5,855 research outputs found

    Blending Learning and Inference in Conditional Random Fields

    Get PDF
    Conditional random fields maximize the log-likelihood of training labels given the training data, e.g., objects given images. In many cases the training labels are structures that consist of a set of variables and the computational complexity for estimating their likelihood is exponential in the number of the variables. Learning algorithms relax this computational burden using approximate inference that is nested as a sub-procedure. In this paper we describe the objective function for nested learning and inference in conditional random fields. The devised objective maximizes the log-beliefs -probability distributions over subsets of training variables that agree on their marginal probabilities. This objective is concave and consists of two types of variables that are related to the learning and inference tasks respectively. Importantly, we afterwards show how to blend the learning and inference procedure and effectively get to the identical optimum much faster. The proposed algorithm currently achieves the state-of-the-art in various computer vision applications

    Blending Learning and Inference in Structured Prediction

    Full text link
    In this paper we derive an efficient algorithm to learn the parameters of structured predictors in general graphical models. This algorithm blends the learning and inference tasks, which results in a significant speedup over traditional approaches, such as conditional random fields and structured support vector machines. For this purpose we utilize the structures of the predictors to describe a low dimensional structured prediction task which encourages local consistencies within the different structures while learning the parameters of the model. Convexity of the learning task provides the means to enforce the consistencies between the different parts. The inference-learning blending algorithm that we propose is guaranteed to converge to the optimum of the low dimensional primal and dual programs. Unlike many of the existing approaches, the inference-learning blending allows us to learn efficiently high-order graphical models, over regions of any size, and very large number of parameters. We demonstrate the effectiveness of our approach, while presenting state-of-the-art results in stereo estimation, semantic segmentation, shape reconstruction, and indoor scene understanding

    Learning Deep Structured Models

    Full text link
    Many problems in real-world applications involve predicting several random variables which are statistically related. Markov random fields (MRFs) are a great mathematical tool to encode such relationships. The goal of this paper is to combine MRFs with deep learning algorithms to estimate complex representations while taking into account the dependencies between the output random variables. Towards this goal, we propose a training algorithm that is able to learn structured models jointly with deep features that form the MRF potentials. Our approach is efficient as it blends learning and inference and makes use of GPU acceleration. We demonstrate the effectiveness of our algorithm in the tasks of predicting words from noisy images, as well as multi-class classification of Flickr photographs. We show that joint learning of the deep features and the MRF parameters results in significant performance gains.Comment: 11 pages including referenc

    Semi-supervised latent variable models for sentence-level sentiment analysis

    Get PDF
    We derive two variants of a semi-supervised model for fine-grained sentiment analysis. Both models leverage abundant natural supervision in the form of review ratings, as well as a small amount of manually crafted sentence labels, to learn sentence-level sentiment classifiers. The proposed model is a fusion of a fully supervised structured conditional model and its partially supervised counterpart. This allows for highly efficient estimation and inference algorithms with rich feature definitions. We describe the two variants as well as their component models and verify experimentally that both variants give significantly improved results for sentence-level sentiment analysis compared to all baselines

    Block Belief Propagation for Parameter Learning in Markov Random Fields

    Full text link
    Traditional learning methods for training Markov random fields require doing inference over all variables to compute the likelihood gradient. The iteration complexity for those methods therefore scales with the size of the graphical models. In this paper, we propose \emph{block belief propagation learning} (BBPL), which uses block-coordinate updates of approximate marginals to compute approximate gradients, removing the need to compute inference on the entire graphical model. Thus, the iteration complexity of BBPL does not scale with the size of the graphs. We prove that the method converges to the same solution as that obtained by using full inference per iteration, despite these approximations, and we empirically demonstrate its scalability improvements over standard training methods.Comment: Accepted to AAAI 201
    • …
    corecore