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Abstract

Conditional random fields maximize the log-likelihood of training labels given the train-
ing data, e.g., objects given images. In many cases the training labels are structures that
consist of a set of variables and the computational complexity for estimating their likelihood
is exponential in the number of the variables. Learning algorithms relax this computational
burden using approximate inference that is nested as a sub-procedure. In this paper we de-
scribe the objective function for nested learning and inference in conditional random fields.
The devised objective maximizes the log-beliefs — probability distributions over subsets
of training variables that agree on their marginal probabilities. This objective is concave
and consists of two types of variables that are related to the learning and inference tasks
respectively. Importantly, we afterwards show how to blend the learning and inference pro-
cedure and effectively get to the identical optimum much faster. The proposed algorithm
currently achieves the state-of-the-art in various computer vision applications.

1. Introduction

Learning and inference of structured models drives much of the research in machine learning
applications, from computer vision and natural language processing to computational biol-
ogy. Examples include object detection (e.g., by Felzenszwalb et al. (2010)), parsing (e.g.,
by Koo et al. (2010)), or protein design (e.g., by Sontag et al. (2008)). The inference prob-
lem in these cases involves assessing the likelihood of labelings, whether outlined objects,
parse trees, or molecular structures. The learning procedure searches for the parameters
that maximize the likelihood of the training set.

Conditional random fields (CRFs) form an effective framework for maximizing the log-
likelihood of training labels in structured models. Learning the parameters of these models
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can be computationally expensive since the label space of real-world problems is usually
exponential in the size of its variables.

When the label structure corresponds to a tree, exactly inferring the likelihood of the
training labels can be done in time, linear in the number of variables using sum-product
belief propagation as a subroutine. We refer to this approach as nested learning and infer-
ence. In contrast, when the label structure corresponds to a general graph, we cannot infer
the likelihood exactly. However nested learning and inference can still be applied using ap-
proximate inference algorithms such as convex sum-product belief propagation (Wainwright
et al., 2005; Heskes, 2006; Meltzer et al., 2009; Hazan and Shashua, 2010). Nevertheless,
the approximate inference algorithms might be computationally expensive to be used as a
nested subroutine of the learning algorithm.

In this article we suggest to interleave optimization of learning parameters with opti-
mization of inference parameters. We call this approach blending learning and inference
in CRFs. For this end we propose an optimization program that maximizes log-beliefs,
i.e., probability distributions over subsets of training variables that agree on their marginal
probabilities. These beliefs are elements of the local polytope (Wainwright and Jordan,
2008). The log-beliefs objective is concave and consists of two types of variables that are
related to the learning and inference tasks respectively. We are able to blend the learn-
ing and inference procedures by alternating maximizations over the inference and learning
variables. With blending we reach the nested learning-inference optimum much faster.

We also define loss-adjusted beliefs to integrate prior knowledge about the desired in-
ference as well as a parameter that controls the smoothness of the beliefs. In the past and
partly due to its efficiency, the presented machine learning algorithm was shown to improve
the state-of-the-art in various computer vision tasks, including 2D scene understanding (Yao
et al., 2012), 3D scene understanding (Lin et al., 2013), shape reconstruction (Salzmann
and Urtasun, 2012), indoor scene understanding (Schwing et al., 2012a; Schwing and Urta-
sun, 2012), depth estimation (Yamaguchi et al., 2012), flow estimation (Yamaguchi et al.,
2013) and visual-language understanding (Fidler et al., 2013). This manuscript extends
our previous work (Hazan and Urtasun, 2010) to high order setting while simplifying its
theory and proofs. The code is publicly available on http://www.alexander-schwing.de/

projectsGeneralStructuredPredictionLatentVariables.php.

The reminder of the paper is organized as follows. In Section 3 we review the parameter
learning setting of CRFs that maximize the log-likelihood of training labels given corre-
sponding data instances. We also present the nested learning and inference approach as
well as approximate inference algorithms of belief propagation and its convex variants. In
Section 4 we describe the objective function for nested learning and inference that maximize
the log-beliefs. We then describe a blending algorithm to optimize this objective and de-
scribe its convergence properties using convex duality. Next we present loss-adjusted beliefs
and the appropriate modifications for blending in Section 5, drawing connections to blend-
ing in the structured SVMs setting suggested by Meshi et al. (2010). We then demonstrate
the effectiveness of our approach in Section 6. We conclude by describing the generality of
our approach, relating blending and convexity to the penalty method.
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2. Related work

Learning log-beliefs extends the CRFs framework that maximizes the log-likelihood of con-
ditional Gibbs distributions (cf. Lafferty et al. (2001); Lebanon and Lafferty (2002)). Gibbs
distributions, also known as Markov random fields, are probability distributions that are
defined on a product space using potential functions over subsets of variables. Gibbs prob-
ability models often consider exponentially many possible assignments for these variables.
In this case, approximate inference methods are used in a black box manner to estimate
the gradient and the objective of CRFs, resulting in the nested learning-inference algorithm
illustrated in Figure 1. Nested learning-inference algorithms are successfully dealing with
real-world problems, e.g., (Levin and Weiss, 2006) in computer vision, (Yanover et al., 2007)
in computational biology and (Sutton and McCallum, 2009) in language processing to name
a few.

The current work extends and simplifies our previous work (Hazan and Urtasun, 2010).
We simplify the learning objective while formulating it as the maximization of log-beliefs,
which are pseudo-marginal probabilities of the Gibbs distribution. We extend the learning
procedure while considering pseudo-marginals of Gibbs distributions on any subset of its
variables. In the last couple of years, the presented machine learning algorithm was shown
to improve the state-of-the-art in various computer vision tasks: Considering outdoor scene
understanding (Yao et al., 2012), each (super)pixel is represented by a variable of the Gibbs
model and its possible assignments correspond to discrete semantic label, e.g., person,
car, tree and so on. Our learning algorithm estimates the parameters that maximize the
probability of the training data per variable (i.e., pixel and its observed object) and subsets
of variables (e.g., neighborhood of pixels and their observed objects). Considering indoor
scene understanding (Schwing et al., 2012a; Schwing and Urtasun, 2012; Lin et al., 2013)
each wall or a 3D object in the room is represented by a subsets of variables and our
learning algorithm estimates the position of these objects while maximizing likelihood of
these subsets within the training data. In depth estimation and optimal flow (Yamaguchi
et al., 2012, 2013) the variables of the Gibbs models are either continuous or discrete. The
continuous variables correspond to the possible hyperplanes that either explain the depth or
the optical flow of the super pixels in the training images. The discrete variables maintain
consistency between adjacent super pixels. Our learning algorithm estimates the probable
hyperplanes and their spatial relations in the training data.

