobile robot, the MPC formulation, introduction to the simula-

tion environment and the proposed shared control architecture.

Chapter 4 focuses on presenting the approach taken for performing the user tests of

the implemented shared control methodology mentioned in chapter 3. This chapter also

provides the results from the user testing and along with a comparison of performance

between a shared control approach against a conventional tele-operation approach.

Chapter 5 provides a comprehensive analysis based on the results from user testing

highlighting the shortcomings of the implemented shared control architecture.

Finally, Chapter 6 concludes the works of this thesis, along with future works to further

enhance and develop the research on this topic.
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2 LITERATURE REVIEW

As discussed in chapter 1 shared control doesn’t have a discrete definition and this can

make this a rather widespread topic with various different applications and implementa-

tions to it. To grasp a clear and concise understanding of the topic, a comprehensive

literature study of some of the methodologies will be presented below. Shared control in

a generalised format can be seen as a collective implementation of the following three

parts [24]:

1. Intent Detection

2. Arbitration

3. Communication

We will have more focus towards the arbitration topic of shared control with a brief overview

on communication. After this we will look into a brief study on the different application and

implementation of Model Predictive Control as this will serve as the base robot controller

in this thesis.

2.1 Shared Control: Intention and Arbitration

Arbitration in context of shared control refers to how and when control is shared between

the autonomous system and the human operator. There are numerous methods by which

the human operator can interact with the autonomous system and this can be seen from

the Levels of Autonomy (LOA) [12, 16]. There are a total of 10 LOA, which range from 1-

being complete manual operation to 10-being fully autonomous operation. The taxonomy

of LOA and their descriptions can be seen in table 2.1. Shared control strategies can be

considered as a system that adopts any LOA between and including levels 3 and 6. A

more apropos argument would be that shared control method adopts the 4th LOA.

2.1.1 Virtual Fixtures

Virtual fixtures are the most common and preferred method of implementing shared con-

trol in the field of robot assisted surgeries and mobile robotics. Virtual fixtures, also re-

ferred to as Virtual constraints/active constraints can be viewed as attractive or repulsive
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No. LOA Description

1 Manual
Computer/autonomous systems offers no assistance.
Meaning the human operator performs all the tasks.

2 Action Support

The autonomous system assists the human operator in
performing certain tasks by providing a complete set of
action. Some human input is required to help the au-
tonomous system in deciding which action to perform.

3 Batch Processing

Human generates/selects the options to be performed
by the autonomous system thereby narrowing down the
complexity of autonomous system to only physical im-
plementation of the selected tasks.

4 Sharing Control

At this level, the autonomous system does not have
any decision making capabilities but rather works based
on human generated control strategies and options.
Based on the generated strategies, the task of the au-
tonomous system is to apply it by modifying it at any
time the proposed strategy seems to be unsafe.

5 Decision Support

The computer provides a list of decision options to hu-
man to choose from or the human can also gener-
ate his/her own decision options for the system at any
time. After a certain option has been chosen, the au-
tonomous system can now implement it.

6 Blended Decision
Making

This is pretty similar to the previous LOA, but, rather
than asking for human decision, the autonomous sys-
tems carries out its own generated strategy until the hu-
man intervenes with a new strategy.

7 Rigid System

The autonomous system presents only a limited set
number of options to the human to select from. Un-
like the previous two LOAs, the human cannot gener-
ate his/her own options/strategies for the system to per-
form.

8 Automatic Decision
Making

The autonomous system generates a set of options/s-
trategies and picks the best out of them to implement.
In this LOA the set of options/strategies can be gener-
ated either by, the human or the autonomous system.

9 Supervisory Con-
trol

The computer performs actions and tasks on it’s own
autonomously while the user is constantly or periodi-
cally monitoring the system. The user can at anytime
intervene if required, changing the system temporarily
to a decision support LOA.

10 Full Automation
The computer is in control of all tasks and actions, with-
out any need for human intervention.

Table 2.1. The LOA taxonomy for dynamic systems [12, 16]
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(a) (b)

Figure 2.1. (a) GVF assisting a robot to follow a path (dotted line), (b) FRVF preventing
robots from entering a forbidden region(grey shaded region) [3].

forces imposed onto the environment. There are different methods to implement the vir-

tual fixtures in a task space. In a paper presented by Abbot J.J. et al. [3] they categorize

Haptic virtual fixtures to be of two types:

1. Guidance Virtual Fixtures (GVFs)

2. Forbidden Region Virtual Fixtures (FRVFs)

An example representation of these virtual fixtures can be seen in figure 2.1

Guidance virtual fixtures are regions or paths in the environment that help the user to-

wards task completion. These can be either pre-programmed for known environments or

can be drawn onto a 2D representation of the robot perception by using human interac-

tion, which is then projected onto the actual task space in 3D [34]. When working with

unknown task spaces the latter method might be preferable but comes with the shortcom-

ing of time used for defining the intended paths. Another method as proposed by J. Yan

et al. [44] takes a different approach where they define guidance regions within which the

robot can freely operate. They can be of different shapes/types depending on the task to

be performed. A few of these include,

1. Line guides: The robot must follow the line at all times.

2. Plane guides: The robot motion is constrained to be within a defined plane region

at all times. The plane can be of any shape. For example, triangle, trapezoid and

rectangle.

3. Solid-type guides: The robot motion is confined to a 3D region in the task environ-

ment that may take the shape of a solid object like a cone, cylinder or cuboid.

A visual representation of the different types can be seen in the figure 2.2. Here the line

guides act as GVFs while all other types of virtual fixtures can be seen as FRVFs.

Forbidden Regions are defined to prevent the robot from moving into undesirable location

in the environment. This type of virtual fixtures can be of large for applications of hydraulic

machinery where the vision of the human operator is limited. This could help in preventing

unwanted actions knowingly or unknowingly that could happen during operation of the

machine.
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Figure 2.2. Types of virtual guides [44].

Another method to define these virtual fixtures is by the method of Programming by

Demonstration [46]. In this approach the virtual fixtures are thought to the controller

by demonstration. The controller then uses a weighted average of human confidence and

robot confidence to better estimate the desired action to be performed. Another machine

learning based virtual fixtures was discussed in the paper by D. Aarno et al. “Adaptive

Virtual Fixtures for Machine-Assisted Tele-operation Tasks” [1]. In this paper the authors

divide the complete task into several subtasks or goals and use a training model with

virtual fixtures. This process was carried out using Hidden Markov models. The algo-

rithm later learns to adapt to changes in the environment. The advantages that the two

machine learning approaches bring about are, it reduces the need for programming the

virtual fixtures offline as the task can become complicated and time consuming when the

environment is frequently changing.

Virtual fixtures can be generally implemented with robotics systems as an impedance

or admittance type control structure, as these are already common and widely used.

Impedance control can not only be used for traditional control, but, also as a control

algorithm for shared control applications too. A method proposed by P. Nadrag et al. [30]

uses impedance control to control a mobile robot using a haptic device. They perform

a task of obstacle detection and avoidance by measuring the distance to obstacles and

thereby providing the required force feedback to the human operator. This method can

also be applied to applications with Forbidden Region Virtual Fixtures [3].

The method above uses only an impedance controller which lets the user move freely in

the space as long there are not any obstacles in the environment. This does not provide

any task awareness to the user. This can be overcome by using a combination of both
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Impedance and admittance type controllers.

N. Yu et al. [45] have proposed an algorithm which fuses impedance values calculated

from robot dynamics with admittance values from user input to provide a realistic force

feedback that the user feels. This force guides the user in obstacle avoidance rather than

just simple force/vibro-tactile feedback that gives only an awareness to the user. Abbot.

J. J et al. [3] have also proposed an admittance type controller that can be used with

Guidance Virtual Fixtures for tele-manipulation tasks.

2.1.2 Mode Switching

The above methods although do not mention anything about the method of tele-operating

the robots. High DOF control modules can at times seem to be very expensive and that is

alright for only research purposes. At most times there might not be a lot of funds to spare

on only a controller and this also posed a problem for implementation in this thesis, where

simple 3 DOF Haptic Devices can cost around a thousand euros. Higher DOF machines

can also be very hard to learn to operate and control for someone who does not know the

system well.

A probable to solution to this problem was proposed by Srinivasa et al in the paper “As-

sistive Tele-operation of Robot Arms via Automatic Time-Optimal Mode Switching” [13].

They propose a method of time optimal mode-switching to help in change between differ-

ent operating modes of the device. This may raise a question, why not manually change

modes during operation? That can of course be done however that increases the time

and cognitive load on the operator and that affects the efficiency of performing the task.

Using a simple time-optimal mode switching method, the Authors were able to change

between different modes while also delivering user satisfaction [13]. With such a model,

even a complex arm with 6 DOF can eventually be controlled by a device with only 3 DOF,

like a simple Joystick effortlessly. An experiment conducted on this proved that with man-

ually switching the modes there was 17.4% time increase in task execution compared to

a model with time-optimal mode-switching.

2.1.3 Sliding Autonomy

As mentioned earlier in section 2.1 there are various LOA that a system can adopt. An

interesting shared control approach is to have a system that can dynamically change/-

control the LOA the system is currently working on, seamlessly during run-time. A very

good example to such a system can be seen in air crafts. The pilot can set the plane

to complete Autopilot or can choose to control the heading or height or speed manually.

This methodology is generally referred to as sliding autonomy and can be obtained us-

ing different methods such as Standard Dial Approach, Hierarchical Approach or Policy
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Figure 2.3. A representation of sliding dial approach for balancing workload between
operator and autonomous system [28].

Based approach [28]. An simple interpretation of the sliding dial approach can be seen in

the figure 2.3. The paper compares the 3 methods mentioned and concludes that Policy

Based approach for sliding autonomy can be the most beneficial in terms of task com-

plexity. But this brings other implementation difficulties like ease of use by the user and

design of an intuitive control interface.

Apart from these approaches, a system can also be completely autonomous until it comes

to a deadlock, a situation from which the autonomous system cannot recover without

assistance from the human operator. In case of deadlock, autonomy can be completely

switched off and operator can tele-operate the robot to recovery point/state from which it

can resume tasks autonomously. A problem with such a system is that some tasks require

the user to know exactly how the robot got to that position or the user must be able to at

least determine the cause [36]. This is required so that the user can recover the robot to a

position such that the robot will not repeat the mistakes again. This situational awareness

can be brought forth to the operator using recordings from the robot just before it went into

a deadlock. This is much more feasible than having to do a continuous live stream over

the network. Even with current trends of wireless technology, large throughput of data

transmission of high bandwidth is not feasible and might sometimes cause hindrance to

transmission of more crucial data.

2.1.4 Policy Blended/Probabilistic Approaches

A virtuous approach to having a human-in-the-loop control architecture is to adapt to a

blended control structure wherein at all times the user inputs and the autonomous con-

troller inputs are used together to come to a final control decision. A common methodol-

ogy of blending the user inputs is using an α value that gives the blending factor between

the user input and the control input from the autonomous system [39].

Policy blending can also be done by having a set of known tasks to be performed and

effectively estimating the confidence levels of the automation system progressively based

on the inputs from human operator. This approach was adapted in a paper by Dragan et.

al [9] and a simple control flow of a policy blended approach can be seen in figure 2.4.
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Figure 2.4. Control Flow of a Policy Blended Shared Control Structure [9].

They have two scenarios predefined. 1. Grasp Bottle(Easy) and 2. Grasp Box(Hard).

These two scenarios in turn give rise to 4 tasks that can happen: Easy-Right, Easy-

Wrong, Hard-Right and Hard-Wrong [9]. The authors also define the arbitration function

to be dependent on the confidence of the robot in the current policy and describes the

confidence to be inversely proportional the distance to the object.

Another interesting approach is using hindsight optimization, where the system uses a

Markov Decision Process (MDP), to determine the most probable goal from user inputs

and move more efficiently towards the goal based on the input values. In a paper by

S. Javdani et al. [15] they approximate the optimal action using QMDPs which are a

combination of MDPs and Partially observable Markov Decision Processes (POMDPs).

The experimental setup consists of known object positions in task space and assumes

each object can have any grasp pose. The system uses the user input to estimate the

best possible path to follow and also which object is desired by the user to be grasped

using directional guidance from user. It can be better understood from the illustration

extracted from the paper shown in figure 2.5. We can see initially all object have a similar

probability of being the final goal object to be grasped, but as human input is given the

robot can better estimate which object is to be grasped and proceed with the task. This

implementation can be advantageous in situations of having to decide between multiple

goals to choose from.

Another probabilistic approach is discussed by Liang et al.[22] where the authors use

a Contact model to define the robot dynamics and an intent recognition algorithm that

is used to detect the relative distance from end-effector and target location and act ac-

cordingly. The closer the user moves the end-effector towards an object, the probability

increases. With a high enough probability, the system then performs task without need

for human input. In the paper the authors compare the time consumption for direct control

with and without feedback against shared control with and without feedback.

With all these methods a key role of the shared control system lies in human intent detec-

tion. This let’s the human decide on the best action based on inputs from the human op-

erator. A method proposed by M. Gao et al. [11] uses a 2-part system that blends human

intention and robot inputs based on estimation. The Contextual Task Recognition Mod-
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(a) (b) (c)

Figure 2.5. Estimation of goal probabilities and value function with effect of human input
on the system [15].

ule (CTRM) uses Recursive Bayesian Filters (RBF), which comprise Gaussian Mixture

Models (GMM) and Gaussian Mixture Regression (GMR) do determine the user intended

tasks. The Latter part of the system, motion command arbitration module (MCAM) uses

the estimation from the CTRM and uses the robot input to get a blended motion com-

mand[11].

2.2 Shared Control: Communication

The above-mentioned methods of arbitration focus mainly on how the control is shared

between the user and robot. While robot and human work in unison, there needs to

be a way to let the human operator know or comprehend the properties of the physical

environment. This can be done by either simple vibro-tactile feedback units, visual aids,

audio feedback or force feedback. Let us take an example of a car having lane assist.

The system has certain level of control, but if the system does not respond actively to the

drivers input and rather works in autonomous mode, the driver in this condition will gain

misconception of the situation. While, if the same system has a force feedback steering

wheel, the driver is informed of the system intentions and behaviour through the force

feedback steering, that helps to stay on the lane[25, 41].

We have discussed previously in section 2.1.1 about virtual fixtures. These virtual fixtures

can also be considered to be haptic virtual fixtures which provide a force feedback to the

user. This allows the user to gain a perception of the robot in real environment and

perform the task even with minimal visual aids using only the guiding forces provided

by the virtual fixtures. A paper presented by M. E. Konts et al.[20] makes use of this

concept for tele-operation task of forklifts. From the experiments conducted in that paper,

users were able to perform the tasks with more ease and confidence while they had

force feedback compared to a system without force feedback. A similar yet interesting

implementation of the use of force feedback was in the training toddlers to steer[4]. The

authors provide a 2-Dimensional force feedback through a joystick to the toddlers to help
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train them in steering tasks. The results of this experiment were surprisingly positive, as

they were able to learn to follow lines.

Another mode of communication is through visual aids to the user. These can be really

helpful when coupled along with force feedback modalities. For example, when the oper-

ator can visually see the virtual fixtures, it would be more helpful during operation. Also

as discussed previously in Section 2.1.3, the use of visual aids can pose to be really help-

ful but can in turn be costly in terms of data that needs be transmitted over the wireless

network.

In an experimental study presented by F. Mars et al.[26], the authors test various levels of

Haptic Shared control. The results of this experiment showed that the need for visual aids

reduced with a system of comprehensive and heavy force feedback. With this being said,

our focus can shift more towards haptic communication. This is because while developing

a tele-operation we must also consider the time taken for data transmission. When we

include video transmission into pipeline, it will require a lot data bandwidth for effective

lossless transmission.

2.3 A Brief Summary of Shared Control Methodologies

The mentioned shared control strategies help in providing a good idea on how a shared

control system can be implemented and how it can seem to be beneficial over using a

traditional tele-operation method. Virtual fixtures are by far the most common approach

taken towards a shared control strategy to help aid in tele-operation tasks. This is due

to the ease of formulating a system to use virtual fixtures for maneuverability tasks. But

since this method still has the human doing most work, it can still seem to be not quite

effective.

For this reason, policy blended/probabilistic approaches can have a vital impact on im-

proving task efficiency while using a shared control approach to perform tasks. This

methodology is again quite a broad classification of the various different method of im-

plementation that can be adopted. This includes, policy blending, reinforcement learning,

deep neural networks and other probabilistic methodologies like using MDPs, Gaussian

process models and Model Predictive Control(MPC). Using an MPC can seem to be ben-

eficial as it can include machine learning methodologies into the defined model, helping

in better problem formulation. MPC’s also allow for different implementation strategies

for a same problem, while also allowing different ways to include human control into the

model. This is a key reason MPC will used in this thesis. The next section takes a short

look into an introduction to MPC and a few methodologies.
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Figure 2.6. Model Predictive Control Strategy [7]

2.4 Model Predictive Control

In this thesis, a shared control approach will be developed using Model Predictive Control

(MPC). Model Predictive Control also referred to as Receding Horizon Control has been

gaining large importance and use over the course of almost 4 decades . MPC initially de-

veloped for the oil industry by Shell Oil in the 1970’s [14]. But MPC has now found it’s way

into various different fields and applications that include control of aerial vehicles, robot

locomotion[10] and power electronics[42] to name a few. This large increase in usage of

MPC is largely due to the reason that it is possible to easily develop Multiple Input Multi-

ple Output system including system constraints. More traditional control structures do not

allow this. MPC can also be considered to be an Optimal Control algorithm repeating at

each sampling interval to get the best/optimal solution [31].

To better understand the general outline of how an MPC strategy works let us take up and

example of trajectory tracking with a given reference trajectory as seen in figure 2.6. In

the figure y is the current output of the system and u is the control action on the system.

MPC calculates the predicted control actions for the system over a Prediction Horizon

and Control Horizon at each time step and applies only the first control action from the

predictions to the system at each time step.

An MPC has 3 main parts to it irrespective of the application to be tended to[31].

1. Model of the system

2. Objective Function/Cost Function

3. Predictive Control Law to minimise the cost function
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Figure 2.7. The system model presented in [40] for an MPC based shared control ap-
proach.

The system model of an MPC algorithm is analogous to the system that is being con-

trolled by the MPC. Even so, a system model for a specific vehicle can be modelled using

different methodologies. For example, a mobile robot can be modelled using either only

the system kinematics, or by including the dynamic model of the system as well as seen

in the researches presented in [5, 18, 21, 39, 45].

Next comes the formulation of the cost function and constraints that will be used for the

MPC approach. This is wholly dependant on the task to be accomplished and the ro-

bustness of the system design. The cost functions are largely formulated prior to task

execution based on the users understanding of the system and the environmental capa-

bilities. Given a proper MPC formulation the system behaviour will be as close to the

intended behaviour and the cost function and constraints would fit the defined use case.

But sometimes this might not be case, and the controller behaviour can become undesir-

able. This problem can be overcome by using deep-learning or Q-learning approaches

using neural networks to comprehensively update the cost functions and constraints of

the MPC using prior test data, while also learning on the go[10, 32, 33].

Model predictive control approaches can also be used in shared control methodologies

to have a human in the loop control architecture. There has been research on different

methodologies on how to include the human inputs into the MPC formulation. One re-

search suggests the use of MPC to generate a blending factor α. In this method, the user

and autonomous system both give to the system a desired input value. The autonomous

systems values are based on an obstacle avoidance scheme built using potential fields.

The α helps in continuously changing the level of control between the robot and the hu-

man to enable a safe control structure[39]. One methodology was proposed for use in

commercial road vehicles for effective lane keeping assistance through shared steering

control. This model uses a smoothly shifting control authority model based on a confi-
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dence estimate of the user model to predict human errors and correct the system, while

also providing the user with constant haptic feedback of the systems intentions[38].

A method proposed by Storms Et. al.[40] closely relates to the methodology that will be

solved as part of this thesis. In this paper the authors develop multiple shared control

strategies with MPC as the base controller. They test shared control strategies that in-

clude only human control decisions, and also a method that takes into consideration the

humans desired state manipulation of the robotic system to evaluate the performance cri-

teria of different approaches including a communication delay on the system. One of the

adopted shared control strategies, allows the user to control a point ahead of the robot to

manipulate the robot steering accordingly. The authors use a robot model with constant

linear velocity and allow manipulation of only the angular velocities of the robot. Hence,

the point controlled by the robot only affects the angular velocity of the robot, thereby,

steering the robot. The system model proposed in this paper can be seen in the figure

2.7.
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3 METHODOLOGY AND IMPLEMENTATION

In the previous chapter we have taken a look into the different methodologies and im-

plementations of shared control and MPC which were related mostly to mobile robotics

applications, which is the main focus of this thesis. This chapter will now present the MPC

formulation with the proposed shared control architecture for having a human-in-the-loop

control architecture.

3.1 Shared Control Methodology

Figure 3.1. Schematic view of the implemented shared control architecture with the dif-
ferent software/tools used at each block.

For this thesis we consider a rather generic task of robot maneuverability to test the

benefits of using a shared control approach over a traditional tele-operation approach.

In the proposed methodology, we assume the robot has complete knowledge about the

environmental constraints including obstacles, but the robot does not have any decision
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making capabilities on the final goal that it must reach. This knowledge is input to the

system perpetually by the human user. A simple representation of the shared control

architecture carried out in this thesis can be seen in figure 3.1. As seen in illustration,

the MPC algorithm is the heart of the implemented shared control architecture. The

formulation of the MPC algorithm for the approach was carried out in 3 phases:

1. MPC for direct robot control with a fixed final goal in an environment without obsta-

cles, explained further in section 3.1.2.

2. MPC for direct robot control with a fixed final goal in an environment with obstacles

to test obstacle avoidance, explained further in section 3.1.3

3. Including human input to continuously update the desired goal for the robot with

obstacle avoidance, explained further in section 3.1.4

3.1.1 Kinematic Modeling of a Differential Drive Mobile Robot

Figure 3.2. MiR 100 Mobile Robot [27]

The first part required for an MPC algorithm is the system model or plant model. In this

thesis we will be using a Differential Drive Mobile Robot (DDMR), MiR-100 from Mobile

industrial Robots (MiR)[27]. A picture of the robot in discussion can be seen in figure 3.2.

A differential drive mobile robot has 2 individually controllable wheels on either side of the

robot. The robot is controlled by controlling the linear velocity v and the angular velocity

w of the robot. This makes the robot non-holonomic solely due to the fact that the robot

can move linearly only in one axis (Forward↔Backward), and rotate about it’s yaw axis

restricting the robot to 2 DOF. Now we have the robots control input u =
[︂
v w

]︂T
.

To formulate the kinematic model of the robot, consider the illustration in the figure 3.3. In
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Figure 3.3. 2D representation of the MiR100

the figure O is the origin of the world coordinate frame. The two individually controllable

wheels of the robot are depicted with the black wheels, while the non-controllable castor

wheels of the robot are shown in grey colour. The robot position is defined with respect to

the world coordinate frame as xR, yR and θR giving the pose of the robot. Where xR,

yR provide the position of the robot centre and θR provides the robot heading/orientation.

This gives the state of the robot which can be denoted by x.

x =

⎡⎢⎢⎣
xR

yR

θR

⎤⎥⎥⎦ (3.1)

The pose of the robot can be controlled by controlling the linear velocity and the angular

velocity, v and w respectively. The linear velocity can be decomposed to the velocity

along x and the velocity along y. This can be explained with the illustration as seen in

figure 3.4. From the figure we can see it to be a right angled triangle and this will hold

true for all cases of a 2D velocity vector like v. The velocity components ẋ and ẏ form

the adjacent and opposite side of the triangle with v as the hypotenuse of the triangle.

The angle θ can be seen as the angle made between the velocity vector v and velocity

component ẋ. We can now derive the equations for the x and y velocity components
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Figure 3.4. Illustration of velocity vector v decomposition

from the basic trigonometric equation of a triangle which are:

cos θ =
ẋ

v
(3.2)

sin θ =
ẏ

v
(3.3)

Rewriting equations 3.3 and 3.2 we get,

ẋ = v cos θ (3.4)

ẏ = v sin θ (3.5)

The angular velocity w directly affects the the rate of angular change of the robot θ̇.

θ̇ = w (3.6)

From the three equations we can now derive the kinematic model of the system⎡⎢⎢⎣
ẋR

ẏR

θ̇R

⎤⎥⎥⎦ =

⎡⎢⎢⎣
cos θR 0

sin θR 0

0 1

⎤⎥⎥⎦u (3.7)
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OR⎡⎢⎢⎣
ẋR

ẏR

θ̇R

⎤⎥⎥⎦ =

⎡⎢⎢⎣
v cos θR

v sin θR

w

⎤⎥⎥⎦ (3.8)

Equation 3.8 can also be written in simple form as,

ẋ(t) = fc(x(t), u(t)) (3.9)

Where fc denotes the function is represented in continuous time and not discrete time.

This method can although be used for only robots/models that have their coordinate frame

as the center of the robot and is feasible for the MiR 100 as it satisfies this condition.

The kinematic model of the robot in 3.8 is in continuous time form and needs to be dis-

cretized for use in the MPC formulation. This can be done by simple Euler discretization

to arrive at the following formulation,⎡⎢⎢⎣
xR(k + 1)

yR(k + 1)

θR(k + 1)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
xR(k)

yR(k)

θR(k)

⎤⎥⎥⎦+∆t

⎡⎢⎢⎣
v(k) cos θR(k)

v(k) sin θR(k)

w(k)

⎤⎥⎥⎦ (3.10)

Where, k is the current step and k + 1 is the next prediction step. ∆t is the sampling

period for the data.

The system model in discrete time can also be written as,

x(k + 1) = f(x(k), u(k)) (3.11)

3.1.2 Model Predictive Control formulation

As described earlier in section 2.4 a model predictive control algorithm is an optimization

problem solved at each time step for a given prediction horizon N yielding an optimal

control sequence. We have already defined our system model in the previous step. The

next step is to proceed with the MPC formulation for the task. An example MPC problem

would be similar to the formulation in equation 3.12.

minimize
u

J(x, u) =
t+N∑︂
t

l(x, u) (3.12)
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(a) (b)

Figure 3.5. (a) An example point stabilization problem with a constant goal pose
xg =

[︁
xref yref θref

]︁
, (b) An example trajectory tracking problem with a goal

pose xg(t) =
[︁
xref (t) yref (t) θref (t)

]︁
changing with respect time t.

subject to a certain set of constraints,

u ∈ U, (3.13)

x ∈ X (3.14)

For t = t, t + 1, ..., t + N , N is the prediction horizon, x is the robot state and u is

the control variables. J(x, u) is the objective/cost function to be minimized and l(x, u)
is the running cost. The above MPC problem is now solved at each time step t for the

given prediction horizon N to arrive at an optimal solution progressively.

In this thesis, the robot control problem will be solved as a point stabilization problem.

A point stabilization problem is similar to a trajectory tracking problem with the only dif-

ference being that for a point stabilization problem, the reference values will remain a

constant over the control period[47] as seen in equation 3.15. Where xref , yref , θref
give the goal pose, denoted by xg The difference between the two methods can be un-

derstood well with the illustration in figure 3.5.

xg =

⎡⎢⎢⎣
xref

yref

θref

⎤⎥⎥⎦ ,∀t (3.15)

For an MPC problem it is crucial to define a fitting cost function for the problem to be
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solved. As seen in section 2.4, there can be many different methods and approaches

to the same problem. These approaches may even make use of deep-learning or Q-

learning methodologies as explained in [10, 32, 33]. For a point stabilization problem the

cost function can be defined in a very simple manner with the main objective being to

minimize the error between the current state of the robot x and the desired goal pose xg
while minimising the control variables u. The objective function for the point stabilization

problem can be seen below in 3.16.

minimize
u

J(x0, u) =
N−1∑︂
k=0

l(x, u) (3.16)

Subject to,

x(k + 1) = f(x(k), u(k)), (3.17)

u(k) ∈ U, for k ∈ [0, N − 1], (3.18)

x(k) ∈ X, for k ∈ [0, N ] (3.19)

v(k)− v(k + 1) ≤ vlimit for k ∈ [0, N − 1] (3.20)

v(k)− v(k + 1) ≥ −vlimit for k ∈ [0, N − 1] (3.21)

w(k)− w(k + 1) ≤ wlimit for k ∈ [0, N − 1] (3.22)

w(k)− w(k + 1) ≥ −wlimit for k ∈ [0, N − 1] (3.23)

Where,

l(x, u) = (x(k)− xg)Q(x(k)− xg)
T + u(k)Ru(k)T (3.24)

The equation 3.24 is the running cost for the optimization problem, which is modelled

as a quadratic function which includes the robot states and control variables. Q and R
are diagonal positive definite weighting matrices of 3X3 and 2X2 dimensions respectively.

These matrices are used for tuning the performance of the MPC algorithm. The optimiza-

tion variables also known as the decision variables for this problem are the state variables

of the system x and the control variables of the system u. It is also to be noted that

we have only taken into consideration the system kinematics and not the dynamics. This
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would mean there are no constraints on the acceleration or deceleration of the robot as

mass of the robot is not accounted for. For this reason, we introduce constraints on the

maximum allowed difference between the current control inputs u(k) and the control in-

puts for the next step u(k+1). These constraints can be seen in equations 3.20 through

3.23.

The above equations [3.16-3.23] form the optimal control problem (OCP) for our solution.

To be able to solve this problem as an MPC problem, the OCP must be converted into a

non-linear programming(NLP) problem. This can be done using various methods, a few

of which are listed below,

1. Single Shooting

2. Multiple Shooting

3. Collocation

In this thesis we will be using multiple shooting to convert our OCP problem into an NLP

problem. The NLP problem will be solved using Matlab and CasADi[6] through a multiple

shooting approach having the decision variables as both the states of the system x and

the control variables of the system u.

The MPC algorithm for the formulated problem can be seen in Algorithm 3.1 and the code

used for testing the MPC formulation can be seen in Appendix B.1. A simulation run made

with sample time ∆t as a constant "0.4 s", a selected Q and R value and a fixed xg
value that can be seen in table 3.1 along with the other constant parameters used. The

values for the weighting matrices Q and R were selected based on trial and error, with

the simulation to obtain the least steady state error for the controller. The steady state

error is calculated as the error in distance between the goal xg and robots final pose.

Figure 3.6 shows the path followed by the robot and figure 3.7 shows the control inputs

for the solution which resulted in a low steady state error from the simulation test.

3.1.3 Modelling Obstacles as Constraints

The next step is to add the obstacles into the MPC problem formulation. The obstacles

in the environment are static poles of diameter 0.45m. As mentioned earlier, the robot

will be maneuvering in a fully known environment. This means the obstacle positions are

known and modelled into the MPC formulation with their fixed positions. The pose of the

obstacles are denoted as follows,

pobs(i) =

[︄
xobs(i)

yobs(i)

]︄
, for i ∈ [1, NO] (3.25)

Where, NO is this total number of obstacles.
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Figure 3.6. Visualization of the Robot path followed using the MPC algorithm in an envi-
ronment without obstacle.

Figure 3.7. Plot of the control values generated by the MPC for the path in the figure 3.6
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1 Inputs : x _ i n i t i a l [1 x3 ] , u _ i n i t i a l [1 x2 ] , x_g [1 x3 ]
2 Parameters : Q[3 x3 ] , R[2 x2 ] , N[ sca la r ] , d t [ sca la r ]
3 constraints : Boundary constraints , c o n t r o l constraints , . . .
4 s t a t e constraints , c o n t r o l decomposit ion constraints
5 Output : U∗
6
7 % Setting up the MPC problem
8 define system model as CasADI symbol ic
9 fo rmu la te the o b j e c t i v e function − obj

10 define Q[ diag ] & R[ diag ]
11 define o p t i m i z a t i o n v a r i a b l e s − x0 & u0
12 c a l c u l a t e constraints as CasADi symbol ic
13 create the so l ve r using CasADi c lass ’ n l p s o l ’
14 input c o n s t r a i n t values
15 input i n i t i a l value − x _ i n i t i a l
16 input goal value − x_goal
17 input i n i t i a l value for o p t i m i z a t i o n va r i a b l e s − x0 & u0
18
19 % Start the control loop
20 While ( x_current−x_goal )>=1e−2 DO
21 solve for opt ima l s o l u t i o n U∗
22 apply s o l u t i o n o f N=1 to the robot
23 s h i f t u0 , x0 , x_curr , t0
24
25 end

Algorithm 3.1. Model Predictive Algorithm.

Symbol and Description Value

N 15

∆t 0.4

Q [Diagonal elements of Q matrix] [3 3 1.5]

R [Diagonal elements of R matrix] [0.7 0.3]

xg [x, y, θ] [4,4,0]

xinitial[x, y, θ] [-4,-4,0]

Control lower limits [v, w] [-1,-1] m

Control upper limits [v, w] [1,1] m

Boundary lower limits [x, y] [-5,-5] m

Boundary upper limits [x, y] [5,5] m

Limits on change in linear velocity - vacc, vdec 0.1, 0.1

Limits on change in angular velocity - wacc, wdec 0.1, 0.1

Steady state error (xg-robot final x) 0.1283 m

Table 3.1. Parameters and error of the controller in an environment without obstacles.
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Figure 3.8. Representation of the static obstacles in the simulation environment.

The figure 3.8 shows the position of the obstacles in the environment. For the purpose

of simplicity, the robot and obstacles are both considered as circles of certain diameter.

The robot is modelled as a circle of diameter 0.9m since the longest dimension of the

robot is 0.89m. The obstacles are modelled with a diameter of 0.4m. For the obstacle

avoidance to hold true, the Euclidean distance between the robot position [xR,yR] and

the position of each obstacle pobs must be always greater than the sum of radius of the

robot rR and the radius of the obstacle rO. An illustration of this can be seen in the

figure 3.9 as seen in the equation 3.26.

dRO(i) ≥ rR + rO(i), fori ∈ [1, NO] (3.26)

Where,

dRO(i) =
√︂
(xR − xobs(i))

2 + (yR − yobs(i))
2, fori ∈ [1, NO] (3.27)

Here, dRO denotes the Euclidean distance between the robot and the obstacle. This
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Figure 3.9. An example representation of obstacle avoidance modelling with a single
obstacle.

condition is now added as a constraint to the MPC problem of the form,

−dRO(i) + (rR + rO(i)) ≤ 0, for i ∈ [1, NO] (3.28)

Where, NO is the total number of obstacles.