Our approach suggests to blend the inference and learning steps and reach the same
optimum as nested approaches while being at least an order of magnitude faster. Blending
helps the algorithm to avoid computationally expensive inference algorithms when learning
parameters w that are far from optimal. Similar observations have been made in the con-
text of coordinate descent by Tappenden et al. (2013). Other approaches for blending CRFs
appear are developed by Domke (2011). Lemma 3 describes how to infer non-consistent be-
liefs. These beliefs are different from the beliefs that are usually derived during the runtime
of approximate inference algorithms. The theoretical characterization of the optimal points
for the learning-inference procedures are described by Wainwright (2006); Wainwright et al.
(2003).

Meshi et al. (2010) describe blending learning and inference in the context of structured
SVMs, which are constructed to minimize the loss between the predicted labels and the
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observed ones (cf. (Taskar et al., 2004; Tsochantaridis et al., 2004; Collins, 2002)). The ideas
of blending learning and inference in structured SVMs also appear in (Taskar et al., 2005;
Anguelov et al., 2005). In contrast, our work focuses on blending learning and inference
when maximizing log-probabilities. Nevertheless, our loss-adjusted beliefs may describe a
probabilistic alternative to blended learning in structured-SVMs. When setting the counting
numbers cr = 0, we effectively work with zero-one probabilities (i.e., max-beliefs) thus we
recover the algorithm of Meshi et al. (2010).

3. Background

Log-likelihood learning in structured models involves data instances x ∈ X and their labels
y ∈ Y. The structure is incorporated into the labels which may refer to sequences, grids, or
other high-dimensional objects. For every data instance x, its possible labels are described
by a set of feature functions φk : X × Y → R, k ∈ {1, . . . ,K}. A linear combination of
the K features is used to score the different labels y ∈ Y using the parameters w ∈ RK .
Formally we obtain the score θ(y;x,w) of a label via

θ(y;x,w) =
∑
k

wkφk(x, y).

The real valued score is mapped to the probability scale via the Gibbs distribution:

p(y|x;w) ∝ exp(θ(y;x,w)). (1)

Within the CRF framework, the goal is to learn the parameters of the potential functions
to maximize the conditional likelihood of the training data (x, y) ∈ S:

max
w

∑
(x,y)∈S

log p(y|x;w)− C

2
‖w‖22. (2)

The regularization term is sometimes considered as a Gaussian prior over the parameters
w. The regularized likelihood of CRFs is a concave and smooth function and its optimal
parameters may be attained by gradient ascent. The gradient measures the disagreements
between the inferred distribution over labels and the groundtruth training labels, i.e.,

∂ log p(y|x;w)

∂wk
=
∑
ŷ∈Y

p(ŷ|x;w)φk(x, ŷ)− φk(x, y). (3)

The computational complexity of CRFs is governed by inference, which amounts to evalu-
ating the probability p(ŷ|x;w) for computing the objective and the gradient.

We consider cases in which the labels y ∈ Y are n-tuples, i.e., y = (y1, ..., yn), and hence
the configuration space is exponential in n. The features describe relations between subsets
of elements r ⊂ {1, ..., n}, also called regions or factors. We denote by Rk the regions
required to compute the feature φk(x, y). Importantly, the features are functions of their
regions labels yr ⊂ {y1, ..., yn}, i.e.,

φk(x, y1, ..., yn) =
∑
r∈Rk

φk,r(x, yr). (4)

4



Blending Learning and Inference in Conditional Random Fields

Thus the features define hypergraphs whose nodes represent the n labels indexes, and
the regions R = ∪kRk correspond to its hyperedges. A convenient way to represent a
hypergraph is by its region graph. A region graph is a directed graph whose nodes represent
the regions and its direct edges correspond to the inclusion relation, i.e., a directed edge
from node r to s is possible only if s ⊂ r. We adopt the terminology where the sets P (r)
and C(r) represent all nodes that are parents and children of the node r, respectively.

The Hammersley-Clifford theorem (e.g., Lauritzen (1996)) asserts that the Gibbs dis-
tributions p(ŷ|x;w) defined in Equation (1) correspond to a Markov random field (MRF)
whose statistical independencies are described by the joint hypergraph. These indepen-
dencies are determined by the Markov property: two nodes in the graph are conditionally
independent when they are separated by observed nodes. Aji and McEliece (2001) show that
whenever the region graph is bipartite and has no cycles, the Markov property provides a
low dimensional representation of the Gibbs distribution using its marginal probabilities
p(ŷr|x;w) =

∑
ŷ\ŷr p(ŷ|x;w), namely

p(ŷ|x;w) =
∏
r∈R

p(ŷr|x;w)1−|P (r)|. (5)

In such cases the inference step, i.e., estimating the probabilities p(ŷ|x;w) can be per-
formed efficiently using message-passing algorithms. When the region graph has no cycles
it is bipartite, therefore it has two types of regions: outer regions, i.e., regions that are
not contained by other regions, and inner regions. To differentiate between those regions
we denote outer regions by α and inner regions by i. In this case, one can use the be-
lief propagation algorithm to efficiently infer the marginal probabilities without performing
exponentially many operations:

Algorithm 1 Sum-product belief propagation

Set Kr = {k : r ∈ Rk}. For every (x, y), w set θr(ŷr) =
∑

k∈Kr wkφk,r(x, ŷr).
Repeat until convergence:

µα→i(yi) = log
(∑

yα\yi exp
(
(θα(yα) +

∑
j∈C(α)\i λj→α(yj))

))
λi→α(yi) = θi(yi) +

∑
β∈P (i)\α µβ→i(yi)

Output:

bi(yi) ∝ exp
(
θi(yi) +

∑
α∈P (i) µα→i(yi)

)
bα(yα) ∝

(
θα(yα) +

∑
i∈C(α) λi→α(yi)

)
The marginal probabilities p(ŷr|x;w) appear as the beliefs br(ŷr). In general, when the

region graph has cycles, the belief propagation algorithm is no longer guaranteed to output
the marginal probabilities. Nevertheless, when it converges it provides beliefs that agree on
their marginal probabilities, namely