This yields the following final MPC problem formulation,

minimizeJ(x, u) =
N−1∑︂
k=0

l(x(k), u(k)) (3.29)

Subject to, Subject to,

x(k + 1) = f(x(k), u(k)), (3.30)
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Symbol and Description Value

N 15

∆t 0.4

Q [Diagonal elements of Q matrix] [6 6 4]

R [Diagonal elements of R matrix] [0.3 0.15]

xg [x, y, θ] [4,4,0]

xinitial[x, y, θ] [-4,-4,0]

rR 0.425 m

rO 0.2 m

Control lower limits [v, w] [-1,-1] m

Control upper limits [v, w] [1,1] m

Boundary lower limits [x, y] [-5,-5] m

Boundary upper limits [x, y] [5,5] m

Limits on change in linear velocity - vacc, vdec 0.1, 0.1

Limits on change in angular velocity - wacc, wdec 0.1, 0.1

Steady state error (xg-robot final x) 0.1142 m

Table 3.2. Parameters and error of the controller with obstacles included.

u(k) ∈ U, for k ∈ [0, N − 1], (3.31)

x(k) ∈ X, for k ∈ [0, N ] (3.32)

v(k)− v(k + 1) ≤ vlimit for k ∈ [0, N − 1] (3.33)

v(k)− v(k + 1) ≥ −vlimit for k ∈ [0, N − 1] (3.34)

w(k)− w(k + 1) ≤ wlimit for k ∈ [0, N − 1] (3.35)

w(k)− w(k + 1) ≥ −wlimit for k ∈ [0, N − 1] (3.36)

(−dRO(i) + (rR + rO(i))(k) ≤ 0, for i ∈ [1, NO] and k ∈ [0, N − 1]
(3.37)

Phase 2 of the MPC formulation is to to model the obstacles to the controller and test the
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Figure 3.10. Visualization of the Robot path followed using the MPC algorithm in an
environment without obstacle.

robot control in the environment with obstacles added. The obstacle constraint as seen in

equation 3.37 is modelled using CasADi as inequality constraints to the previously defined

MPC problem in section 3.1.2. The control algorithm will remain the same as defined in

the algorithm 3.1 with only the number of constraints the problem uses will be different.

The codes for the obstacle avoidance MPC control scheme can be seen in Appendix B.2.

A simulation run made with sample time ∆t as a constant "0.4 s", a selected Q and R
value and a fixed xg value that can be seen in table 3.2 along with the other constant

parameters used. The Q and R values were again selected from trial and error method

to get a low steady state error, while also avoiding obstacles. Figure 3.10 shows the

path followed by the robot and figure 3.11 shows the control inputs for the solution which

resulted in a low steady state error from the simulation test.

3.1.4 Inclusion of Human Inputs into the system

The final phase of the MPC formulation for the shared control approach is to complete the

shared control strategy by including human inputs to the control loop. In the implementa-
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Figure 3.11. Plot of the control values generated by the MPC for the path in the figure 3.6

tions discussed in sections 3.1.2 and 3.1.3, the simulation on Matlab were done having a

fixed goal/target for the controller to compute an optimal solution.

The shared control methodology developed in this thesis will use human inputs to contin-

uously update the goal pose xg for the robot. The human therein controls a virtual robot

in the environment that enables him/her to effectively manipulate the robot position by

changing the target for the MPC controller to solve. The virtual MiR xvMiR controlled by

the human has both position
[︂
xvR yvR

]︂
and direction θvR, meaning it is represnted

as virtual differential drive robot.

xvMiR =

⎡⎢⎢⎣
xvR

yvR

θvR

⎤⎥⎥⎦ (3.38)

But the human does not have direct control over the pose of the robot but rather controls

the virtual MiR using velocity inputs fed to the system as vh and wh. The updated pose

xvMiR is then calculated using the equation 3.10.

xvMiR(k + 1) =

⎡⎢⎢⎣
xvR(k)

yvR(k)

θvR(k)

⎤⎥⎥⎦+∆t

⎡⎢⎢⎣
vh cos θvR(k)

vh sin θvR(k)

wh

⎤⎥⎥⎦ (3.39)

To include human inputs we use the discrete time model of the kinematic system defined

in equation 3.10 to update the new desired goal position of the robot. To better formulate

the control structure for inclusion of human control, the below 2 assumptions are made,

1. The virtual MiR controlled by the human is restricted to move within a fixed distance

dPR from the real robot which is illustrated in figure 3.12
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Figure 3.12. A representation of the control point controlled by the human at a distance
dPR in front of the robot.

2. The virtual MiR is allowed to pass through the obstacles and outside the specified

environment, while the real robot cannot.

The cost function as defined in equation 3.24 can be seen to be working on a fixed/pre-

defined goal pose xg . This cost function can now be slightly modified to include to the

human controlled virtual MiR for the proposed shared control strategy.

l(x, u) = (x(k)− xvMiR)Q(x(k)− xvMiR)
T + u(k)Ru(k)T (3.40)
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3.2 Shared Control Implementation

3.2.1 The Simulation Environment

In this chapter, so far, we have defined the kinematic model of the robot used for the

thesis, which is the MiR100[27]. We have modelled the MPC problem without obstacles

and tested it on Matlab simulation. We have also later added obstacles and modelled

them into the MPC formulation as constraints. Finally, we defined and added a model for

including human into the control loop. The next step is to test the MPC formulation on the

MiR100 robot.

To perform the simulation, different simulation environments were tested, which include:

1. Microsoft AirSim using Unreal Engine [37]

2. Gazebo Simulation [19]

3. Isaac SDK and Isaac sim from Nvidia

The two most appropriate simulation environments out of the list were the Microsoft Air-

Sim and Gazebo simulation environment. Initial tests began working with AirSim simu-

lation environment. AirSim simulation environment was developed for easy testing and

deployment of Reinforcement Learning(RL) based algorithms for autonomous vehicles

and drones. A major drawback with the AirSim simulation environment is that, it works

only through Microsoft Windows Operating Systems.

A simple pipeline of the AirSim environment and it’s different modules can be seen in the

figure 3.13. The simulation module seen on the right side of the image can be compiled

with the AirSim library package into an executable ".exe" file. AirSim provides an API for

communicating with this simulation environment through both python and C++ program-

ming languages. AirSim API provides ready classes for implementation of algorithms for

control of Drones and vehicles that use a bicycle model.

In our thesis the main focus is working towards an implementation for differential drive

mobile robots. This would mean, simulating a robot with skid steering or differential drive

would require developing a code from scratch, for control of differential drive vehicles.

Due to this main reason, use of the AirSim simulation environment was dropped and

simulation were planned and executed using Gazebo simulation environment

Gazebo is an open source, high fidelity 3D multi-robot simulation environment that comes

pre-built with a full desktop installation of Robot Operating System (ROS)[35]. Gazebo

provides capabilities for data visualization by simulation of remote environments and hard-

ware. Gazebo simulation environment is easy to use with possibility of environment cre-

ation via a Graphical User Interface (GUI). All models used in the simulation environment

are developed using Unified Robot Description Format (URDF) and Simulation Descrip-
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Figure 3.13. Pipeline illustrating AirSim’s modules and communication between them.

Figure 3.14. General structure of the Gazebo simulation environment components [19].
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Figure 3.15. The modified MiR robot with cameras.

tion Format (SDF). Both these formats use an XML script base for model creation. A gen-

eral structure of Gazebo can be seen in figure 3.14. For implementation, in this thesis, we

will be simulating the MiR100 mobile robot using the Gazebo simulation environment. We

will not be developing the model, but rather, we wil be using an existing model developed

by DFKI, the German Research Center for Artificial Intelligence[8].

The MiR model was modified to include two cameras, one camera to visualize what is

in front of the robot, and another placed at the rear of the robot to visualize the what is

behind the robot. The modified configuration file can be seen in appendix A. The mod-

ified robot model can be seen in figure 3.15, where the two rectangular boxes hovering

over the robot represent the cameras of the robot. The simulation environment used for

the thesis was created using the Gazebo GUI. The designed simulation environment was

such that it mimics a robot moving in an environment with many trees. This will help

in testing the maneuverability of robot using the implemented shared control approach.

While designing the environment it is assumed that the robot will be moving in a com-

pletely flat environment with no humps or crevices. The designed simulation environment

can be seen in figure 3.16.

Equation 3.8 gives a representation of the standard kinematic model for most differential

drive mobile robot. The localisation of the robot can be done using odometry data from

the wheel encoders or using other methods like visual odometry using LIDAR sensors or

cameras. But in this thesis we get the position of the robot with respect to the world co-

ordinate through the Gazebo simulation environment directly. This is done by subscribing

to the Gazebo’s /Get_model_states topic.

3.2.2 Completing the Pipeline for Shared Control Implementation

This chapter has so far walked through all the different parts that are required for imple-

menting the shared control approach of this thesis. With the MPC problem formulation
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Figure 3.16. The Gazebo simulation environment created for testing the shared control
approach.

and the simulation environment ready, the next step is to put things together to complete

and test the implementation of the shared control algorithm. As seen in the figure 3.1, all

the different components implemented will communicate with each other using ROS. ROS

is an open source meta operating system that works on top of Linux and Mac Operating

Systems. It can be seen as a set of tools, libraries and conventions put together to sim-

plify robotics applications and enable rapid prototyping and testing of robotic software[35].

ROS provides APIs for multiple programming languages including python, C++ and Mat-

lab giving complete freedom to the user to choose the preferred coding language. ROS

also has its own messaging medium using publish subscribe services which let’s codes

written in different languages to still communicate with each other.

In this thesis, the implementation of the shared control algorithm is done using Matlab

and python. As mentioned in section 3.1.2, the MPC algorithm is written on Matlab, using
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Figure 3.17. Sequence Diagram of the Different modules and their communications.

the CasADi optimization toolbox. The human inputs are collected using a joystick through

python and the data is published onto ROS. The joystick in use is the Logitech ATTACK

3 joystick[23]. This is a joystick with 2 DOF where the Y axis of the joystick controls the

linear velocity v and the X-axis of the joystick controls the angular velocity w.

The user will use joystick with the model defined in section 3.1.4 to provide the control

inputs, which will move the goal to reach of the robot within the simulation environment.

The pose of the desired goal positions is published as ROS messages. These ROS

messages are subscribed by Matlab and the goal to reach is continuously updated for the

MPC algorithm. Matlab also subscribes to the current pose of the robot in the simulation

environment and updates the value into the MPC algorithm. Matlab uses these values to

then calculate a solution for the defined MPC problem. The solution of the MPC algorithm

will include the control inputs for the robot throughout the whole prediction horizon. We

will extract only the values for the next step and publish these control values v and w
as a ROS message for the robot to subscribe to and move accordingly in the gazebo

simulation environment. The algorithm for the proposed shared control approach can

bee in algorithm 3.2. An illustration of the different modules and their communication can

be seen in the form of a sequence diagram in figure 3.17.

The implemented algorithm was tested using the same parameters defined in the table

3.2. The algorithm was tested with some sample runs and the robots behaviour against
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1 Inputs : x _ i n i t i a l [1 x3 ] , u _ i n i t i a l [1 x2 ] , x_g [1 x3 ] ( form user )
2 Parameters : Q[3 x3 ] , R[2 x2 ] , N[ sca la r ] , d t [ sca la r ]
3 constraints : Boundary constraints , c o n t r o l constraints , . . .
4 s t a t e constraints , c o n t r o l decomposit ion constraints
5 Output : U∗
6
7 % setting up ROS parameters
8 r o s i n i t
9 i n i t i a l i z e the ROS pub l i she rs and message types

10 i n i t i a l i z e ROS subscr ibers
11
12 % Setting up the MPC problem
13 define system model as CasADI symbol ic
14 fo rmu la te the o b j e c t i v e function − obj
15 define Q[ diagonal ] & R[ d iagonal ]
16 define o p t i m i z a t i o n v a r i a b l e s − x0 & u0
17 c a l c u l a t e constraints as CasADi symbol ic
18 create the so l ve r using CasADi c lass ’ n l p s o l ’
19 input c o n s t r a i n t values
20
21 x _ i n i t i a l −> from user
22 x_goal = x _ i n i t i a l
23
24 robot pose i n gazebo−>Ros Serv ice c a l l : pose−> x _ i n i t i a l
25 subscribe to te rmina te but ton : end_sim −> Bool
26
27 input i n i t i a l value for o p t i m i z a t i o n v a r i a b l e s − x0 & u0
28
29 % Start the control loop
30 While end_sim== f a l s e DO
31 solve for opt ima l s o l u t i o n U∗
32 rospub l i sh the s o l u t i o n o f N=1 for the robot
33 s h i f t u0 , x0 , t0
34 rossubscr ibe robot pose−>x_cur r
35 rossubscr ibe goal_pose−>x_goal
36 end

Algorithm 3.2. Shared Control Algorithm
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Figure 3.18. Visualization of the Robot path followed using the Shared Control algorithm
in the gazebo environment.

Figure 3.19. Plot of the control values generated by the MPC for the path in the figure
3.18.
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obstacle avoidance was tested. The path followed by the robot and the control inputs

generated by the MPC algorithm from one of the sample test is shown in figure 3.18 and

figure 3.19 respectively. The robot does not follow the path chosen by the human but

rather tries to move to the frame defined by the virtual robot at a given time as seen in

figure 3.18. This is because the MPC formulated solves for a point stabilization problem.
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4 USER TESTING AND RESULTS

In the previous chapter the shared control architecture using an MPC approach was for-

mulated and implemented. The implemented architecture now needs to be tested for

evaluating it’s performance. To arrive at an unbiased evaluation the system is to be tested

with users of different experience levels and backgrounds. This would help to come to a

proper conclusion of how the implemented shared control architecture behaves and feels

in terms of usage.

4.1 Test Procedure

4.1.1 Manual tele-operation

To arrive at a proper performance of the system we need to have a benchmark. For the

purpose of having a benchmark test, a manual tele-operation module was designed to be

used in the gazebo simulation along with the MiR robot. Manual/Direct tele-operation was

chosen due to the reason that many systems that require human operators to perform re-

mote tasks function with direct tele-operation methods using control interfaces that mimic

the remote machines control interface.

The manual tele-operation module uses the joystick model adapted for the shared control

approach. Now that the user will operate the robot directly, the joystick controller directly

sends the required velocity commands for the robot to move within the environment and

not the virtual MiR. The joystick control module used can be seen in the Appendix B.6.

The code subscribes to the ROS node Joy that publishes the raw joystick data. This data

is then converted to a ROS message of type Twist with the linear velocity v and angular

velocity w values mapped from the joystick axes. The Twist message is then published as

a rospublish message that will be subscribed by the robot in the simulation environment.

It can also be noted that a joystick button is required to be pressed at all times while

wanting to move the robot. This is used as a safety switch/deadman switch to restrict

undesired or accidental movement of the robot.
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4.1.2 The user testing tasks

Now that we have a bench marking medium, we will need to proceed with defining suitable

tasks to be performed as part of testing the shared control architecture. For the user

testing, two tasks were defined.

1. How safe can you manoeuvre?

In this task, the users will manoeuvre the robot randomly to their will around the

simulation environment that can be seen in figure 3.16. The users will perform this

task for a specified time-frame of 2-minutes. 2-minutes was chosen as that would

also give an idea on how the user adapts to the system and the environment.

2. How quick can you manoeuvre?

In the second task, the user will have to manoeuvre from a starting point in the

environment, to, a highlighted region on the environment as quick as they can be.

The performance of the shared control approach will be tested and compared against a

manual tele-operation methodology based on a set of performance evaluation criteria that

can be seen below.

1. Task 1 Evaluation criteria

• The total number of collisions made per minute.

2. Task 2 Evaluation Criteria

• The time taken for moving from starting position to the final highlighted region.

This highlighted region can be seen in the figure 3.16 as the blue shaded

region on the top right corner of the simulation environment.

• Does a small training period of using the system, improve efficiency of task

completion?

The task will be performed twice with the implemented shared control

approach. The first time users will directly perform the task. This will be

followed by a 3 minute training period for the users to get accustomed

to the system. After this training period, the users will perform the task

again to see if there is an improvement to their performance.

4.2 Test setup

The user tests were set up and performed on the TAU, Hervanta campus. The test en-

vironment is setup using gazebo as shown in the figure 3.16. The users were provided

with video feeds of the robots front and back facing cameras as depicted in figure 4.1

and 4.2 respectively. For the manual tele-operation task, these were the only medium of

perception that was provided.
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Figure 4.1. Front camera feed of the robot used as a display for the user testing.

Figure 4.2. Rear camera feed of the robot used as a display for the user testing.

For the tele-operation tasks with shared control, the user will be controlling a virtual MiR

in the environment that is represented by the green box in the figure 4.3(a). Having just

the two camera feeds can prove to be daunting at times when the robot is directly on

top of the Green rectangle object that the user controls. The user will not have enough

information or knowledge as to how much he has turned the point or will not have a view

of the controlling point when he moves it to the sides as there are no visual aids for

what is on the side of the robot. To help the users in such situations, the pose of the

virtual MiR with respect to the robot’s position is visualized on Rviz. Rviz is a powerful

data visualization tool that comes pre-installed with ROS. It allows for users to subscribe
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(a)

(b)

Figure 4.3. (a) A view of the user controlled pose on the environment for the implemented
Shared Control Approach. (b) A representation of the pose of the user controlled point
with respect to the robot provided as an additional visual aid for the users.

to and visualize a lot of the ROS messages being published along with transformations

between different entities[17]. A visualization of the user controlled virtual MiR pose with

respect to the robot position can be seen in the figure 4.3(b). An over all view of the

complete test setup can be seen in figure 4.4.

4.3 Results

A total of 7 users were selected for the user testing tasks. The group consisted of 2 female

participants and 5 male participants. Out of the 7 selected participants 3 had very good

gaming experience and hence good experience with knowing how to control the robot.

4 participants were from an automation or robotics background while the remaining 3
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Figure 4.4. The complete user test setup at Tampere University, Hervanta Campus.

participants were from other domains. The users were verbally instructed how to use the

system and what they will be able to see in the screens in front of them. All user testings

made were voluntary and an informed consent form was signed before each user test.

The template of the consent form can be seen in appendix C.1.

The user test were performed for both tasks and each test was evaluated based on the

evaluation criteria mentioned in section 4.1.2. The evaluation provides a comparison of

the task completion in terms of maneuverability and safety for the system that is being

used. During both the tests the robots maximum allowed velocities were restricted to

1 m/s.

4.3.1 Task 1 - How safe can you manoeuvre?

An average of the results from all 7 of the user studies can be seen in figure 4.5(a). The

results are from an average of the collisions made by all the users in the environment over

the fixed time period of 2-minutes. Figure 4.5(b) provides the data of collisions per user.

From the plots it can be seen that a couple of users, had a lot of trouble maneuvering

the robot in the environment with manual tele-operation method. Though 2 of the users

performing the tests had good experience using systems with joystick control, all the users

ended making at least 2 crashes in the environment. With the shared control approach

there was no collisions made by the robot in the environment.
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(a)

(b)

Figure 4.5. Task 1 (a) A plot depicting the average number of collisions occurred in 2
minutes using manual tele-operation and shared control. (b) Plot showing the number of
collisions per user for the 2 minutes that the task was performed.

4.3.2 Task 2 - How quick can you manoeuvre?

An average of the results from all 7 of the user studies can be seen in figure 4.6(a).

Figure 4.6(b) shows the time taken per method for each user performing the test. For this

task the main evaluation criteria was to check for the efficiency of performance of using a

shared control approach against a manual tele-operation method. This task was done in

2 phases. Initially the users performed the task of moving the robot to a highlighted region

in the environment using both the methods of operation. From the plots we can see that

the average time taken to complete the task using shared control approach is higher than

when performing the task with direct tele-operation.
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(a)

(b)

Figure 4.6. Task 2 (a) A plot depicting the average time taken to complete the given task
using manual tele-operation and shared control with and without a training period. (b)
Plot showing the time taken per user for task completion using manual tele-operation and
shared control with and without a training period.

The second phase, users had a 3 minute training time to get accustomed to how the

system behaves. After this training period the users performed task 2 using the shared

control approach again. This time almost all the users had an improved time in compar-

ison to not having any training time for using the system. It can also be seen that, most

results post training are close to the results from direct tele-operation. In certain tests, the

shared control approach yielded faster task completion times post training.
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5 ANALYSIS

A shared control approach as defined in section 2.1 can have various different methods

of implementation. The method proposed in this thesis was tested and the results of the

implemented shared control approach were presented in the previous chapter. A short

discussion with the participants of the user tests revealed that, a lot of them found the

shared control approach to be a little bit difficult to grasp in terms of controlling the robot

with only the camera view. For users who had no prior experience using a joystick to

control machines, this approach felt overwhelming as they felt the need to adapt to a

system rather rapidly. This would mean, in terms of reducing the cognitive load from the

user this method would not be the most appropriate until the user learns to adapt how to

use the system. From the user testing, it was prominent that some users did feel a lot

more comfortable to control the robot after they were given time for training and getting

accustomed to the systems behaviour.

5.1 Shortcomings

The proposed approach takes longer times of task completion and in a general context

the robot control is slower while compared to using a traditional tele-operation control. But

how fast and nifty a system can complete tasks is not the major criteria in most cases.

The major criteria whilst working with heavy and expensive machinery falls to the major

concern of safety of both the machinery and the operator(e.g. Forestry and mining tasks).

From the results it can be seen that using a shared control approach largely benefits in

reducing human errors, whether they be intentional or by accident.

The best driver and worst driver results from the tests of task 2 can be seen in the figure

5.1. The best and worst driver are considered based on the criteria of how quick the

user was able to perform the task using manual tele-operation. The best driver has the

least time for manual tele-operation, while the worst has highest time for task completion

using manual tele-operation. From tests of both the drivers, it can be seen that the safety

aspect of the implemented shared control approach is always achieved as seen in the plot

in figure 4.5. With the best driver, a person who knows well to tele-operate and handle

a joystick, we can see that the user can operate quicker with a manual tele-operation

approach as compared to using the implemented shared control approach. While the
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Figure 5.1. Plot depicting the time taken for task completion by the best driver and worst
driver

latter user performs the task more efficiently using the shared control approach as seen

in the plots in figure 5.1.

The MPC formulation

The slower task completion times of the shared control approach can be linked back to the

MPC problem formulation used for the implementation of the share control architecture.

The objective function used in the thesis defined in equation 3.24 is a very straightforward

quadratic formulation of a point stabilization problem. This does not take into considera-

tion any lateral slippage of the robot in real time nor does it currently include any terminal

costs to the problem formulation.

Inclusion of these into the objective function will increase the problem and help in a much

better control of the robot. Another approach would be to transform the point stabilization

problem into a trajectory tracking or path following problem, in which the user movement

creates a path for the robot to follow. Sampling time of the MPC control loop and the val-

ues of the diagonal weighting matrices also play a crucial role in the performance of the

controller. These values are currently determined using trial and error in this thesis. Ide-

ally having a mathematical or machine learning approach to finding the best suited values

for the weighting matrices will help in improving the performance of the MPC controller.
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Obstacles avoidance formulation

Having a proper obstacle avoidance control is crucial for the safe operation of the ma-

chinery. Although the obstacle avoidance implemented in the proposed shared control

approach works for most times, but, it is not flawless. During user tests it was observed

that the robot never hits an obstacle when the user moves the goal position constantly,

but eventually sometimes the robot gets stuck and cannot find it’s way around certain ob-

stacles due to the way the system is modelled. The robot is currently modelled as a circle

for the obstacle avoidance, while the actual robot is if a rectangular shape. Because of

this, the robot can physically move in the gaps it got stuck, but could not because of the

way the robot was modelled.

With systems that have different communication mediums and multiple processes there

is always a factor of delay in data transmission. This would mean if the robot is moving

fast and near to an obstacle head on, stopping in time would be a problem. This factor

was not accounted for in the obstacle avoidance constraint and only the kinematic model

of the robot was considered. Having a dynamic model of the robot would help in a control

structure that is highly responsive and efficient.

5.2 Discussion

In this thesis, we had three factors/research questions that formed the base of the re-

search performed. These questions are highlighted again below:

1. How to include Human in the Loop control for shared control?

2. How can having a shared control approach help with more efficient robot control in

terms of maneuverability?

3. Can the use of a shared control approach help with increasing the safety of robot

during tele-operation?

We have created a human-in-the-loop control structure using an MPC approach. The

current problem formulation allows for the user to constantly update the goal that is re-

quired for the MPC. This allows for the system to work in semi-autonomy providing ob-

stacle avoidance. The system does not have any prior information of the final goal to be

reached, but, only the goal poses updated from the human input at each time step. This

give human the freedom to manoeuvre the robot at his/her will in the given environment.

This is however, only one method on how the human inputs can be included into the

control structure.

The implemented shared control approach was tested using user tests. These user tests

help in providing a completely unbiased and neutral understanding of how the system per-

forms. The user tests also help in reflecting to the second and third research questions.
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Task efficiency in mobile robotics using completely autonomous systems has always been

comparatively lower when compared to systems operated manually by humans. But con-

cerns on safety have been higher with humans having to control machines remotely. Hav-

ing a shared control approach will largely help in reducing these human errors. This can

be seen from the results of the Task-1 of user testings performed in the figure 4.5.

Although the safety factor has been tended to using the implemented approach, it does

not by large increase the task performance efficiency. While, an increase in efficiency is

not achieved, we can see the from the test results in figure 4.6 that, task completion times

are almost the same after with the benefit of having complete safety while performing the

tasks. Using a shared control approach can also seem to be a bit of an overwhelming

experience for some people. This means even with a shared control approach, the users

would need a certain level of training period to be able to effectively operate the robot.
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6 CONCLUSIONS

This thesis has presented the methodology and outcomes of the implementation of a

shared control tele-operation strategy that enables a human-in-the-loop control structure,

using Model Predictive Control. The developed control strategy allows a user to effectively

manoeuvre a mobile robot within an environment with multiple obstacles while effectively

reducing human errors that can transpire during tele-operation tasks. This has been the

key motivation and objective of carrying out this research as part of the thesis.

The proposed shared control method is developed using Model Predictive Control as

the base controller for the robot, enabling the robot to have a certain level of autonomy in

terms of obstacle avoidance and goal attainment. The autonomous system although does

not know its final goal, as is the case in unstructured environmental tasks like manoeu-

vring for search and rescue tasks[40] to undecided final locations that the user decides on

the go. This drawback of a autonomous system is overcome using the proposes shared

control method, allowing the human to control the desired position of the robot and not

the robot directly.

The MPC problem formulated for the shared control approach is solved using Matlab and

CasADi. The CasADi toolbox allows for quick solving of complex non-linear problems to

allow as close to a real time computing as possible. The flexibility provided by CasADi

to use different programming languages, allows for the design of the MPC controller to

be developed either on the robot or remotely based on the user desires for the carrying

out of tasks on a real robot. However, during this thesis the implementation could only be

performed through simulations using the gazebo simulation environment and ROS.

The implementation was then tested not only by the author, but also through user tests

enabling the author to come at an unbiased analysis of the implemented approach. The

user tests, proved to be essential as the results from users of different experience levels

and backgrounds varied a lot and the data from the tests can be seen in the appendix

C.2. Although not the ideal performance of the chosen methodology was attained the

improvement of the control strategy can be considered for further development of the

research.
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6.1 Future Scope

The implemented shared control approach though it provides a positive outcome to a

couple of the research questions defined for this research, it is not a perfect solution.

During the course of performing the research, most of the time was spent with choosing

the right simulation environment for testing and the tools and software that will be used

for the implementation of the thesis. There was not much time as planned initially for

development of the proposed methodology and performing a more extensive user testing.

This resulted in a lack of time for testing different shared control strategies and use cases

to get a better idea on the benefits and importance of having a human-in-the-loop control

structure as compared to using a manual tele-operation. There was also not sufficient

time to test the short comings of using a completely autonomous system, and how shared

control approaches could benefit in those situations. The tasks missed out on due to the

impediments caused during this research can be carried out as future research works

and are enlisted below:

1. Testing of the current shared control approach with modified MPC formulation tend-

ing to the shortcomings faced in this thesis.

2. Testing a few other shared control approaches

(a) Hindsight Optimization.

(b) Using of virtual fixtures.

(c) Developing of a shared control strategy with haptic force feedback for better

situational awareness.

3. Working in more complex environments with dynamic obstacles and researching

other obstacle modelling methodologies.

4. Testing the implementation on real robots, and porting the proposed control algo-

rithm to machines of different models and testing the flexibility in implementation of

the shared control strategies.
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A MODELS

A.1 The modified MiR Description File

1 <?xml version=" 1.0 " ?>

2 <robot xmlns:xacro=" h t t p : / / ros . org / w i k i / xacro ">

3 < xac ro : i nc l ude f i lename=" $( f i n d m i r_desc r i p t i on ) / u rd f / i nc lude /

common_properties . u rd f . xacro " / >

4 < xac ro : i nc l ude f i lename=" $( f i n d m i r_desc r i p t i on ) / u rd f / i nc lude / imu .

gazebo . u rd f . xacro " / >

5 < xac ro : i nc l ude f i lename=" $( f i n d m i r_desc r i p t i on ) / u rd f / i nc lude / mir_100

. gazebo . xacro " / >

6 < xac ro : i nc l ude f i lename=" $( f i n d m i r_desc r i p t i on ) / u rd f / i nc lude / mir_100

. t ransmiss ion . xacro " / >

7 < xac ro : i nc l ude f i lename=" $( f i n d m i r_desc r i p t i on ) / u rd f / i nc lude /

sick_s300 . u rd f . xacro " / >

8 < xac ro : i nc l ude f i lename=" $( f i n d m i r_desc r i p t i on ) / u rd f / i nc lude /

camera_mir . u rd f . xacro " / >

9

10 < xac ro :p rope r t y name=" deg_to_rad " value=" 0.017453293 " / >

11

12 < xac ro :p rope r t y name=" mir_100_base_mass " value=" 58.0 " / >

13

14 < xac ro :p rope r t y name=" mir_100_act_wheel_radius " value=" 0.0625 " / >

15 < xac ro :p rope r t y name=" mir_100_act_wheel_width " value=" 0.032 " / >

16 < xac ro :p rope r t y name=" mir_100_act_wheel_mass " value=" 1.0 " / >

17 < xac ro :p rope r t y name=" mir_100_act_wheel_dx " value=" 0.037646 " / >

18 < xac ro :p rope r t y name=" mir_100_act_wheel_dy " value=" 0.222604 " / >

19

20 < xac ro :p rope r t y name=" mir_100_caster_wheel_radius " value=" ${

mir_100_act_wheel_radius } " / >

21 < xac ro :p rope r t y name=" mir_100_caster_wheel_width " value=" ${

mir_100_act_wheel_width } " / >

22 < xac ro :p rope r t y name=" mir_100_caster_wheel_mass " value=" ${

mir_100_act_wheel_mass } " / >

23 < xac ro :p rope r t y name=" mir_100_caster_wheel_dx " value="−0.0382 " / >
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24 < xac ro :p rope r t y name=" mir_100_caster_wheel_dy " value=" 0 " / >

25 < xac ro :p rope r t y name=" mir_100_caster_wheel_dz " value="−0.094 " / >

26 < xac ro :p rope r t y name=" mir_100_front_caster_wheel_base_dx " value="

0.341346 " / >

27 < xac ro :p rope r t y name=" mir_100_back_caster_wheel_base_dx " value="

−0.270154 " / >

28 < xac ro :p rope r t y name=" mir_100_caster_wheel_base_dy " value=" 0.203 " / >

29 < xac ro :p rope r t y name=" mir_100_caster_wheel_base_dz " value=" ${

mir_100_caster_wheel_radius−mir_100_caster_wheel_dz } " / >

30

31 < xac ro :p rope r t y name=" imu_stdev " value=" 0.00017 " / >

32

33 <xacro:macro name=" actuated_wheel " params=" p r e f i x l o c a t i o n p r e f i x

l o c a t i o n r i g h t ">

34 < j o i n t name=" ${ p r e f i x } $ { l o c a t i o n p r e f i x } _whee l_ jo in t " type="

cont inuous ">

35 < o r i g i n xyz=" 0.0 ${−mir_100_act_wheel_dy ∗ l o c a t i o n r i g h t } ${

mir_100_act_wheel_radius } " rpy=" 0 0 0 " / >

36 <parent l i n k =" ${ p r e f i x } base_ l ink " / >

37 < c h i l d l i n k =" ${ p r e f i x } $ { l o c a t i o n p r e f i x } _wheel_ l ink " / >

38 <ax is xyz=" 0 1 0 " / >

39 < l i m i t e f f o r t = " 100 " v e l o c i t y = " 20.0 " / >

40 < / j o i n t >

41

42 < l i n k name=" ${ p r e f i x } $ { l o c a t i o n p r e f i x } _wheel_ l ink ">

43 < x a c r o : c y l i n d e r _ i n e r t i a l mass=" ${ mir_100_act_wheel_mass } " rad ius=

" ${ mir_100_act_wheel_radius } " leng th=" ${

mir_100_act_wheel_width } ">

44 < o r i g i n xyz=" 0 0 0 " rpy=" ${0 .5 ∗ p i } 0 0 " / >

45 < / x a c r o : c y l i n d e r _ i n e r t i a l >

46 < v i s u a l >

47 < o r i g i n xyz=" 0 0 0 " rpy=" 0 0 0 " / >

48 <geometry>

49 <mesh f i lename=" package: / / m i r _desc r i p t i on / meshes / v i s u a l / wheel

. s t l " / >

50 < / geometry>

51 < x a c r o : i n s e r t _ b l o c k name=" mater ia l_dark_grey " / >

52 < / v i s u a l >

53 < c o l l i s i o n >

54 < o r i g i n xyz=" 0 0 0 " rpy=" 0 0 0 " / >

55 <geometry>

56 <mesh f i lename=" package: / / m i r _desc r i p t i on / meshes / v i s u a l / wheel
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. s t l " / >

57 < / geometry>

58 < / c o l l i s i o n >

59 < / l i n k >

60 <gazebo re ference=" ${ p r e f i x } $ { l o c a t i o n p r e f i x } _wheel_ l ink ">

61 < ma te r i a l >Gazebo / DarkGrey< / ma te r i a l >

62 < / gazebo>

63 < / xacro:macro>

64

65 <xacro:macro name=" caster_wheel " params=" p r e f i x l o c a t i o n p r e f i x

l o c a t i o n r i g h t wheel_base_dx ">

66 < ! -- caster hub -->

67 < j o i n t name=" ${ p r e f i x } $ { l o c a t i o n p r e f i x } _ c a s t e r _ r o t a t i o n _ j o i n t " type

=" cont inuous ">

68 < o r i g i n xyz=" ${ wheel_base_dx } ${−mir_100_caster_wheel_base_dy ∗
l o c a t i o n r i g h t } ${ mir_100_caster_wheel_base_dz } " rpy=" 0 0 0 " / >

69 <parent l i n k =" ${ p r e f i x } base_ l ink " / >

70 < c h i l d l i n k =" ${ p r e f i x } $ { l o c a t i o n p r e f i x } _ c a s t e r _ r o t a t i o n _ l i n k " / >

71 <ax is xyz=" 0 0 1 " / >

72 <dynamics damping=" 0.01 " f r i c t i o n =" 0.0 " / >

73 < / j o i n t >

74

75 < l i n k name=" ${ p r e f i x } $ { l o c a t i o n p r e f i x } _ c a s t e r _ r o t a t i o n _ l i n k ">

76 < i n e r t i a l >

77 < ! -- < o r i g i n xyz=" 0 0 −0.042500000044 " rpy=" ${0 .5 ∗ p i } ${24 ∗
deg_to_rad } ${1 .5 ∗ p i } " / > -->