∑
yα\yi bα(yα) = bi(yi). In some cases the belief prop-

agation algorithm infers beliefs br(ŷr) which approximate well the marginal probabilities,
while in other cases it produces non-accurate results or might even fail to converge. A possi-
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ble explanation for this behavior comes from the fact that the belief propagation algorithm
iterates the stationary points of a non-convex objective called the Bethe free energy (Yedidia
et al., 2005). Recently, in an extensive effort to derive converging belief propagation type
algorithms, the non-convex Bethe free energy was replaced by convex free energies while
introducing nonnegative counting numbers cr that replace the Bethe coefficients. Conse-
quently, the belief propagation algorithm was replaced by block coordinate descent over
the dual program (Heskes, 2006; Meltzer et al., 2009; Hazan and Shashua, 2008). These
dual block coordinate descent algorithms belong to the family of the norm-product belief
propagation algorithms:

Algorithm 2 Norm-Product Belief Propagation

Set ĉi = ci +
∑

α∈P (i) cα. Repeat until convergence:

µα→i(yi) = cα log
(∑

yα\yi exp
(
(θα(yα) +

∑
j∈C(α)\i λj→α(yj))

/
cα
))

λi→α(yi) = cα
ĉi

(
θi(yi) +

∑
β∈P (i) µβ→i(yi)

)
− µα→i(yi)

Output:

bi(yi) ∝ exp
(
θi(yi) +

∑
α∈P (i) µα→i(yi)

)1/ĉi
bα(yα) ∝ exp

(
θα(yα) +

∑
i∈C(α) λi→α(yi)

)1/cα
The norm-product algorithm, illustrated in Algorithm 2, reduces to belief propagation

when setting its coefficients to cr = 1 − |P (r)|, namely, the Bethe counting numbers. We
refer the interested reader to (Wainwright and Jordan, 2008) for more details.

The norm-product algorithm iterates over the fixed point solutions for the variational
problem

arg max
b∈L(G)

∑
r,yr

br(yr)θr(yr) +
∑
r

crH(br). (6)

The set L(G) is known as the local polytope, and contains probability distributions br(yr)
that agree on their overlapping variables, i.e.,

L(G) =
{
br(yr) : br(yr) ≥ 0,

∑
yr

br(yr) = 1, ∀p ∈ P (r)
∑
yp\yr

bp(yp) = br(yr)
}
. (7)

Throughout this work we refer to elements in the local polytope as beliefs.
The variational program given in Equation (6) is concave whenever cr ≥ 0. The norm-

product algorithm given in Algorithm 2 performs block coordinate descent on its dual
program. Therefore it is guaranteed to converge to beliefs that agree on their marginal
probabilities. Typically its inferred beliefs approximate the marginal probabilities as well
as the belief propagation approximations (Meshi et al., 2009). Thus in its various forms
it is used as the inference step when learning the parameters of CRFs. Such nested loop
algorithms for performing learning and inference are presented in Figure 1. Unfortunately,
iteratively executing the norm-product algorithm as an inference procedure to compute
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Learning with nested inference for CRFs

1. Set θr(yr;x,w) =
∑

k∈Kr wkφk,r(x, yr). Repeat until convergence:

2. Inference: For every (x, y) ∈ S:

b∗ = arg max
b(·|x)∈L(G)

∑
r∈R,yr∈Yr

br(yr|x)θr(yr;x,w) +
∑
r∈R

H(br).

3. Learning:

wk ← wk − η
(∑

(x,y)∈S
∑

r∈R

(∑
ŷr
b∗r(ŷr|x)φk,r(x, ŷr)− φk,r(x, yr)

)
+ Cwk

)
.

Figure 1: Nested (unblended) inference in learning. The inference step is performed in every
iteration. The learning step improves the parameters till learning is attained. η
is typically referred as the learning rate and may be set as 1/

√
t, where t is the

iteration index. The abbreviation b ∈ L(G) describes conditional beliefs b(·|x) for
every x ∈ S. Each of these conditional beliefs is in the local polytope, as defined
in Equation (7).

the gradient is computationally demanding and this method has not been used widely (see
Section 2 for more details). In the following we explore duality to provide the means to
blend the learning and inference tasks efficiently.

4. Blending learning and inference

Log-likelihood of Gibbs distributions, as defined in Equation (1) with potentials θ(y;x,w)
that are linear functions of their parameters w, results in a concave program. When using
nested (unblended) inference, the learning algorithm executes a concave program for infer-
ring beliefs about its marginal probabilities that are required for computing its gradient.
Our main result explicitly defines the concave program whose optimal solutions are the
limit points of the nested learning and inference algorithm that is shown in Figure 1. Using
this characterization we are able to derive an algorithm that blends the learning and infer-
ence steps. Consequently it is orders of magnitude faster than the nested algorithm that
uses inference as a black-box algorithm. Since our blended algorithm optimizes a concave
program, it is guaranteed to reach the same optimum as the nested algorithm.

Theorem 1 The limit points of the nested inference and learning algorithm in Figure 1 are
described by the optimal points of the following concave program maximizing log-beliefs:

max
w,λ

∑
(x,y)∈S

∑
r∈R

log br(yr|x;w, λ)− C

2
‖w‖2

s.t br(yr|x;w, λ) ∝ exp
(
θr(yr;x,w) +

∑
c∈C(r)

λc→r(yc;x)−
∑

p∈P (r)

λr→p(yr;x)
)
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Proof The theorem replaces maximization over b ∈ L(G) with maximization over λ. De-
coupling the maximizations takes the form maxw

∑
(x,y)∈S

(
maxλ{

∑
r∈R log br(yr|x;w, λ)}

)
.

In the following we show how to derive the result from Lagrange optimality conditions
(KKT):

λ∗ = arg max
λ

∑
r∈R

log br(yr|x;w, λ)

b∗ = arg max
b∈L(G)

∑
r∈R,yr∈Yr

br(yr|x)θr(yr;x,w) +
∑
r∈R

H(br)

=⇒ b∗r(yr|x) ∝ exp
(
θr(yr;x,w) +

∑
c∈C(r)

λ∗c→r(yc;x)−
∑

p∈P (r)

λ∗r→p(yr;x)
)

(8)

Using the above Lagrange optimality conditions, the theorem follows since the inference
nested within the learning algorithm applies gradient ascent to the following program:

max
w

∑
(x,y)∈S

(
max
λ
{
∑
r∈R

log br(yr|x;w, λ)}
)
− C

2
‖w‖2 = max

w

∑
(x,y)∈S

∑
r∈R

log b∗r(yr|x)− C

2
‖w‖2.