78 < o r i g i n xyz=" 0 0 −0.042500000044 " rpy=" ${24 ∗ deg_to_rad } 0

${0 .5 ∗ p i } " / >

79 <mass value=" 0.3097539019 " / >

80 < i n e r t i a

81 i x x =" 0.0005844517978 "

82 i x y =" 0 "

83 i x z =" 0 "

84 i y y =" 0.00052872551237 "

85 i y z =" 0 "

86 i z z =" 0.00017923555074 " / >

87 < / i n e r t i a l >

88 < v i s u a l >

89 < o r i g i n xyz=" 0 0 0 " rpy=" 0 0 0 " / >

90 <geometry>

91 <mesh f i lename=" package: / / m i r _desc r i p t i on / meshes / v i s u a l /

caster_wheel_base . s t l " / >
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92 < / geometry>

93 < x a c r o : i n s e r t _ b l o c k name=" m a t e r i a l _ s i l v e r " / >

94 < / v i s u a l >

95 < c o l l i s i o n >

96 < o r i g i n xyz=" 0 0 0 " rpy=" 0 0 0 " / >

97 <geometry>

98 <mesh f i lename=" package: / / m i r _desc r i p t i on / meshes / c o l l i s i o n /

caster_wheel_base . s t l " / >

99 < / geometry>

100 < / c o l l i s i o n >

101 < / l i n k >

102 <gazebo re ference=" ${ p r e f i x } $ { l o c a t i o n p r e f i x } _ c a s t e r _ r o t a t i o n _ l i n k "

>

103 < ma te r i a l >Gazebo / Grey< / ma te r i a l >

104 < / gazebo>

105

106 < ! -- caster wheel -->

107 < j o i n t name=" ${ p r e f i x } $ { l o c a t i o n p r e f i x } _cas te r_whee l_ jo in t " type="

cont inuous ">

108 < o r i g i n xyz=" ${ mir_100_caster_wheel_dx } ${−
mir_100_caster_wheel_dy ∗ l o c a t i o n r i g h t } ${

mir_100_caster_wheel_dz } " rpy=" 0 0 0 " / >

109 <parent l i n k =" ${ p r e f i x } $ { l o c a t i o n p r e f i x } _ c a s t e r _ r o t a t i o n _ l i n k " / >

110 < c h i l d l i n k =" ${ p r e f i x } $ { l o c a t i o n p r e f i x } _cas ter_whee l_ l ink " / >

111 <ax is xyz=" 0 1 0 " / >

112 < / j o i n t >

113

114 < l i n k name=" ${ p r e f i x } $ { l o c a t i o n p r e f i x } _cas ter_whee l_ l ink ">

115 < x a c r o : c y l i n d e r _ i n e r t i a l mass=" ${ mir_100_caster_wheel_mass } "

rad ius=" ${ mir_100_caster_wheel_radius } " leng th=" ${

mir_100_caster_wheel_width } ">

116 < o r i g i n xyz=" 0 0 0 " rpy=" ${0 .5 ∗ p i } 0 0 " / >

117 < / x a c r o : c y l i n d e r _ i n e r t i a l >

118 < v i s u a l >

119 < o r i g i n xyz=" 0 0 0 " rpy=" 0 0 0 " / >

120 <geometry>

121 <mesh f i lename=" package: / / m i r _desc r i p t i on / meshes / v i s u a l / wheel

. s t l " / >

122 < / geometry>

123 < x a c r o : i n s e r t _ b l o c k name=" mater ia l_dark_grey " / >

124 < / v i s u a l >

125 < c o l l i s i o n >
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126 < o r i g i n xyz=" 0 0 0 " rpy=" 0 0 0 " / >

127 <geometry>

128 <mesh f i lename=" package: / / m i r _desc r i p t i on / meshes / v i s u a l / wheel

. s t l " / >

129 < / geometry>

130 < / c o l l i s i o n >

131 < / l i n k >

132 <gazebo re ference=" ${ p r e f i x } $ { l o c a t i o n p r e f i x } _cas ter_whee l_ l ink ">

133 < ma te r i a l >Gazebo / DarkGrey< / ma te r i a l >

134 < / gazebo>

135 < / xacro:macro>

136

137 <xacro:macro name=" mir_100 " params=" p r e f i x ">

138 < l i n k name=" ${ p r e f i x } base_ foo tp r i n t " / >

139

140 < j o i n t name=" ${ p r e f i x } base_ jo in t " type=" f i x e d ">

141 <parent l i n k =" ${ p r e f i x } base_ foo tp r i n t " / >

142 < c h i l d l i n k =" ${ p r e f i x } base_ l ink " / >

143 < o r i g i n xyz=" 0 0 0 " rpy=" 0 0 0 " / >

144 < / j o i n t >

145

146 < l i n k name=" ${ p r e f i x } base_ l ink ">

147 < x a c r o : b o x _ i n e r t i a l mass=" ${ mir_100_base_mass } " x=" 0.9 " y=" 0.58 "

z=" 0.3 ">

148 < o r i g i n xyz=" ${ mir_100_act_wheel_dx } 0 0.20 " rpy=" 0 0 0 " / >

149 < / x a c r o : b o x _ i n e r t i a l >

150 < v i s u a l >

151 < o r i g i n xyz=" ${ mir_100_act_wheel_dx } 0 0 " rpy=" 0 0 0 " / >

152 <geometry>

153 <mesh f i lename=" package: / / m i r _desc r i p t i on / meshes / v i s u a l /

mir_100_base . s t l " / >

154 < / geometry>

155 < x a c r o : i n s e r t _ b l o c k name=" mate r ia l_wh i te " / >

156 < / v i s u a l >

157 < c o l l i s i o n >

158 < o r i g i n xyz=" ${ mir_100_act_wheel_dx } 0 0 " rpy=" 0 0 0 " / >

159 <geometry>

160 <mesh f i lename=" package: / / m i r _desc r i p t i on / meshes / c o l l i s i o n /

mir_100_base . s t l " / >

161 < / geometry>

162 < / c o l l i s i o n >

163 < / l i n k >
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164 <gazebo re ference=" ${ p r e f i x } base_ l ink ">

165 < ma te r i a l >Gazebo / White< / ma te r i a l >

166 < / gazebo>

167

168 < ! -- IMU -->

169 < j o i n t name=" ${ p r e f i x } base_ l i nk_ to_ imu_ jo in t " type=" f i x e d ">

170 <parent l i n k =" ${ p r e f i x } base_ l ink " / >

171 < c h i l d l i n k =" ${ p r e f i x } imu_ l ink " / >

172 < o r i g i n xyz=" 0.0 0.0 0.25 " rpy=" 0 0 0 " / > < ! -- same as real MiR

-->

173 < / j o i n t >

174

175 < l i n k name=" ${ p r e f i x } imu_ l ink " / >

176

177 <xacro:imu_gazebo l i n k =" ${ p r e f i x } imu_ l ink " imu_top ic= " imu_data "

update_rate=" 50.0 " stdev=" ${ imu_stdev } " / >

178

179 < ! -- Create an alias for imu_link. This is necessary because the

real MiR ’ s

180 TF has imu_l ink , but the imu_data t o p i c i s publ ished i n the

imu_frame

181 frame . −−>

182 < j o i n t name="${ p r e f i x } imu_ l ink_ to_ imu_f rame_ jo in t " type =" f i x e d ">

183 <parent l i n k ="${ p r e f i x } imu_ l ink " / >

184 < c h i l d l i n k ="${ p r e f i x } imu_frame " / >

185 < o r i g i n xyz ="0 0 0" rpy ="0 0 0" / >

186 </ j o i n t >

187

188 < l i n k name="${ p r e f i x } imu_frame " / >

189

190 <!−− Laser scanners −−>

191 < j o i n t name="${ p r e f i x } b a s e _ l i n k _ t o _ f r o n t _ l a s e r _ j o i n t " type =" f i x e d ">

192 <parent l i n k ="${ p r e f i x } base_ l ink " / >

193 < c h i l d l i n k ="${ p r e f i x } f r o n t _ l a s e r _ l i n k " / >

194 < o r i g i n xyz ="0.4288 0.2358 0.1914" rpy ="0.0 0.0 ${0.25 ∗ p i } " / >

<!−− from v i s u a l l y matching up the meshes of the MiR and the lase r

scanner −−>

195 </ j o i n t >

196 <xacro:s ick_s300 p r e f i x ="${ p r e f i x } " l i n k =" f r o n t _ l a s e r _ l i n k " t o p i c ="

f_scan " / >

197

198 < j o i n t name="${ p r e f i x } base_ l i nk_ to_back_ lase r_ jo in t " type =" f i x e d ">
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199 <parent l i n k ="${ p r e f i x } base_ l ink " / >

200 < c h i l d l i n k ="${ p r e f i x } back_ lase r_ l i nk " / >

201 < o r i g i n xyz="−0.3548 −0.2352 0.1914" rpy ="0.0 0.0 ${−0.75 ∗ p i } "

/ > <!−− from v i s u a l l y matching up the meshes of the MiR and the

lase r scanner −−>

202 </ j o i n t >

203

204 <xacro:s ick_s300 p r e f i x ="${ p r e f i x } " l i n k =" back_ lase r_ l i nk " t o p i c ="

b_scan " / >

205

206 <!−− Cameras −−>

207 < j o i n t name="${ p r e f i x } camera_jo in t_ forward " type =" f i x e d ">

208 <parent l i n k ="${ p r e f i x } base_ l ink " / >

209 < c h i l d l i n k ="${ p r e f i x } f ron t_camera_ l ink " / >

210 <ax is xyz ="0 1 0" / >

211 < o r i g i n xyz ="0.4 0 0.42" rpy ="0 0 0"/ >

212 </ j o i n t >

213 <xacro:camera_mir p r e f i x ="${ p r e f i x } " l i n k =" f ron t_camera_ l ink "

/ >

214

215 < j o i n t name="${ p r e f i x } camera_joint_back " type =" f i x e d ">

216 <parent l i n k ="${ p r e f i x } base_ l ink " / >

217 < c h i l d l i n k ="${ p r e f i x } back_camera_l ink " / >

218 <ax is xyz ="0 1 0" / >

219 < o r i g i n xyz="−0.34 0 0.42" rpy ="0 0 3.14" / >

220 </ j o i n t >

221 <xacro:camera_mir p r e f i x ="${ p r e f i x } " l i n k =" back_camera_l ink " / >

222

223

224 <!−− Ultrasound sensors −−>

225 < j o i n t name="${ p r e f i x } us_1_ jo in t " type =" f i x e d "> <!−− r i g h t

u l t rasound −−>

226 <parent l i n k ="${ p r e f i x } base_ l ink " / >

227 < c h i l d l i n k ="${ p r e f i x } us_1_frame " / >

228 < o r i g i n xyz ="0.45 −0.12 0.16 " rpy ="0 0 0" / > <!−− from v i s u a l l y

matching to the mesh of the MiR −−>

229 </ j o i n t >

230

231 < l i n k name="${ p r e f i x } us_1_frame " / >

232

233 < j o i n t name="${ p r e f i x } us_2_ jo in t " type =" f i x e d "> <!−− l e f t

u l t rasound −−>
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234 <parent l i n k ="${ p r e f i x } base_ l ink " / >

235 < c h i l d l i n k ="${ p r e f i x } us_2_frame " / >

236 < o r i g i n xyz ="0.45 0.12 0.16 " rpy ="0 0 0" / > <!−− from v i s u a l l y

matching to the mesh of the MiR −−>

237 </ j o i n t >

238

239 < l i n k name="${ p r e f i x } us_2_frame " / >

240

241

242 <!−− wheels −−>

243 <xacro:actuated_wheel p r e f i x ="${ p r e f i x } " l o c a t i o n p r e f i x =" l e f t "

l o c a t i o n r i g h t ="−1"/>

244 <xacro:actuated_wheel p r e f i x ="${ p r e f i x } " l o c a t i o n p r e f i x =" r i g h t "

l o c a t i o n r i g h t ="1" / >

245 <xacro:caster_wheel p r e f i x ="${ p r e f i x } " l o c a t i o n p r e f i x =" f l "

l o c a t i o n r i g h t ="−1" wheel_base_dx ="${

mir_100_front_caster_wheel_base_dx } " / >

246 <xacro:caster_wheel p r e f i x ="${ p r e f i x } " l o c a t i o n p r e f i x =" f r "

l o c a t i o n r i g h t ="1" wheel_base_dx ="${

mir_100_front_caster_wheel_base_dx } " / >

247 <xacro:caster_wheel p r e f i x ="${ p r e f i x } " l o c a t i o n p r e f i x =" b l "

l o c a t i o n r i g h t ="−1" wheel_base_dx ="${

mir_100_back_caster_wheel_base_dx } " / >

248 <xacro:caster_wheel p r e f i x ="${ p r e f i x } " l o c a t i o n p r e f i x =" br "

l o c a t i o n r i g h t ="1" wheel_base_dx ="${ mir_100_back_caster_wheel_base_dx

} " / >

249

250 < j o i n t name="${ p r e f i x } b as e_ l i n k _s u r f ac e _ j o i n t " type =" f i x e d ">

251 < o r i g i n xyz ="${ mir_100_act_wheel_dx } 0 0.352" rpy ="0 0 0" / >

252 <parent l i n k ="${ p r e f i x } base_ l ink " / >

253 < c h i l d l i n k ="${ p r e f i x } sur face " / >

254 <ax is xyz ="0 0 1" / >

255 </ j o i n t >

256

257 < l i n k name="${ p r e f i x } sur face " / >

258

259 <xacro:mir_100_wheel_t ransmiss ions p r e f i x ="${ p r e f i x } " / >

260

261 <!−− set the gazebo f r i c t i o n parameters f o r the wheels −−>

262 < x a c r o : s e t _ a l l _ w h e e l _ f r i c t i o n s p r e f i x ="${ p r e f i x } " / >

263

264 <p3d_base_cont ro l le r p r e f i x ="${ p r e f i x } " / >
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265 </ xacro:macro >

266 </ robot >

Annex A.1. The modified MiR description file to include cameras.

A.2 The camera description file

1 <?xml version=" 1.0 " ?>

2

3 <robot xmlns:xacro=" h t t p : / / ros . org / w i k i / xacro ">

4

5 <xacro:macro name=" camera_mir " params=" l i n k p r e f i x ">

6 < xac ro : i nc l ude f i lename=" $( f i n d m i r_desc r i p t i on ) / u rd f / i nc lude /

common_properties . u rd f . xacro " / >

7

8

9 < l i n k name=" ${ p r e f i x } $ { l i n k } ">

10 < c o l l i s i o n >

11 < o r i g i n xyz=" 0 0 0 " rpy=" 0 0 0 " / >

12 <geometry>

13 <box s ize=" 0.05 0.1 0.025 " / >

14 < / geometry>

15 < / c o l l i s i o n >

16

17 < v i s u a l >

18 < o r i g i n xyz=" 0 0 0 " rpy=" 0 0 0 " / >

19 <geometry>

20 <box s ize=" 0.05 0.1 0.025 " / >

21 < / geometry>

22 < ma te r i a l name=" ye l low ">

23 < co lo r rgba=" ${255/255} ${226/255} ${0 /255} 1 " / >

24 < / ma te r i a l >

25 < / v i s u a l >

26

27 < i n e r t i a l >

28 <mass value=" 0.001 " / >

29 < o r i g i n xyz=" 0 0 0 " rpy=" 0 0 0 " / >

30 < i n e r t i a i x x =" 0.0001 " i x y =" 0 " i x z =" 0 " i y y =" 0.0001 " i y z =

" 0 " i z z =" 0.0001 " / >

31 < / i n e r t i a l >

32

33 < / l i n k >

34
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35 <gazebo re ference=" ${ p r e f i x } $ { l i n k } ">

36 <sensor type=" camera " name=" ${ p r e f i x } $ { l i n k } ">

37 <update_rate>30.0< / update_rate>

38 <camera>

39 <pose>0.0 0.0 0.0 0.0 0.0 0.0< / pose>

40 < h o r i z o n t a l _ f o v > $ { 2 . 4 } < / h o r i z o n t a l _ f o v >

41 <image>

42 <format>R8G8B8< / format>

43 <width>1020< / width>

44 <he igh t>1020< / he igh t>

45 < / image>

46 < c l i p >

47 <near>0.01< / near>

48 < f a r >100< / f a r >

49 < / c l i p >

50 < / camera>

51

52 <p lug in name=" camera_ ${ l i n k } _ c o n t r o l l e r " f i lename="

l ibgazebo_ros_camera . so ">

53 <alwaysOn> t rue < / alwaysOn>

54 <updateRate>0.0< / updateRate>

55 <cameraName>${ p r e f i x } / camera / $ { l i n k } < / cameraName>

56 <imageTopicName>image_raw< / imageTopicName>

57 <cameraInfoTopicName>camera_info< / cameraInfoTopicName>

58 <frameName>${ l i n k } < / frameName>

59 <hackBasel ine>0.07< / hackBasel ine>

60 < d i s t o r t i o n K 1 >0.0< / d i s t o r t i o n K 1 >

61 < d i s t o r t i o n K 2 >0.0< / d i s t o r t i o n K 2 >

62 < d i s t o r t i o n K 3 >0.0< / d i s t o r t i o n K 3 >

63 < d i s t o r t i o n T 1 >0.0< / d i s t o r t i o n T 1 >

64 < d i s t o r t i o n T 2 >0.0< / d i s t o r t i o n T 2 >

65 < / p lug in >

66 < / sensor>

67 < / gazebo>

68 < / xacro:macro>

69

70 < / robot>

Annex A.2. Camera definition URDF file used by the modified MiR description file.
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B CODES

B.1 Matlab MPC Code - no obstacle Matlab simulation

1 clear a l l

2 clc

3

4 %

5 % CasADi v3.4.5

6 addpath ( ’D : \ casadi−windows−matlabR2016a−v3 . 5 . 5 ’ )