Equation (8) states the Lagrange optimality conditions for maximum-likelihood maximum-
entropy type duality. Consider the constrained inference algorithm in Figure (1) and the
Lagrange multipliers λr→p(yr;x,w) for the marginalization constraints

∑
yp\yr bp(yp|x) =

br(yr|x). Its corresponding Lagrangian is L(b, λ) =
∑

r,yr
br(yr|x)θr(yr;x,w, λ) +

∑
rH(br)

where θr(yr;x,w, λ) = θr(yr;x,w) +
∑

c∈C(r) λc→r(yc;x) −
∑

p∈P (r) λr→p(yr;x). Its dual
function is q(λ) = maxb L(b, λ) while br(yr|x) are subject to probability constraints. Con-
jugate duality between the entropy function and the log-partition function (cf. Wainwright
and Jordan (2008)) implies that q(λ) =

∑
r log(

∑
yr

exp(θr(yr;x,w, λ))). Since strong du-
ality between the entropy and the log-partition function holds, its Lagrange optimality
conditions imply

λ∗ = arg min
λ

∑
r∈R

log
(∑

yr

exp
(
θr(yr;x,w, λ)

))
.

The theorem then follows since
∑

r∈R
∑

p∈P (r) λr→p(yr;x)−
∑

r∈R
∑

c∈C(r) λc→r(yc;x) ≡ 0
therefore

∑
r log b∗r(yr|x) = −q(λ∗) and the Lagrange optimality conditions in Equation (8)

hold. Thus b∗r(yr|x) can be replaced by its re-parametrization 1
Zr

exp(θr(yr;x,w, λ
∗)), with

Zr =
∑

ŷr
exp(θr(ŷr;x,w, λ

∗)).

The maximum log-beliefs program describes the variational landscape of nested inference
in learning. Thus it can be used to measure the step-size η in Figure 1. For example, the
Armijo rule that determines the step size according to the variational neighborhood results
in a faster convergence per iteration than using a fixed learning rate.

The nested learning and inference algorithm performs a complete inference step before
performing a single learning step. The inference step derives beliefs that agree on their
marginal probabilities. In this work we use the maximum log-beliefs concave program to
blend the learning and inference steps. Specifically, we use block coordinate ascent steps
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to blend learning (optimization w.r.t. w) with incomplete inference steps (optimization
w.r.t. λ) that derive beliefs br(yr|x;w, λ) that not necessarily agree on their marginal prob-
abilities, i.e.,

∑
yp\yr bp(yp|x;w, λ) = br(yr|x;w, λ). Such an approach is computationally

favorable since it does not require to perform a complete inference step for initial learning
parameters. Concavity ensures that blending reaches the maximum log-beliefs optimum
thus it guarantees to derive consistent beliefs upon convergence.

Performing block coordinate descent on the maximum log-beliefs program in Theorem 1
requires minimizing a block of variables while holding the rest fixed. We begin by describing
how to infer the optimal set of variables λr→p(yr;x) that are related to a region and its
parents in the graphical model.

Lemma 2 Blended inference: Consider the program given in Theorem 1. For a given
region r, the optimal inference parameters λ∗r→p(yr;x), for every p ∈ P (r), yr ∈ Yr, x ∈ S,
when fixing all other λ takes the following form:

µp→r(yr;x) = log
( ∑
yp\yr

exp
(
θp(yp;x,w) +

∑
c∈C(p)\r

λc→p(yc;x)−
∑

p′∈P (p)

λp→p′(ŷp;x)
))

λ∗r→p(yr;x) =
θr(yr;x,w) +

∑
c∈C(r) λc→r(yc;x) +

∑
p′∈P (r) µp′→r(yr;x)

1 + |P (r)|
− µp→r(yr;x)

Proof The maximum log-beliefs program in Theorem 1 is smooth, concave and uncon-
strained as a function of λ, therefore the optimum is achieved when the gradient vanishes.
Setting

θr(yr;x,w, λ) = θr(yr;x,w) +
∑
c∈C(r)

λc→r(yc;x)−
∑

p∈P (r)

λr→p(yr;x) (9)

and br(yr|x;w, λ) ∝ exp(θr(yr;x,w, λ)), the gradient with respect to λr→p(yp;x) takes the
form

∂
∑

(x,y),r log br(yr|x;w, λ)

∂λr→p(yr;x)
=
∑
yp\yr

bp(yp|x;w, λ)− br(yr|x;w, λ).

The optimal dual variables are those for which the gradient vanishes, i.e., the corre-
sponding beliefs agree on their marginal probabilities. When setting µp→r(yr;x) as above,
the marginalization of bp(yp|x;w, λ) satisfies∑

yp\yr

bp(ŷp|x;w, λ) ∝ exp
(
µp→r(yr;x) + λr→p(yr;x)

)
.

Therefore, by taking the logarithm, the gradient vanishes whenever the beliefs numerators
agree up to an additive constant:∑
yp\yr

bp(yp|x;w, λ∗)− br(yr|x;w, λ∗) = 0⇐⇒ µp→r(yr;x) + λ∗r→p(yr;x) = θr(ŷr;x,w, λ
∗).

The right hand side of the condition almost characterizes completely the optimal variables
λ∗r→p(yr;x) by λ∗r→p(yr;x) = θr(ŷr;x,w, λ

∗) − µp→r(yr;x). Unfortunately, θr(ŷr;x,w, λ
∗)

depends on
∑

p∈P (r) λ
∗
r→p(yr;x) thus it cannot serve as an update rule in its current form.
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To complete the proof we require to replace
∑

p∈P (r) λ
∗
r→p(yr;x) with another quantity that

does not depend on λ∗r→p(yr;x) for every p ∈ P (r) and yr ∈ Yr.
To isolate this quantity we sum both sides of the equality µp→r(yr;x) + λ∗r→p(yr;x) =

θr(ŷr;x,w, λ
∗) with respect to p ∈ P (r), thus we are able to obtain

(1 + |P (r)|)
∑

p∈P (r)

λ∗r→p(yr;x) = |P (r)|(θr(yr;x,w) +
∑
c∈C(r)

λc→r(yc;x))−
∑

p∈P (r)

µp→r(yr;x)

Plugging it into the above equation results in the desired block dual ascent update rule.

One can verify that since the program is not strictly concave in λ, the optimal solutions can
be achieved for every additive shift of λr→p(yr;x). The above lemma describes an analytic
solution for the optimal λr→p(yr;x), that are computed in the block coordinate steps of the
algorithm. In practice, block coordinate descent with analytic steps provides a significant
speedup over conventional gradient methods and can be parallelized and distributed easily,
as shown by Schwing et al. (2011).

A learning step updates the weights w so as to maximize the log-beliefs. When using
blended inference, the beliefs are not required to agree on their marginal probabilities.
However, they are governed by the concave program in Theorem 1. Its concavity guarantees
that these beliefs agree on their marginals at the optimum.

Lemma 3 Blended learning: Consider the program given in Theorem 1. The gradient
of its objective function with respect to wk takes the form:∑

(x,y)∈S

∑
r∈Rk

( ∑
ŷr∈Yr

br(ŷr|x;w, λ)φk,r(x, ŷr)− φk,r(x, yr)
)

+ Cwk.

Proof We let

log br(yr|x;w, λ) = θr(yr;x,w, λ)− log
(∑

ŷr

exp
(
θr(ŷr;x,w, λ)

))
.

The theorem follows by noting that θr(yr;x,w) =
∑

k∈Kr wkφk,r(x, yr), recalling the defini-
tion of θr(yr;x,w, λ) in Equation (9) and that br(ŷr|x;w, λ) which is defined in Theorem 1

is the gradient of its log-partition function, i.e., log
(∑

ŷr
exp

(
θr(ŷr;x,w, λ)

))
.

The computational complexity of the gradient depends on the structure of the features, es-
pecially the number of regions and their labels. Our framework prefers features with small
regions and reasonable number of labels. Another computational issue relates to the step
size η for increasing the objective along the gradient of wk. In general, the gradient up-
dates verify that the chosen step size η reduces the objective. Theoretically, we can use the
fact that the gradient is Lipschitz continuous to predetermine a step size that guarantees
ascent. In practice it gives worse performance than searching for a step size depending on
the gradient and the objective at any given point.

Lemmas 2 and 3 describe the inference and learning steps for maximizing the log-beliefs
maximization in Theorem 1. Since the program is concave, the order of the maximization
steps is not important, and as long as all inference and learning parameters are optimized
the maximal value is attained. For example, one can maximize the inference variables λ till
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Blending learning and inference

1. Set θr(yr;x,w) =
∑

k∈Kr wkφk,r(x, yr). Repeat until convergence:

2. For every (x, y) ∈ S, r ∈ R, ŷr ∈ Yr, p ∈ P (r):

µp→r(yr;x) = log
( ∑
yp\yr

exp
(
θp(yp;x,w) +

∑
c∈C(p)\r

λc→p(yc;x)−
∑

p′∈P (p)

λp→p′(ŷp;x)
))

λr→p(yr;x) =
θr(yr;x,w) +

∑
c∈C(r) λc→r(yc;x) +

∑
p′∈P (r) µp′→r(yr;x)

1 + |P (r)|
− µp→r(yr;x)

3. Set br(yr|x;w, λ) ∝ exp
(
θr(yr;x,w) +

∑
c∈C(r) λc→r(yc;x)−

∑
p∈P (r) λr→p(yr;x)

)
.

wk ← wk − η
( ∑

(x,y)∈S

∑
r∈Rk

( ∑
ŷr∈Yr

br(ŷr|x;w, λ)φk,r(x, ŷr)− φk,r(x, yr)
)

+ Cwk

)
.

Figure 2: The inference step is described in Lemma 2 and the learning step is described
in Lemma 3. The step size η is set to guarantee convergence (e.g., correspond-
ing to the Lipschitz constant or the Armijo rule.) Concavity of the program in
Theorem 1 ensures that the blending converges to consistent inferred beliefs, see
Theorem 4.

they do not change before optimizing the learning parameters w. We refer to this approach
in Figure 1 as nested inference within learning since it performs the approximate inference
heuristic described in Section 3 as a black-box solver. Nested learning and inference is
computationally unfavorable in general as it requires to infer λ till convergence for every
gradient step for learning w. Since concavity ensures that the maximization does not depend
on the order of the maximizing steps, it also provides a principled way to blend the learning
and inference steps. Particularly, it may learn the w parameters using inferred beliefs
br(yr|x;w, λ) ∝ exp(θr(yr, x, w, λ)) that do not agree on their marginal probabilities. For
this purpose our algorithm infers the parametrized beliefs differently than the (outer) beliefs
that are computed by the nested learning algorithm in Figure 1. This blending property is
important in practice, since shortly upon initialization, where the given parameters w are
far from the optimum, it is not advisable to spend time on computing consistent beliefs.
Figure 2 summarizes the inference-learning blending algorithm.

The block coordinate descent algorithm is guaranteed to converge, as it monotonically
increases the log-beliefs in Theorem 1, which are upper bounded by its dual. Moreover, the
values that are generated by the algorithm converge to the program’s optimal value (see
Theorem 4 for exact statement). It is not immediately clear that the algorithm converges
to its optimal value since the program is not strictly concave. Consequently, the sequence
of variables λr→p(yr;x) generated by the algorithm is not guaranteed to be bounded. As
a trivial example, adding an arbitrary constant to the variables, λr→p(yr;x) + c, does not
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change the objective value, hence the algorithm can generate a monotonically decreasing
unbounded sequences. Convergence to the optimum holds by convex duality:

Theorem 4 The learning-inference blending algorithm in Figure 2 for log-beliefs maximiza-
tion is guaranteed to converge. Moreover, the value of its objective is guaranteed to converge
to the global maximum, and its sequence of beliefs are guaranteed to converge to consistent
beliefs that are the unique solution of the dual program

min
z,br

∑
(x,y)∈S

1

2C
‖z‖2 −

∑
r∈R

H(br)

subject to br(ŷr|x) ≥ 0,
∑
ŷr

br(ŷr|x) = 1, br(ŷr|x) =
∑
ŷp\ŷr

bp(ŷp|x)

zk =
∑

(x,y)∈S

∑
r∈Rk

(∑
ŷr

br(ŷr|x)φk,r(x, ŷr)− φk,r(x, yr)
)

Proof The update rules in Figure 2 iteratively apply the block coordinate ascent rules
in Lemmas 2 and 3 thus monotonically increase the primal objective in Theorem 1. This
program is concave thus it is bounded by its dual program, therefore the value of its objective
is guaranteed to converge. To derive the dual program we construct the Lagrangian

L(w, λ, b) = −C
2
‖w‖2 +

∑
k

wk(
∑

(x,y)∈S,r∈Rk

φk,r(x, yr))

−
∑

(x,y),r

log
(∑

ŷr

exp(θr(ŷr;x) +
∑
c∈C(r)

λc→r(ŷc;x)−
∑

p∈P (r)

λr→p(ŷr;x))
)

+
∑

(x,y),r

∑
ŷr

br(ŷr|x)
(
θr(ŷr;x)−

∑
k

wkφk,r(x, ŷr)
)
.