7 impor t casadi .∗
8

9

10 %

11 N =15; % prediction horizon

12

13 v_max = 0 . 8 ; v_min = −v_max ;

14 omega_max = 1; omega_min = −omega_max ;

15

16 x = SX. sym( ’ x ’ ) ; y = SX. sym( ’ y ’ ) ; t he ta = SX. sym( ’ the ta ’ ) ;

17 s ta tes = [ x ; y ; the ta ] ; n_sta tes = length ( s ta tes ) ;

18

19 v = SX. sym( ’ v ’ ) ; omega = SX. sym( ’omega ’ ) ;

20 c o n t r o l s = [ v ; omega ] ; n_con t ro ls = length ( c o n t r o l s ) ;

21

22 % Kinematic System Model r.h.s

23

24 rhs = [ v∗cos ( the ta ) ; v∗sin ( the ta ) ; omega ] ;

25

26 % nonlinear mapping function f(x,u)

27

28 f = Funct ion ( ’ f ’ , { s ta tes , c o n t r o l s } , { rhs } ) ;

29 % Decision variables (controls)

30 U = SX. sym( ’U ’ , n_cont ro ls ,N ) ;

31 % Decision Variables (states)

32 X = SX. sym( ’X ’ , n_states , (N+ 1 ) ) ;
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33 % parameters (initial state of the robot and the goal state)

34 P = SX. sym( ’P ’ , n_sta tes + n_sta tes ) ;

35

36 obj = 0 ; % Objective function

37 g = [ ] ; % constraints vector

38

39 % Weighting Matrices

40 Q = zeros ( 3 , 3 ) ; Q(1 ,1 ) = 3 ;Q(2 ,2 ) = 3 ;Q(3 ,3 ) = 1 . 5 ;

41 R = zeros ( 2 , 2 ) ; R(1 ,1 ) = 0 . 5 ; R(2 ,2 ) = 0 . 5 ;

42

43 % Symbolic computation of constraints and objective function

44 s t = X ( : , 1 ) ; % initial state

45 g = [ g ; st−P ( 1 : 3 ) ] ; % initial condition constraints

46

47 T = 0 .25 ; % dt in Seconds

48 % Define the equality constraints as symbolics

49 for k = 1:N

50 s t = X ( : , k ) ; con = U( : , k ) ;

51 ob j = ob j +( st−P( 4 : 6 ) ) ’∗Q∗ ( s t−P ( 4 : 6 ) ) + con ’∗R∗con ; % calculate obj

52 s t_nex t = X ( : , k +1 ) ;

53 f_va lue = f ( st , con ) ;

54 s t_nex t_eu le r = s t + (T∗ f_va lue ) ;

55 g = [ g ; s t_next−s t_nex t_eu le r ] ; % compute constraints

56 end

57

58 vp_l ims = 0 . 1 ;

59 vn_l ims = 0 . 1 ;

60 wp_lims = 0 . 1 ;

61 wn_lims = 0 . 1 ;

62 for k = 1:N−1

63 g = [ g ; (U(1 , k)−U(1 , k + 1 ) ) ] ;

64 end

65

66 for k = 1:N−1

67 g = [ g ; (U(2 , k)−U(2 , k + 1 ) ) ] ;

68 end

69

70 %

71 % make the decision variable one column vector

72 OPT_variables = [ reshape (X,3∗ (N+ 1 ) , 1 ) ; reshape (U,2∗N, 1 ) ] ;

73

74 nlp_prob = s t r u c t ( ’ f ’ , obj , ’ x ’ , OPT_variables , ’ g ’ , g , ’ p ’ , P ) ;
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75

76 opts = s t r u c t ;

77 opts . i pop t . max_i ter = 10000;

78 opts . i pop t . p r i n t _ l e v e l =0;%0,3

79 opts . p r i n t _ t i m e = 0;

80 opts . i pop t . accep tab le_ to l =1e−8;

81 opts . i pop t . acceptable_obj_change_to l = 1e−6;

82

83 so l ve r = n l p s o l ( ’ so l ve r ’ , ’ i pop t ’ , nlp_prob , opts ) ;

84

85 args = s t r u c t ;

86 % equality constraints

87 args . lbg ( 1 : 3∗ (N+1) ) = 0 ;

88 args . ubg ( 1 : 3∗ (N+1) ) = 0 ;

89

90 l e ng th _ l i n _c o ns t = 3∗(N+1)+(N−1);

91 % linear velocity decomposition constraints

92 args . lbg (3∗ (N+1)+1 : l e ng t h_ l i n _ co n s t ) = −vn_l ims ;

93 args . ubg (3∗ (N+1)+1 : l e ng t h_ l i n _ co n s t ) = vp_l ims ;

94

95 length_vp = l e ng t h_ l i n _c o ns t +(N−1);

96 % angular velocity decomposition constraints

97 args . lbg ( l e ng t h_ l i n _c o ns t +1 : length_vp ) = −wn_lims ;

98 args . ubg ( l e ng t h_ l i n _c o ns t +1 : length_vp ) = wp_lims ;

99

100 % Bounds on the state variables (Boundary Conditions/Outer walls)

101 args . l bx ( 1 : 3 : 3∗ (N+1) ,1 ) = −4.2; %state x lower bound

102 args . ubx ( 1 : 3 : 3∗ (N+1) ,1 ) = 4 . 2 ; %state x upper bound

103 args . l bx ( 2 : 3 : 3∗ (N+1) ,1 ) = −4.2; %state y lower bound

104 args . ubx ( 2 : 3 : 3∗ (N+1) ,1 ) = 4 . 2 ; %state y upper bound

105 args . l bx ( 3 : 3 : 3∗ (N+1) ,1 ) = − i n f ; %state theta lower bound

106 args . ubx ( 3 : 3 : 3∗ (N+1) ,1 ) = i n f ; %state theta upper bound

107

108 % Bounds on the control Variables (Linear and angular velocity)

109 args . l bx (3∗ (N+1)+1:2 :3∗ (N+1)+2∗N, 1 ) = −0.4; %v lower bound

110 args . ubx (3∗ (N+1)+1:2 :3∗ (N+1)+2∗N, 1 ) = v_max ; %v upper bound

111 args . l bx (3∗ (N+1)+2:2 :3∗ (N+1)+2∗N, 1 ) = omega_min ; %omega lower bound

112 args . ubx (3∗ (N+1)+2:2 :3∗ (N+1)+2∗N, 1 ) = omega_max ; %omega upper bound

113

114 %

115 prompt = { ’ Enter x−Value : ’ , ’ Enter y−Value : ’ , ’ Enter theta−Value (Rad) ’ } ;

116 d l g t i t l e = ’ I n i t i a l es t imate ’ ;
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117 dims = [1 3 5 ] ;

118 de f i npu t = { ’−4.0 ’ , ’−4.0 ’ , ’ 0 ’ } ;

119 answer = i n p u t d l g ( prompt , d l g t i t l e , dims , de f i npu t ) ;

120

121 x _ i n i t i a l = s t r2doub le ( answer { 1 , 1 } ) ;

122 y _ i n i t i a l = s t r2doub le ( answer { 2 , 1 } ) ;

123 t h e t a _ i n i t i a l = s t r2doub le ( answer { 3 , 1 } ) ;

124

125 % Initial condition

126 x0 = [ x _ i n i t i a l ; y _ i n i t i a l ; t h e t a _ i n i t i a l ] ;

127

128 prompt = { ’ Enter x−Value : ’ , ’ Enter y−Value : ’ , ’ Enter theta−Value (Rad) ’ } ;

129 d l g t i t l e = ’ Goal Pos i t i on ’ ;

130 dims = [1 3 5 ] ;

131 de f i npu t = { ’ 4 ’ , ’ 4 ’ , ’ 0 ’ } ;

132 answer = i n p u t d l g ( prompt , d l g t i t l e , dims , de f i npu t ) ;

133

134 x _ f i n a l = s t r2doub le ( answer { 1 , 1 } ) ;

135 y _ f i n a l = s t r2doub le ( answer { 2 , 1 } ) ;

136 t h e t a _ f i n a l = s t r2doub le ( answer { 3 , 1 } ) ;

137

138 % Reference posture.

139 xs = [ x _ f i n a l ; y _ f i n a l ; t h e t a _ f i n a l ] ; % Reference posture.

140

141 t0 = 0;

142 t ( 1 ) = t0 ;

143 u0 = zeros (N, 2 ) ; % two control inputs for each robot

144 X0 = repmat ( x0 ,1 ,N+ 1 ) ’ ; % initialization of the states decision variables

145

146 sim_tim = 30; % Maximum simulation time

147

148 % Start MPC

149 mpci ter = 0 ;

150 %

151 main_loop = t i c ;

152 while (norm ( ( x0−xs ) , 2 ) > 1e−2 && mpci ter < sim_tim / T )

153 args . p = [ x0 ; xs ] ; % set the values of the parameters vector

154 % initial value of the optimization variables

155 args . x0 = [ reshape (X0 ’ , 3∗ (N+ 1 ) , 1 ) ; reshape ( u0 ’ , 2∗N, 1 ) ] ;

156 % Run the NLP solver

157 so l = so l ve r ( ’ x0 ’ , args . x0 , ’ l bx ’ , args . lbx , ’ ubx ’ , args . ubx , . . .

158 ’ lbg ’ , args . lbg , ’ ubg ’ , args . ubg , ’ p ’ , args . p ) ;
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159

160 % get controls only N+1 only

161 u = reshape ( f u l l ( so l . x (3∗ (N+1)+1:end ) ) ’ , 2 ,N ) ’ ;

162

163 t ( mpc i ter +1) = t0 ;

164

165 % Apply the control and shift the solution

166 [ t0 , x0 , u0 ] = s h i f t (T , t0 , x0 , u , f ) ;

167

168 % Shift trajectory to initialize the next step

169 X0 = reshape ( f u l l ( so l . x ( 1 : 3∗ (N+ 1 ) ) ) ’ , 3 ,N+ 1 ) ’ ;

170 X0 = [ X0 ( 2 : end , : ) ; X0(end , : ) ] ;

171

172 mpci ter = mpci ter + 1 ;

173 end

174 main_loop_time = toc ( main_loop ) ;

175 ss_er ro r = norm ( ( x0−xs ) , 2 )

176 average_mpc_time = main_loop_time / ( mpc i ter +1)

Annex B.1. Matlab script for MPC adapted from [43]

B.2 Matlab MPC Code - obstacle avoidance Matlab simulation

1 clear a l l

2 % close all

3 clc

4

5 %

6 % CasADi v3.4.5

7 addpath ( ’D : \ casadi−windows−matlabR2016a−v3 . 5 . 5 ’ )

8 impor t casadi .∗
9

10

11 %

12 N =15; % prediction horizon

13 rob_diam = 0 . 9 ;

14

15 v_max = 0 . 8 ; v_min = −v_max ;

16 omega_max = 1; omega_min = −omega_max ;

17

18 x = SX. sym( ’ x ’ ) ; y = SX. sym( ’ y ’ ) ; t he ta = SX. sym( ’ the ta ’ ) ;

19 s ta tes = [ x ; y ; the ta ] ; n_sta tes = length ( s ta tes ) ;

20



73

21 v = SX. sym( ’ v ’ ) ; omega = SX. sym( ’omega ’ ) ;

22 c o n t r o l s = [ v ; omega ] ; n_con t ro ls = length ( c o n t r o l s ) ;

23

24 % Kinematic System Model r.h.s

25

26 rhs = [ v∗cos ( the ta ) ; v∗sin ( the ta ) ; omega ] ;

27

28 f = Funct ion ( ’ f ’ , { s ta tes , c o n t r o l s } , { rhs } ) ; % nonlinear mapping function f(x,u)

29 % Decision variables (controls)

30 U = SX. sym( ’U ’ , n_cont ro ls ,N ) ;

31 % Decision Variables (states)

32 X = SX. sym( ’X ’ , n_states , (N+ 1 ) ) ;

33 % parameters (initial state of the robot and the reference state)

34 P = SX. sym( ’P ’ , n_sta tes + n_sta tes ) ;

35

36

37 obj = 0 ; % Objective function

38 g = [ ] ; % constraints vector

39

40 % Weighting Matrices

41 Q = zeros ( 3 , 3 ) ; Q(1 ,1 ) = 6 ;Q(2 ,2 ) = 6 ;Q(3 ,3 ) = 4 ;

42 R = zeros ( 2 , 2 ) ; R(1 ,1 ) = 0 . 3 ; R(2 ,2 ) = 0 .15 ;

43

44 % Symbolic computation of constraints and objective function

45 s t = X ( : , 1 ) ; % initial state

46 g = [ g ; st−P ( 1 : 3 ) ] ; % initial condition constraints

47

48 T = 0 .25 ; % dt in Seconds

49 % Define the equality constraints as symbolics

50 for k = 1:N

51 s t = X ( : , k ) ; con = U( : , k ) ;

52 ob j = ob j +( st−P( 4 : 6 ) ) ’∗Q∗ ( s t−P ( 4 : 6 ) ) + con ’∗R∗con ; % calculate obj

53 s t_nex t = X ( : , k +1 ) ;

54 f_va lue = f ( st , con ) ;

55 s t_nex t_eu le r = s t + (T∗ f_va lue ) ;

56 g = [ g ; s t_next−s t_nex t_eu le r ] ; % compute constraints

57 end

58

59

60 % Add constraints for collision avoidance (Inequality constraint)

61

62 obs_x = [−4 −2 0.5 3 −2.5 0 2 −4 −1 3 −2 1 4 −1 1 3 ] ; % meters
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63 obs_y = [ 3 . 5 3 3.5 4 1.5 1.5 2 0 0 0.5 −2 −1 −1 −4 −3 −3]; % meters

64

65 obs_diam = 0.45 ; % meters

66 eps i lon_= 1 . 0 ;

67 for k = 1:N+1

68 for num_obs = 1: length ( obs_x )

69 g = [ g ; −sqrt ( ( X(1 , k)−obs_x ( num_obs ) ) ^ 2 + (X(2 , k ) − . . .

70 obs_y ( num_obs ) ) ^ 2 ) + ( eps i lon_ ∗ ( rob_diam /2 + obs_diam / 2 ) ) ] ;

71 end

72 end

73

74 vp_l ims = 0 . 1 ;

75 vn_l ims = 0 . 1 ;

76 wp_lims = 0 . 1 ;

77 wn_lims = 0 . 1 ;

78 for k = 1:N−1

79 g = [ g ; (U(1 , k)−U(1 , k + 1 ) ) ] ;

80 end

81

82 for k = 1:N−1

83 g = [ g ; (U(2 , k)−U(2 , k + 1 ) ) ] ;

84 end

85

86 %

87 % make the decision variable one column vector

88 OPT_variables = [ reshape (X,3∗ (N+ 1 ) , 1 ) ; reshape (U,2∗N, 1 ) ] ;

89

90 nlp_prob = s t r u c t ( ’ f ’ , obj , ’ x ’ , OPT_variables , ’ g ’ , g , ’ p ’ , P ) ;

91

92 opts = s t r u c t ;

93 opts . i pop t . max_i ter = 10000;

94 opts . i pop t . p r i n t _ l e v e l =0;%0,3

95 opts . p r i n t _ t i m e = 0;

96 opts . i pop t . accep tab le_ to l =1e−8;

97 opts . i pop t . acceptable_obj_change_to l = 1e−6;

98

99 so l ve r = n l p s o l ( ’ so l ve r ’ , ’ i pop t ’ , nlp_prob , opts ) ;

100

101 args = s t r u c t ;

102 % equality constraints

103 args . lbg ( 1 : 3∗ (N+1) ) = 0 ;

104 args . ubg ( 1 : 3∗ (N+1) ) = 0 ;



75

105

106 % obstacle constraints

107 length_obs_const = 3∗(N+1)+ length ( obs_x )∗ (N+1) ;

108 args . lbg (3∗ (N+1)+1 : length_obs_const ) = − i n f ;

109 args . ubg (3∗ (N+1)+1 : length_obs_const ) = 0 ;

110

111 % linear velocity decomposition constraints

112 args . lbg ( length_obs_const+1 : length_obs_const +(N−1)) = −vn_l ims ;

113 args . ubg ( length_obs_const+1 : length_obs_const +(N−1)) = vp_l ims ;

114

115 length_vp = length_obs_const +(N−1);

116 % angular velocity decomposition constraints

117 args . lbg ( length_vp+1 : length_vp +(N−1)) = −wn_lims ;

118 args . ubg ( length_vp+1 : length_vp +(N−1)) = wp_lims ;

119

120 % Bounds on the state variables (Boundary Conditions/Outer walls)

121 args . l bx ( 1 : 3 : 3∗ (N+1) ,1 ) = −4.2; %state x lower bound

122 args . ubx ( 1 : 3 : 3∗ (N+1) ,1 ) = 4 . 2 ; %state x upper bound

123 args . l bx ( 2 : 3 : 3∗ (N+1) ,1 ) = −4.2; %state y lower bound

124 args . ubx ( 2 : 3 : 3∗ (N+1) ,1 ) = 4 . 2 ; %state y upper bound

125 args . l bx ( 3 : 3 : 3∗ (N+1) ,1 ) = − i n f ; %state theta lower bound

126 args . ubx ( 3 : 3 : 3∗ (N+1) ,1 ) = i n f ; %state theta upper bound

127

128 % Bounds on the control Variables (Linear and angular velocity)

129 args . l bx (3∗ (N+1)+1:2 :3∗ (N+1)+2∗N, 1 ) = −0.4; %v lower bound

130 args . ubx (3∗ (N+1)+1:2 :3∗ (N+1)+2∗N, 1 ) = v_max ; %v upper bound

131 args . l bx (3∗ (N+1)+2:2 :3∗ (N+1)+2∗N, 1 ) = omega_min ; %omega lower bound

132 args . ubx (3∗ (N+1)+2:2 :3∗ (N+1)+2∗N, 1 ) = omega_max ; %omega upper bound

133

134 %

135 prompt = { ’ Enter x−Value : ’ , ’ Enter y−Value : ’ , ’ Enter theta−Value (Rad) ’ } ;

136 d l g t i t l e = ’ I n i t i a l es t imate ’ ;

137 dims = [1 3 5 ] ;

138 de f i npu t = { ’−4.0 ’ , ’−4.0 ’ , ’ 0 ’ } ;

139 answer = i n p u t d l g ( prompt , d l g t i t l e , dims , de f i npu t ) ;

140

141 x _ i n i t i a l = s t r2doub le ( answer { 1 , 1 } ) ;

142 y _ i n i t i a l = s t r2doub le ( answer { 2 , 1 } ) ;

143 t h e t a _ i n i t i a l = s t r2doub le ( answer { 3 , 1 } ) ;

144

145 % Initial condition

146 x0 = [ x _ i n i t i a l ; y _ i n i t i a l ; t h e t a _ i n i t i a l ] ;
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147

148 prompt = { ’ Enter x−Value : ’ , ’ Enter y−Value : ’ , ’ Enter theta−Value (Rad) ’ } ;

149 d l g t i t l e = ’ Goal Pos i t i on ’ ;

150 dims = [1 3 5 ] ;

151 de f i npu t = { ’ 4 ’ , ’ 4 ’ , ’ 0 ’ } ;

152 answer = i n p u t d l g ( prompt , d l g t i t l e , dims , de f i npu t ) ;

153

154 x _ f i n a l = s t r2doub le ( answer { 1 , 1 } ) ;

155 y _ f i n a l = s t r2doub le ( answer { 2 , 1 } ) ;

156 t h e t a _ f i n a l = s t r2doub le ( answer { 3 , 1 } ) ;

157

158 % Reference posture.