The variables br(ŷr|x) are the Lagrange multipliers for the equality constraints θr(ŷr;x) =∑
k wkφk,r(x, yk). The dual program takes the form q(b) = maxw,λ L(w, λ, b). Setting zk

as above, since the ‖ · ‖2 is the conjugate dual of ‖ · ‖2, the maximization over w takes
the form maxw{−C

2 ‖w‖
2 −

∑
k wkzk} = 1

2C ‖z‖
2. To complete the derivation of the dual,

the maximization over λ, for every (x, y) takes the form maxλ{
∑

r,ŷr
br(ŷr|x)(θr(ŷr;x) −∑

r log(
∑

ŷr
exp(θr(ŷr;x) +

∑
c∈C(r) λc→r(ŷc;x) −

∑
p∈P (r) λr→p(ŷr;x)))}. This is the con-

jugate dual of the log-partition function, which is known to be the entropy function H(br).
The mixing of the messages between the different regions results in the marginalization
constraints in the dual program. An alternative proof for the conjugate duality between the
re-parametrized log-partitions and entropies subject to marginalization constraints appears
in the more generalized setting of Theorem 5.

Finally, since the dual is strictly convex subject to linear marginalization constraints
and the linear moment constraints the convergence properties are a consequence of Tseng
and Bertsekas (1987).

The convergence of the block coordinate ascent depends on the step size η, which requires
to increase the log-beliefs. This can be done by the Armijo rule, or by using the fact that
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the function z2
k is strongly convex (e.g., Tseng and Bertsekas (1987)) and its gradient is

Lipschitz continuous (e.g., Nesterov (2004)). In practice, Theorem 4 describes how to
measure the convergence of the algorithm. Specifically, it may be derived from the primal
objective value, the dual objective value or the beliefs themselves, as all these quantities
converge. Unfortunately, the variables λ might not converge, but if they do converge, their
convergence point is optimal.

5. Blending learning and loss adjusted inference

Loss adjusted inference emerges from Support Vector Machines (SVMs) where a loss func-
tion indicates preferences between different labels. In the following we consider nonnegative
loss functions `r(yr, ŷr) ≥ 0 over subsets of variables, while `r(yr, yr) = 0. We suggest to
augment our learned beliefs with loss adjusted probability models. Given a training example
(x, y), we define the loss adjusted belief model to be

br(ŷr|x;w, λ) ∝ exp
(
`r(yr, ŷr) + θr(ŷr;x,w, λ)

)
.

Note that these beliefs should be conditioned over x as well as the vector `r(·, yr). However,
to simplify the notation, we leave this conditioning implicit. The intuition for using the loss
as a prior and for deriving loss adjusted beliefs is based on encouraging to learn parameters
that decrease probabilities over labels with higher loss with respect to the training labels.
The likelihood approach aims at maximizing the beliefs br(yr|x;w, λ). Since the beliefs are
probability distributions, it equivalently aims at minimizing the log-beliefs of all other as-
signments, namely, br(ŷr|x;w, λ) for every ŷr 6= yr. Since the loss `r(yr, ŷr) is a nonnegative
function it implies that loss-adjusted maximum-likelihood learns parameters that better
reduce scores of non-observed training labels, namely θr(ŷr;x,w, λ) for any ŷr 6= yr. The
algorithms for maximizing loss adjusted beliefs models follow the derivations presented in
Section 4, while replacing θr(ŷr;x,w, λ) with θr(ŷr;x,w, λ) + `r(ŷr, yr). Letting z = (x, y)
we introduce θr(ŷr; z, w, λ) = θr(ŷr;x,w, λ) + `r(ŷr, yr).

The norm-product approach for inference may use counting numbers cr to control the
peakedness of the beliefs, namely

br(ŷr|x;w, λ, c) ∝ exp
(
(θr(ŷr;x,w, λ) + `r(ŷr, yr))/cr

)
. (10)

As cr → 0 this distribution approaches a zero-one probably around the most likely structure,
i.e., the desired loss adjusted prediction. Thus the following program blends learning with
loss adjusted inference, as well as structured predictions (cf. Meshi et al. (2010)):

Theorem 5 Consider the loss adjusted beliefs given in Equation (10) and their maximum
likelihood concave program:

max
w,λ

∑
z∈S

∑
r∈R

cr · log br(yr|x;w, λ, c)− C

2
‖w‖2.

Set θ̂r(yr; z, w) = θr(yr;x,w)+`r(yr, ŷr). Then, blending the following loss adjusted learning
and inference update rules is guaranteed to converge to the programs optimal value for any
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cr > 0.

µp→r(yr;x) = cp log
( ∑
yp\yr

exp
(
(θ̂p(yp; z, w) +

∑
c∈C(p)\r

λc→p(yc;x)−
∑

p′∈P (p)

λp→p′(ŷp;x))/cp
))

λr→p(yr;x) =
cr

(
θ̂r(yr; z, w) +

∑
c∈C(r) λc→r(yc;x) +

∑
p′∈P (r) µp′→r(yr;x)

)
cr +

∑
p∈P (r) cp

− µp→r(yr;x)

wk ← wk − η
( ∑

(x,y)∈S

∑
r∈Rk

( ∑
ŷr∈Yr

br(ŷr|x;w, λ, c)φk,r(x, ŷr)− φk,r(x, yr)
)

+ Cwk

)
.

Moreover, the beliefs converge to consistent beliefs that are the unique solution of the dual
program

max
br,u

∑
(x,y),r

(
crH(br) +

∑
ŷr

br(ŷr|x)`r(yr, ŷr)
)
− 1

2C
‖u‖2,

subject to uk =
∑

(x,y),r

(∑
ŷr
br(ŷr|x)φk,r(x, ŷr)−φk,r(x, yr)

)
, br(ŷr|x) ≥ 0,

∑
ŷr
br(ŷr|x) =

1 and br(ŷr|x) =
∑

ŷp\ŷr bp(ŷp|x).

Proof The update rule for w follows from Lemma 3 and the update rule for λ follows
from Lemma 2. Since the program is unconstrained, the optimal λ is attained when
the gradient vanishes, or equivalently

∑
yp\yr bp(yp|x;w, λ) = br(yr|x;w, λ), while br(·)

are the reparametrized beliefs. When setting µp→r(yr;x) as above, the marginalization
of bp(yp|x;w, λ) satisfy

∑
yp\yr bp(ŷp|x;w, λ) ∝ exp

(
(µp→r(yr;x) + λr→p(yr;x))/cp

)
. There-

fore, by taking the logarithm, the gradient vanishes whenever the beliefs numerators agree

µp→r(yr;x) + λr→p(yr;x)

cp
=
θr(yr; z, w) +

∑
c∈C(r) λc→r(yc;x)−

∑
p∈P (r) λr→p(yr;x)

cr

Multiplying both sides by crcp and summing both sides with respect to p′ ∈ P (r) we are
able to isolate

∑
p′∈P (r) λr→p′(yr;x). Plugin it into the above equation results in the desired

inference update rule, i.e., λr→p(yr;x) for which the partial derivatives vanish.

To prove the duality theorem we show that the primal program is the dual of its dual pro-
gram using its Lagrangian. For every r, ŷr, p ∈ P (r) we introduce the Lagrange multipliers
λr→p(ŷr;x) for the marginalization constraints br(ŷr|x) =

∑
ŷp\ŷr bp(ŷp|x). We also intro-

duce the Lagrange multipliers wk for the constraints uk =
∑

(x,y),r

(∑
ŷr
br(ŷr|x)φk,r(x, ŷr)−

φk,r(x, yr)
)
. We let ∆r refer to the probability simplex constraining the beliefs br(ŷr|x).

Then the primal program takes the form p(λ,w) = maxbr∈∆r,u L(b, u, λ, w) which decom-
poses to

∑
z,r cr maxbr∈∆r{H(br) +

∑
ŷr
br(yr|x)(`r(yr, ŷr) + θr(ŷr;x,w, λ))/cr} + w>d +

maxu{w>u− 1
2C ‖u‖

2}, where dk are the empirical moments dk =
∑

(x,y),r φk,r(x, yr). Thus
the primal is the sum of conjugate dual functions. The primal is then derived since the
log-partition function is the conjugate dual of the entropy function and the conjugate
dual of 1

2C ‖u‖
2 is C

2 ‖w‖
2. The form in the theorem is obtained since `r(yr, yr) = 0 and∑

r

∑
p∈P (r) λr→p(yr;x) −

∑
r

∑
c∈C(r) λc→r(yc;x) ≡ 0. Finally, the convergence properties

are a consequence of Tseng and Bertsekas (1987) similarly to Theorem 4.
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Figure 3: The top row shows three indoor scenes from the layout dataset (Hedau et al.,
2009). Orientation maps (Lee et al., 2009) and geometric context (Hoiem et al.,
2007) features for the respective images are illustrated in the center and bottom
row respectively.

Note that the log-beliefs are balanced by cr, to compensate for their exponent peaked-
ness. This balancing makes the objective well defined at cr = 0 as the limit of cr → 0.
In this case the program is non-smooth and one needs to consider the sub gradient in the
form of max-beliefs. However, this setting was already developed, although in the different
context of structured-SVMs using dual losses, and we refer the interested reader to Meshi
et al. (2010) for more details.

6. Experiments

The effectiveness of the discussed framework was recently illustrated by employing this
algorithm as the learning engine for various computer vision tasks: scene understanding
(Yao et al. (2012); Lin et al. (2013)), shape reconstruction (Salzmann and Urtasun (2012))
indoor scene understanding (Schwing et al. (2012a); Schwing and Urtasun (2012)), depth
estimation (Yamaguchi et al. (2012)), flow estimation (Yamaguchi et al. (2013)) and visual-
language understanding (Fidler et al. (2013)). The code is publicly available on http://

www.alexander-schwing.de/projectsGeneralStructuredPredictionLatentVariables.

php.
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Figure 4: Ray parameterization of the layout given detected vanishing points. A state of a
discretized variable yi gives rise to a particular ray ri originating from a detected
vanishing point. Four rays are sufficient to define a room layout, i.e., the location
of the walls.

In the following we demonstrate the various properties of blending learning and inference.
For this purpose we elaborate more carefully on a 3D scene understanding application
(Schwing et al., 2012a) evaluated on the well known layout dataset (Hedau et al., 2009)
containing 314 indoor images. Given a single image similar to the ones illustrated in the
top row of Figure 3, we aim at estimating the location of the left, front and right walls as well
as ceiling and floor. Formulating this task as a pixelwise semantic segmentation application
permits a large number of configurations that are physically not plausible. We therefore
constrain the space of configurations by parametrizing the application using three dominant
vanishing points as illustrated in Figure 4. The random variables y1, . . . , y4 correspond to
discretized angles of rays, each one originating from a detected vanishing point. Such
a parametrization in terms of rays permits only physically plausible configurations and
assumes the world to be Manhattan like, i.e., the observed room is aligned according to the
three dominant directions.

To obtain the dominant directions we employ the vanishing point detector of Hedau
et al. (2009). Due to the involved randomness it failed in our case on 9 training images
and was successful on all 105 test set instances. For image x and a given layout hypothesis
y = (y1, . . . , y4) we compute a 55-dimensional feature vector φ(x, y) which is constructed
based on geometric context (Hoiem et al., 2007) and orientation maps (Lee et al., 2009)
illustrated in the middle and bottom row of Figure 3 respectively.

More specifically, for each of the five hypothesized wall areas (note that the back wall is
never observed) obtained from projecting the predicted layout y into the image, we count
how frequently geometric context estimates the five different wall labels plus an additional
clutter label within each hypothesized wall. This gives rise to a 5 · 6 = 30 dimensional
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Figure 5: Left: Test set percentage pixel error on the layout data set Hedau et al. (2009).
Right: Test set pixel classification error in % on the bedroom data set of Hedau
et al. (2010).

feature vector. Similarly for orientation map evidence we count how many of the five
possible labels fell onto each of the five hypothesized wall areas, resulting in a 5 · 5 = 25
dimensional vector. Combining both image evidences we hence obtain a feature vector φ
having a total of K = 55 entries, each being represented by a graphical model having nodes
Rk, k ∈ {1, . . . ,K}.