159 xs = [ x _ f i n a l ; y _ f i n a l ; t h e t a _ f i n a l ] ; % Reference posture.

160

161 t0 = 0;

162 t ( 1 ) = t0 ;

163 u0 = zeros (N, 2 ) ; % two control inputs for each robot

164 X0 = repmat ( x0 ,1 ,N+ 1 ) ’ ; % initialization of the states decision variables

165

166 sim_tim = 30; % Maximum simulation time

167

168 % Start MPC

169 mpci ter = 0 ;

170 %

171 main_loop = t i c ;

172 while (norm ( ( x0−xs ) , 2 ) > 1e−2 && mpci ter < sim_tim / T )

173 args . p = [ x0 ; xs ] ; % set the values of the parameters vector

174 % initial value of the optimization variables

175 args . x0 = [ reshape (X0 ’ , 3∗ (N+ 1 ) , 1 ) ; reshape ( u0 ’ , 2∗N, 1 ) ] ;

176 % Run the NLP solver

177 so l = so l ve r ( ’ x0 ’ , args . x0 , ’ l bx ’ , args . lbx , ’ ubx ’ , args . ubx , . . .

178 ’ lbg ’ , args . lbg , ’ ubg ’ , args . ubg , ’ p ’ , args . p ) ;

179

180 % get controls for N+1 only

181 u = reshape ( f u l l ( so l . x (3∗ (N+1)+1:end ) ) ’ , 2 ,N ) ’ ;

182 t ( mpc i ter +1) = t0 ;

183

184 % Apply the control and shift the solution

185 [ t0 , x0 , u0 ] = s h i f t (T , t0 , x0 , u , f ) ;

186

187 % Shift trajectory to initialize the next step

188 X0 = reshape ( f u l l ( so l . x ( 1 : 3∗ (N+ 1 ) ) ) ’ , 3 ,N+ 1 ) ’ ;



77

189 X0 = [ X0 ( 2 : end , : ) ; X0(end , : ) ] ;

190

191 mpci ter = mpci ter + 1 ;

192 end

193 main_loop_time = toc ( main_loop ) ;

194 ss_er ro r = norm ( ( x0−xs ) , 2 )

195 average_mpc_time = main_loop_time / ( mpc i ter +1)

Annex B.2. Matlab script for MPC obstacle avoidance adapted from [43]

B.3 Matlab MPC code - MiR Shared Control

1 clear a l l

2 close a l l

3 clc

4

5 %

6 % CasADi v3.4.5

7 addpath ( ’ / home / deva l l a / MATLAB_CasADi_test / casadi_matlab ’ )

8 impor t casadi .∗
9

10

11 %

12 t r y

13 r o s i n i t d

14 catch ME

15 f p r i n t f ( ’ROS Node i s a l ready i n i t i a l i s e d ’ ) ;

16 end

17

18 ve loc i t y_pub = rospub l i she r ( ’ / cmd_vel ’ , ’ geometry_msgs / Twis t ’ ) ;

19 robo t_ve l = rosmessage ( ve loc i t y_pub ) ;

20

21 p u b _ i n i t i a l = rospub l i she r ( ’ / i n i t i a l _ p o s e ’ , ’ geometry_msgs / Pose ’ ) ;

22 i n i t i a l _ p o s e = rosmessage ( p u b _ i n i t i a l ) ;

23

24 pred_path = rospub l i she r ( ’ p red ic ted_path ’ , ’ nav_msgs / Path ’ ) ;

25 pred ic ted_path = rosmessage ( pred_path ) ;

26 pred ic ted_path . Header . FrameId = " / map " ;

27 point_pose = rosmessage ( ’ geometry_msgs / PoseStamped ’ ) ;

28

29 cur ren t_s ta te_sub = rossubsc r ibe r ( ’ / gazebo / model_states ’ , . . .

30 ’ gazebo_msgs / ModelStates ’ ) ;

31
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32 i f _ q u i t _ l o o p = rossubsc r ibe r ( ’ / end_sim ’ , ’ std_msgs / Bool ’ ) ;

33 goal_pose = rossubsc r ibe r ( ’ / l eade r_po in t ’ , ’ geometry_msgs / PoseStamped ’ ) ;

34 pause ( 1 ) ;

35

36 %

37 N =15; % prediction horizon

38 rob_diam = 0 . 9 ;

39

40 v_max = 0 . 8 ; v_min = −v_max ;

41 omega_max = 0 . 8 ; omega_min = −omega_max ;

42

43 x = SX. sym( ’ x ’ ) ; y = SX. sym( ’ y ’ ) ; t he ta = SX. sym( ’ the ta ’ ) ;

44 s ta tes = [ x ; y ; the ta ] ; n_sta tes = length ( s ta tes ) ;

45

46 v = SX. sym( ’ v ’ ) ; omega = SX. sym( ’omega ’ ) ;

47 c o n t r o l s = [ v ; omega ] ; n_con t ro ls = length ( c o n t r o l s ) ;

48

49 % Kinematic System Model r.h.s

50 rhs = [ v∗cos ( the ta ) ; v∗sin ( the ta ) ; omega ] ;

51

52 f = Funct ion ( ’ f ’ , { s ta tes , c o n t r o l s } , { rhs } ) ; % nonlinear mapping function f(x,u)

53 % Decision variables (controls)

54 U = SX. sym( ’U ’ , n_cont ro ls ,N ) ;

55 % Decision Variables (states)

56 X = SX. sym( ’X ’ , n_states , (N+ 1 ) ) ;

57

58 % parameters (which include at the initial state of the robot and the reference

state)

59 P = SX. sym( ’P ’ , n_sta tes + n_sta tes ) ;

60

61 obj = 0 ; % Objective function

62 g = [ ] ; % constraints vector

63

64 % Weighting Matrices

65 Q = zeros ( 3 , 3 ) ; Q(1 ,1 ) = 6 ;Q(2 ,2 ) = 6 ;Q(3 ,3 ) = 4 ;

66 R = zeros ( 2 , 2 ) ; R(1 ,1 ) = 0 . 3 ; R(2 ,2 ) = 0 .15 ;

67

68 % Symbolically compute constraints and Objective Function

69 s t = X ( : , 1 ) ; % initial state

70 g = [ g ; st−P ( 1 : 3 ) ] ; % initial condition constraints

71

72 T = 0 .25 ; % dt in Seconds



79

73 % Define the equality constraints as symbolics

74 for k = 1:N

75 s t = X ( : , k ) ; con = U( : , k ) ;

76 ob j = ob j +( st−P( 4 : 6 ) ) ’∗Q∗ ( s t−P ( 4 : 6 ) ) + con ’∗R∗con ; % calculate obj

77 s t_nex t = X ( : , k +1 ) ;

78 f_va lue = f ( st , con ) ;

79 s t_nex t_eu le r = s t + (T∗ f_va lue ) ;

80 g = [ g ; s t_next−s t_nex t_eu le r ] ; % compute constraints

81 end

82 % Add constraints for collision avoidance (Inequality contraint)

83

84 obs_x = [−4 −2 0.5 3 −2.5 0 2 −4 −1 3 −2 1 4 −1 1 3 ] ; % meters

85 obs_y = [ 3 . 5 3 3.5 4 1.5 1.5 2 0 0 0.5 −2 −1 −1 −4 −3 −3]; % meters

86

87 obs_diam = 0.45 ; % meters

88

89 for k = 1:N+1

90 for num_obs = 1: length ( obs_x )

91 g = [ g ; −sqrt ( ( X(1 , k)−obs_x ( num_obs ) ) ^ 2 + (X(2 , k ) − . . .

92 obs_y ( num_obs ) ) ^ 2 ) + ( rob_diam /2 + obs_diam / 2 ) ] ;

93 end

94 end

95

96 vp_l ims = 0 . 1 ;

97 vn_l ims = 0 . 1 ;

98 wp_lims = 0 . 1 ;

99 wn_lims = 0 . 1 ;

100 for k = 1:N−1

101 g = [ g ; (U(1 , k)−U(1 , k + 1 ) ) ] ;

102 end

103

104 for k = 1:N−1

105 g = [ g ; (U(2 , k)−U(2 , k + 1 ) ) ] ;

106 end

107

108 %

109 % make the decision variable one column vector

110 OPT_variables = [ reshape (X,3∗ (N+ 1 ) , 1 ) ; reshape (U,2∗N, 1 ) ] ;

111

112 nlp_prob = s t r u c t ( ’ f ’ , obj , ’ x ’ , OPT_variables , ’ g ’ , g , ’ p ’ , P ) ;

113

114 opts = s t r u c t ;
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115 opts . i pop t . max_i ter = 10000;

116 opts . i pop t . p r i n t _ l e v e l =0;%0,3

117 opts . p r i n t _ t i m e = 0;

118 opts . i pop t . accep tab le_ to l =1e−8;

119 opts . i pop t . acceptable_obj_change_to l = 1e−6;

120 so l ve r = n l p s o l ( ’ so l ve r ’ , ’ i pop t ’ , nlp_prob , opts ) ;

121

122 args = s t r u c t ;

123 % equality constraints

124 args . lbg ( 1 : 3∗ (N+1) ) = 0 ;

125 args . ubg ( 1 : 3∗ (N+1) ) = 0 ;

126

127 % obstacle constraints

128 length_obs_const = 3∗(N+1)+ length ( obs_x )∗ (N+1) ;

129 args . lbg (3∗ (N+1)+1 : length_obs_const ) = − i n f ;

130 args . ubg (3∗ (N+1)+1 : length_obs_const ) = 0 ;

131

132 % linear velocity decomposition constraints

133 args . lbg ( length_obs_const+1 : length_obs_const +(N−1)) = −vn_l ims ;

134 args . ubg ( length_obs_const+1 : length_obs_const +(N−1)) = vp_l ims ;

135

136 length_vp = length_obs_const +(N−1);

137 % angular velocity decomposition constraints

138 args . lbg ( length_vp+1 : length_vp +(N−1)) = −wn_lims ;

139 args . ubg ( length_vp+1 : length_vp +(N−1)) = wp_lims ;

140

141 % Bounds on the state variables (Boundary Conditions/Outer walls)

142 args . l bx ( 1 : 3 : 3∗ (N+1) ,1 ) = −4.2; %state x lower bound

143 args . ubx ( 1 : 3 : 3∗ (N+1) ,1 ) = 4 . 2 ; %state x upper bound

144 args . l bx ( 2 : 3 : 3∗ (N+1) ,1 ) = −4.2; %state y lower bound

145 args . ubx ( 2 : 3 : 3∗ (N+1) ,1 ) = 4 . 2 ; %state y upper bound

146 args . l bx ( 3 : 3 : 3∗ (N+1) ,1 ) = − i n f ; %state theta lower bound

147 args . ubx ( 3 : 3 : 3∗ (N+1) ,1 ) = i n f ; %state theta upper bound

148

149 % Bounds on the control Variables (Linear and angular velocity)

150 args . l bx (3∗ (N+1)+1:2 :3∗ (N+1)+2∗N, 1 ) = −0.4; %v lower bound

151 args . ubx (3∗ (N+1)+1:2 :3∗ (N+1)+2∗N, 1 ) = v_max ; %v upper bound

152 args . l bx (3∗ (N+1)+2:2 :3∗ (N+1)+2∗N, 1 ) = omega_min ; %omega lower bound

153 args . ubx (3∗ (N+1)+2:2 :3∗ (N+1)+2∗N, 1 ) = omega_max ; %omega upper bound

154

155 %

156 prompt = { ’ Enter x−Value : ’ , ’ Enter y−Value : ’ , ’ Enter theta−Value (Rad) ’ } ;
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157 d l g t i t l e = ’ I n i t i a l es t imate ’ ;

158 dims = [1 3 5 ] ;

159 de f i npu t = { ’−4.0 ’ , ’−4.0 ’ , ’ 0.0 ’ } ;

160 answer = i n p u t d l g ( prompt , d l g t i t l e , dims , de f i npu t ) ;

161

162 x _ i n i t i a l = s t r2doub le ( answer { 1 , 1 } ) ;

163 y _ i n i t i a l = s t r2doub le ( answer { 2 , 1 } ) ;

164 t h e t a _ i n i t i a l = s t r2doub le ( answer { 3 , 1 } ) ;

165 % Initial condition

166 x0 = [ x _ i n i t i a l ; y _ i n i t i a l ; t h e t a _ i n i t i a l ] ;

167

168 eul = [ t h e t a _ i n i t i a l 0 0 ] ;

169 quat = eul2quat ( eu l ) ;

170 unpuase_gazebo = c a l l ( r o s s v c c l i e n t ( ’ / gazebo / unpause_physics ’ ) ) ;

171

172 % Set robot to desired start pose on gazebo

173 set_pose_gazebo = r o s s v c c l i e n t ( ’ / gazebo / set_model_state ’ ) ;

174 set_pose_msg = rosmessage ( set_pose_gazebo ) ;

175 set_pose_msg . ModelState . ModelName = ’ mir ’ ;

176 set_pose_msg . ModelState . Pose . Pos i t i on .X = x _ i n i t i a l ;

177 set_pose_msg . ModelState . Pose . Pos i t i on .Y = y _ i n i t i a l ;

178 set_pose_msg . ModelState . Pose . Pos i t i on . Z = 0;

179 set_pose_msg . ModelState . Pose . O r i e n t a t i o n .W = quat ( 1 ) ;

180 set_pose_msg . ModelState . Pose . O r i e n t a t i o n .X = quat ( 2 ) ;

181 set_pose_msg . ModelState . Pose . O r i e n t a t i o n .Y = quat ( 3 ) ;

182 set_pose_msg . ModelState . Pose . O r i e n t a t i o n . Z = quat ( 4 ) ;

183

184 i n i t i a l _ p o s e . Pos i t i on .X = x _ i n i t i a l ;

185 i n i t i a l _ p o s e . Pos i t i on .Y = y _ i n i t i a l ;

186 i n i t i a l _ p o s e . O r i e n t a t i o n .W = quat ( 1 ) ;

187 i n i t i a l _ p o s e . O r i e n t a t i o n .X = quat ( 2 ) ;

188 i n i t i a l _ p o s e . O r i e n t a t i o n .Y = quat ( 3 ) ;

189 i n i t i a l _ p o s e . O r i e n t a t i o n . Z = quat ( 4 ) ;

190

191 set_pos i t ion_gazebo = c a l l ( set_pose_gazebo , set_pose_msg ) ;

192 send ( p u b _ i n i t i a l , i n i t i a l _ p o s e ) ;

193

194 f ina l_pose = rece ive ( goal_pose , 3 ) ;

195 x _ f i n a l = f i na l_pose . Pose . Pos i t i on .X ;

196 y _ f i n a l = f i na l_pose . Pose . Pos i t i on .Y ;

197 theta_quat_w = f ina l_pose . Pose . O r i e n t a t i o n .W;

198 theta_quat_x = f i na l_pose . Pose . O r i e n t a t i o n .X ;
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199 theta_quat_y = f i na l_pose . Pose . O r i e n t a t i o n .Y ;

200 theta_quat_z = f i na l_pose . Pose . O r i e n t a t i o n . Z ;

201 the ta_eu l = quat2eul ( [ theta_quat_w , theta_quat_x , theta_quat_y , theta_quat_z ] ) ;

202

203 t h e t a _ f i n a l = the ta_eu l ( 1 ) ;

204

205 % Reference posture.

206 xs = [ x _ f i n a l ; y _ f i n a l ; t h e t a _ f i n a l ] ; % Reference posture.

207

208 t0 = 0;

209 t ( 1 ) = t0 ;

210 u0 = zeros (N, 2 ) ; % two control inputs for each robot

211 X0 = repmat ( x0 ,1 ,N+ 1 ) ’ ; % initialization of the states decision variables

212

213 % Start MPC

214 mpci ter = 0 ;

215 q u i t _ w h i l e = rece ive ( i f _ q u i t _ l o o p , 10 ) ;

216

217 main_loop = t i c ;

218 while ( q u i t _ w h i l e . Data == 0)

219 args . p = [ x0 ; xs ] ; % set the values of the parameters vector

220 % initial value of the optimization variables

221 args . x0 = [ reshape (X0 ’ , 3∗ (N+ 1 ) , 1 ) ; reshape ( u0 ’ , 2∗N, 1 ) ] ;

222

223 % Run the NLP Solver

224 so l = so l ve r ( ’ x0 ’ , args . x0 , ’ l bx ’ , args . lbx , ’ ubx ’ , args . ubx , . . .

225 ’ lbg ’ , args . lbg , ’ ubg ’ , args . ubg , ’ p ’ , args . p ) ;

226

227 % get controls only for N+1

228 u = reshape ( f u l l ( so l . x (3∗ (N+1)+1:end ) ) ’ , 2 ,N ) ’ ;

229 t ( mpc i ter +1) = t0 ;

230

231 % Send the control values to the MiR Gazebo Simulation

232 robo t_ve l . L inear .X = u ( 1 , 1 ) ;

233 robo t_ve l . Angular . Z = u ( 1 , 2 ) ;

234 send ( ve loc i ty_pub , robo t_ve l ) ;

235 send ( pred_path , pred ic ted_path ) ;

236

237 % Recieve current robot position from Gazebo

238 rob_s ta te = rece ive ( cur rent_s ta te_sub , 1 ) ;

239

240 i s M i r = c e l l f u n (@( x ) i sequa l ( x , ’ mir ’ ) , rob_s ta te .Name ) ;
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241 [ row , co l ] = f ind ( i s M i r ) ;

242 robot_pose_x = rob_s ta te . Pose ( row , 1 ) . Pos i t i on .X ;

243 robot_pose_y = rob_s ta te . Pose ( row , 1 ) . Pos i t i on .Y ;

244

245 eu le rs = quat2eul ( [ rob_s ta te . Pose ( row , 1 ) . O r i e n t a t i o n .W, . . .

246 rob_s ta te . Pose ( row , 1 ) . O r i e n t a t i o n .X, . . .

247 rob_s ta te . Pose ( row , 1 ) . O r i e n t a t i o n .Y , . . .

248 rob_s ta te . Pose ( row , 1 ) . O r i e n t a t i o n . Z ] ) ;

249

250 r o b o t _ o r i e n t a t i o n = eu le rs ( 1 ) ;

251

252 % propogate values for next prediction

253 x0 = [ robot_pose_x ; robot_pose_y ; r o b o t _ o r i e n t a t i o n ] ;

254 t0 = t0 + T ;

255 u0 = [ u ( 2 : size ( u , 1 ) , : ) ; u ( size ( u , 1 ) , : ) ] ;

256 X0 = reshape ( f u l l ( so l . x ( 1 : 3∗ (N+ 1 ) ) ) ’ , 3 ,N+ 1 ) ’ ; %

257

258 % Shift trajectory to initialize the next step

259 X0 = [ X0 ( 2 : end , : ) ; X0(end , : ) ] ;

260 f i na l_pose = rece ive ( goal_pose , 3 ) ;

261 x _ f i n a l = f i na l_pose . Pose . Pos i t i on .X ;

262 y _ f i n a l = f i na l_pose . Pose . Pos i t i on .Y ;

263 theta_quat_w = f ina l_pose . Pose . O r i e n t a t i o n .W;

264 theta_quat_x = f i na l_pose . Pose . O r i e n t a t i o n .X ;

265 theta_quat_y = f i na l_pose . Pose . O r i e n t a t i o n .Y ;

266 theta_quat_z = f i na l_pose . Pose . O r i e n t a t i o n . Z ;

267 the ta_eu l = quat2eul ( [ theta_quat_w , theta_quat_x , . . .

268 theta_quat_y , theta_quat_z ] ) ;

269 t h e t a _ f i n a l = the ta_eu l ( 1 ) ;

270

271 xs = [ x _ f i n a l ; y _ f i n a l ; t h e t a _ f i n a l ] ;

272

273 mpci ter = mpci ter + 1 ;

274 q u i t _ w h i l e = rece ive ( i f _ q u i t _ l o o p , 1 ) ;

275 end

276 main_loop_time = toc ( main_loop ) ;

277 ss_er ro r = norm ( ( x0−xs ) , 2 )

278 average_mpc_time = main_loop_time / ( mpc i ter +1)

Annex B.3. Matlab script for MPC based Shared Control through ROS.

B.4 Code for human joystick inputs
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1 # This code is an extract from the Jpystick Control

2 # node from Andrew Dai

3

4 #!/usr/bin/env python

5 import rospy

6 from geometry_msgs .msg import Twist

7 from sensor_msgs .msg import Joy

8 from std_msgs .msg import Bool

9

10

11

12 def ca l l back ( data ) :

13 t w i s t = Twist ( )

14 i f _end ing = Bool ( )

15 i f ( data . but tons [ 0 ] == 1 and data . but tons [ 1 ] == 0 ) :

16 i f _end ing = False

17 t w i s t . l i n e a r . x = 0.9∗ data . axes [ 1 ]

18 t w i s t . angular . z = 0.9∗ data . axes [ 0 ]

19

20 e l i f ( data . but tons [ 0 ] == 0 and data . but tons [ 1 ] == 0 ) :

21 i f _end ing = False

22 t w i s t . l i n e a r . x = 0

23 t w i s t . angular . z = 0

24

25 e l i f ( data . but tons [ 1 ] == 1 ) :

26 i f _end ing = True

27 t w i s t . l i n e a r . x = 0

28 t w i s t . angular . z = 0

29

30 pub_vel . pub l i sh ( t w i s t )

31 pub_termin . pub l i sh ( i f _end ing )

32

33 # Intializes everything

34 def s t a r t ( ) :

35 global pub_vel

36 global pub_termin

37 pub_vel = rospy . Pub l i sher ( ’ / cmd_vel_leader ’ , Twist ,

38 queue_size = 10)

39 pub_termin = rospy . Pub l i sher ( ’ / end_sim ’ , Bool ,

40 queue_size = 2)

41 # subscribed to joystick inputs on topic "joy"

42 rospy . Subscr iber ( " j oy " , Joy , ca l l back )
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43 # starts the node

44 rospy . sp in ( )

45

46 i f __name__ == ’ __main__ ’ :

47 rospy . i n i t _node ( ’ Mir_Tele ’ )

48 s t a r t ( )

Annex B.4. Script for subscribing joystick commands and publishing as twist commands.

B.5 Code for updating pose of user controlled point

1 #!/usr/bin/env python

2 import rospy

3 from geometry_msgs .msg import PoseStamped , Twist , Pose

4 from gazebo_msgs .msg import ModelState

5 from gazebo_msgs . srv import SetModelState

6 from v isua l i za t ion_msgs .msg import Marker

7 import numpy as np

8 from t f . t r ans fo rma t ions import quatern ion_f rom_euler

9 from t f . t r ans fo rma t ions import euler_ f rom_quatern ion

10

11

12 global X

13 global Y

14 global THETA

15 X = 0

16 Y = 0

17 THETA = 0

18

19 def angleWrapping ( th ) :

20 while th < −np . p i :

21 th += 2 ∗ np . p i

22 while th > np . p i :

23 th −= 2 ∗ np . p i

24 return th

25

26

27 def pose_clbk ( data ) :

28 global X

29 global Y

30 global THETA

31 X = data . p o s i t i o n . x

32 Y = data . p o s i t i o n . y
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33 THETA = euler_ f rom_quatern ion ( [ data . o r i e n t a t i o n . x ,

34 data . o r i e n t a t i o n . y ,

35 data . o r i e n t a t i o n . z ,

36 data . o r i e n t a t i o n .w ] ) [ 2 ]

37

38

39 def ca l l back ( data ) :

40 global X

41 global Y

42 global THETA

43 l i n e a r _ v e l _ v = data . l i n e a r . x

44 l inear_ve l_w = data . angular . z

45 leader_gazebo = ModelState ( )

46 leader_gazebo . model_name = ’ leader ’

47 leader_pose . header . stamp = rospy . Time . now ( )

48 leader_marker . header . stamp = rospy . Time . now ( )

49

50 dt = 0.01

51

52 X = X + ( l i n e a r _ v e l _ v ∗ np . cos (THETA) ∗ dt )

53 Y = Y + ( l i n e a r _ v e l _ v ∗ np . s in (THETA) ∗ dt )

54 THETA = THETA + l inear_ve l_w ∗ dt

55 THETA = angleWrapping (THETA)

56

57 quat = quatern ion_f rom_euler (0 ,0 ,THETA)

58

59 leader_pose . pose . p o s i t i o n . x = X

60 leader_pose . pose . p o s i t i o n . y = Y

61 leader_pose . pose . o r i e n t a t i o n . x = quat [ 0 ]

62 leader_pose . pose . o r i e n t a t i o n . y = quat [ 1 ]

63 leader_pose . pose . o r i e n t a t i o n . z = quat [ 2 ]

64 leader_pose . pose . o r i e n t a t i o n .w = quat [ 3 ]

65

66 leader_gazebo . pose . p o s i t i o n . x = X

67 leader_gazebo . pose . p o s i t i o n . y = Y

68 leader_gazebo . pose . o r i e n t a t i o n . x = quat [ 0 ]

69 leader_gazebo . pose . o r i e n t a t i o n . y = quat [ 1 ]

70 leader_gazebo . pose . o r i e n t a t i o n . z = quat [ 2 ]

71 leader_gazebo . pose . o r i e n t a t i o n .w = quat [ 3 ]

72

73 leader_marker . pose . p o s i t i o n . x = X

74 leader_marker . pose . p o s i t i o n . y = Y
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75

76 t ry :

77 se t_s ta te = rospy . ServiceProxy ( ’ / gazebo / set_model_state ’ ,

78 SetModelState )

79 resp = se t_s ta te ( leader_gazebo )

80

81 except rospy . Serv iceExcept ion , e :

82 pr in t " Serv ice c a l l f a i l e d : %s " % e

83

84 pub_c i r c le . pub l i sh ( leader_marker )

85 pub_square . pub l i sh ( f i na l_marke r )

86 pub_point . pub l i sh ( leader_pose )

87

88

89 leader_pose = PoseStamped ( )

90 leader_pose . header . f rame_id = " /map"

91

92 leader_marker = Marker ( )

93 leader_marker . header . f rame_id = " /map"

94 leader_marker . ns = " c i c l e _ f o r _ l e a d e r "

95 leader_marker . id = 0

96 leader_marker . type = leader_marker .CYLINDER

97 leader_marker . ac t i on = 0

98 leader_marker . pose . o r i e n t a t i o n . x = 0

99 leader_marker . pose . o r i e n t a t i o n . y = 0

100 leader_marker . pose . o r i e n t a t i o n . z = 0

101 leader_marker . pose . o r i e n t a t i o n .w = 1

102 leader_marker . sca le . x = 0.88

103 leader_marker . sca le . y = 0.88

104 leader_marker . sca le . z = 0.01

105 leader_marker . co l o r . r = 0.0

106 leader_marker . co l o r . g = 1.0

107 leader_marker . co l o r . b = 0.0

108 leader_marker . co l o r . a = 1.0

109

110 f ina l_marke r = Marker ( )

111 f i na l_marke r . header . f rame_id = " /map"

112 f i na l_marke r . ns = " square_ f ina l_area "

113 f i na l_marke r . id = 0

114 f ina l_marke r . type = leader_marker .CUBE

115 f ina l_marke r . ac t i on = 0

116 f ina l_marke r . pose . p o s i t i o n . x = 4.0
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117 f ina l_marke r . pose . p o s i t i o n . y = 2.5

118 f i na l_marke r . pose . o r i e n t a t i o n . x = 0

119 f ina l_marke r . pose . o r i e n t a t i o n . y = 0

120 f ina l_marke r . pose . o r i e n t a t i o n . z = 0

121 f ina l_marke r . pose . o r i e n t a t i o n .w = 1

122 f ina l_marke r . sca le . x = 2

123 f ina l_marke r . sca le . y = 2

124 f ina l_marke r . sca le . z = 0.01

125 f ina l_marke r . co l o r . r = 0.0

126 f i na l_marke r . co l o r . g = 1.0

127 f i na l_marke r . co l o r . b = 1.0

128 f i na l_marke r . co l o r . a = 0.5

129

130

131 # Intializes everything

132 def s t a r t ( ) :

133 global pub_c i r c le

134 global pub_point

135 global pub_square

136

137 pub_point = rospy . Pub l i sher ( ’ / l eade r_po in t ’ , PoseStamped ,

138 queue_size = 3)

139 pub_c i r c le = rospy . Pub l i sher ( ’ c i r c l e _ l e a d e r ’ , Marker ,

140 queue_size = 0)

141 pub_square = rospy . Pub l i sher ( ’ f i n a l _ r e g i o n ’ , Marker ,

142 queue_size = 0)

143 # subscribed to joystick inputs on topic "joy"

144 rospy . Subscr iber ( ’ / cmd_vel_leader ’ , Twist , ca l l back )

145 rospy . Subscr iber ( ’ / i n i t i a l _ p o s e ’ , Pose , pose_clbk )

146

147 # starts the node

148 rospy . sp in ( )

149

150 i f __name__ == ’ __main__ ’ :

151 rospy . i n i t _node ( ’ Leader_move ’ )

152 s t a r t ( )

Annex B.5. Script for subscribing Twist commands from the joystick node and publishing

the updated pose of human controlled point.

B.6 Code for direct tele/operation of the robot

1 # This code is an extract from the Joystick control



89

2 # node from Andrew Dai

3

4 #!/usr/bin/env python

5 import rospy

6 from geometry_msgs .msg import Twist

7 from sensor_msgs .msg import Joy

8 from std_msgs .msg import Bool

9

10

11

12 def ca l l back ( data ) :

13 t w i s t = Twist ( )

14

15 i f_moving = Bool ( )

16 i f ( data . but tons [ 0 ] == 1 ) :

17 t w i s t . l i n e a r . x = 0.8∗ data . axes [ 1 ]

18 t w i s t . angular . z = 0.8∗ data . axes [ 0 ]

19 i f_moving = True

20

21 e l i f ( data . but tons [ 0 ] == 0 ) :

22 t w i s t . l i n e a r . x = 0

23 t w i s t . angular . z = 0

24 i f_moving = False

25

26

27 pub_vel . pub l i sh ( t w i s t )

28 pub_moving . pub l i sh ( i f_moving )

29

30 # Intializes everything

31 def s t a r t ( ) :

32 global pub_vel

33 global pub_moving

34 pub_vel = rospy . Pub l i sher ( ’ / cmd_vel ’ , Twist ,

35 queue_size = 10)

36 pub_moving = rospy . Pub l i sher ( ’ / robot_moving ’ , Bool ,

37 queue_size = 2)

38 rospy . Subscr iber ( " j oy " , Joy , ca l l back )

39 # starts the node

40 rospy . sp in ( )

41

42 i f __name__ == ’ __main__ ’ :

43 rospy . i n i t _node ( ’ Mir_Tele ’ )
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44 s t a r t ( )

Annex B.6. Ros python script used for direct tele-operation of the MiR in the simulation

environment.
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C USER TESTS OF SHARED CONTROL

IMPLEMENTATION

C.1 Consent Form

User testing of the Shared Control Implementation 

Informed Consent Form 

This is a user-based testing performed towards the evaluation of the shared 

control approach implemented as a part of my master’s thesis on the topic 

“Shared Control for Mobile Robots”.  

Tasks during the study 

In this session you will have two major tasks to perform. These user tests will 

help in attaining an unbiased and neutral understanding on the performance of 

the system. In both the task contexts you will perform the tasks thrice, once by 

using manual teleoperation with zero autonomy and the other two times using 

the shared control algorithm once without any training to use the implemented 

approach and once with some training. As part of the user testing you will 

perform the following tasks: 

1. How safe can you manoeuvre? 

In this task you will navigate the robot in a 10X10 metre environment for a 

fixed time period of 2 minutes. As a safety evaluation, the number of 

collisions occurring will be recorded.  

2. How quick can you manoeuvre? 

In the second task, you will navigate the robot from a starting point, towards 

a final designated region highlighted on the floor of the environment. During 

this test,  the total time taken for the task completion will be recorded.  

Confidentiality of the user test. 

No pictures or videos of the participants will be recorded as a part of the user 

testing for the shared control system.  The tests performed are for testing the 

performance of the system and not the user. The results from this session and 

other sessions will be published as a part of thesis. The findings will be published 

anonymously with no inclusion of names in the thesis. 

Consent 

I have read the description of the user study and my rights as a participant. I 

agree to voluntarily participate in the user testing. 

 

Name_____________________________________________ 

 

Signature and Date _________________________________ 



93

C.2 User Test Data

Direct Tele-
operation Tele-operation via Shared Control

Direct Tele-
operation

Tele-operation 
via Shared 
Control - No 
training

Tele-operation 
via Shared 
Control - With 
training

Test 1 3 0 16.173 19.542 17.719

Test 2 10 0 19.518 19.485 19.392

Test 3 2 0 16.33 19.503 17.632

Test 4 4 0 20.84 19

Test 5 3 0 17.265 20.355 16.241

Test 6 3 0 19.976 18.082 19.034

Test 7 4 0 17.13 19.704 18.61

Total 29 0 127.232 135.671 108.628
Average 4.142857143 0 18.176 19.38157143 18.10466667

Collisions occurred during Task 
1 Time taken for comletion of Task 2

Test Number
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