Note that a vanilla implementation of these color counting features results in potentials
of order four for the front wall, and of order three for all other walls. High-order potentials
increase the complexity of learning and inference, therefore, the exact decomposition of
those high-order potentials into pairwise terms using ‘integral geometry’ Schwing et al.
(2012a) is important for tractability.

In our experiments we learn and infer with the same counting numbers. For example,
when we learn log-beliefs by setting the counting numbers to 1, we also infer with log-beliefs
at test time, namely setting the counting numbers to 1. Figure 5 demonstrates the tradeoffs
of learning with various counting numbers. This experiment also compares to blending of
structured-SVMs of Meshi et al. (2010) when setting the counting numbers to 0.

In Figure 6 we illustrate the optimized cost function, i.e., the surrogate training loss
over wall clock time. We observe that our discussed blended learning approach (‘Ours’)
converges quickly, i.e., in less than 50 seconds, to a zero primal dual gap. In contrast it
takes the standard learning approach (‘Standard 20’), which performs 20 message passing
iterations, more than 600 seconds to converge to the same solution. Hence blended learning
is more than 10 times faster on this example. Next we investigate whether a standard
message passing approach with 20 iterations is overly pessimistic for this dataset. To this
end we use 10 message passing iterations and refer to the obtained result as ‘Standard 10.’
Investigating Figure 6 more carefully we observe that 10 message passing iterations are
not sufficient to close the duality gap, i.e., the approach does never converge to the same
solution.

These plots validate our theoretical results. However, often we are interested in the
resulting test set error. Therefore we compare learning which uses the proposed blending
approach with the standard technique using the test set performance in Figure 7. More
specifically, in Figure 7(a) we illustrate the test set performance of blending with all count-
ing numbers equal to one (‘Blending (1)’) and compare it to the test set performance of
blending with all counting numbers equal to zero (‘Blending (0)’) derived by Meshi et al.
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Figure 6: Primal surrogate loss (dashed) and its dual (solid) over wall clock time measured
in seconds for blended learning, the standard approach with 10 iterations, and
the standard approach with 20 iterations.

(2010), the test set performance of convex learning with 20 message passing iterations with
both counting numbers equal to zero (cf. Meshi et al. (2010)) and one, i.e., ‘Standard 20 (0)’
and ‘Standard 20 (1)’ respectively. We observe that the test set accuracy drops significantly
faster which is expected since we are able to update the parameter vector more frequently.
Similar to the aforementioned surrogate training loss result we observe a performance im-
provement of more than one order of magnitude, i.e., we obtain accurate test set results
more than 10 times faster.

In a next experiment we evaluate the importance of the loss function. The results are
illustrated in Figure 7(b). We observe the loss to be important for the case where the
counting numbers equal zero. We are able to obtain a performance similar to loss-included
setting if the counting numbers are equal to one. However algorithms which do not use a
loss function while having counting numbers equal to zero got stuck prematurely and are
hence not even visible in Figure 7(b), where the scale was adjusted to fit the other plots.

Next we observe the behavior if we reduce the number of iterations for standard learning
from 20 down to 2. Recall, from the surrogate training loss results that the primal-dual
gap will not reach zero in this setting. The test set errors are illustrated in Figure 7(c). We
observe that the standard method is approaching the blending technique. This indicates
that a primal-dual gap is not necessarily important for good generalization performance.

In Figure 7(d) we illustrate that blending offers a wide range of possibilities. Indeed, we
are not restricted to performing only a single message passing iteration before updating the
parameter vector. Rather any arbitrary scheduling is possible. As illustrated in the results
we observe slightly faster convergence when updating the messages twice as frequently as the
parameter vector, i.e., we perform two rounds of message passing updates before updating
the parameters of the model. This is expected since the distribution is more accurate while
message passing updates are quick in this setup. We refer the interested reader to (Schwing
et al., 2012a) for additional results exploring counting numbers other than zero and one.
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Figure 7: A comparison of the test set error over training time for different parameter set-
tings. In (a) we compare standard learning with blended learning when including
a loss function. In (b) we provide the comparison when not using a loss function.
Note that using MAP estimation without loss got stuck at a high error. The re-
sults in (c) demonstrate the effects when reducing the iterations of the standard
learning method, while (d) illustrates the flexibility offered by blending where we
use two message passing iterations before updating the parameters.

7. Conclusion and Discussion

In this paper we describe the objective function for nested learning and inference in CRFs,
for which approximate inference algorithms are used as a sub-procedure. The devised ob-
jective maximizes the log-beliefs — probability distributions over subsets of variables that
agree on their marginal probabilities. This objective is concave and consists of two types
of variables that are related to the learning and inference tasks respectively. Therefore, we
are able to blend the learning and inference procedures and effectively get to the optimum
much faster than nested learning and inference approach, which uses inference algorithms
as black-box solvers. We show the computational advantage for using blended algorithms
over nested ones. We also provide an efficient C++ implementation with a Matlab wrapper.
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This work extends Hazan and Urtasun (2010) while simplifying its theoretical and practical
concepts. Specifically, we introduce the learning program as maximizing log-beliefs, explain
the relations between nested and blended learning-inference and derives a blending algo-
rithm for general graphs. This work is extended to latent variables (Schwing et al. (2012b))
and deep learning (Chen∗ et al. (2015); Schwing and Urtasun (2015)). The effectiveness of
the discussed framework was recently illustrated by employing this algorithm as the learn-
ing engine for various computer vision tasks: 2D scene understanding (Yao et al. (2012)),
3D scene understanding (Lin et al. (2013)), shape reconstruction (Salzmann and Urtasun
(2012)) indoor scene understanding (Schwing et al. (2012a); Schwing and Urtasun (2012)),
depth estimation (Yamaguchi et al. (2012)), flow estimation (Yamaguchi et al. (2013)) and
visual-language understanding (Fidler et al. (2013)). We believe it is interesting to show
in the future if this algorithm provides state-of-the-art performance in domains other than
computer vision, or whether the statistics in computer vision are used by this approach in
a special manner.

The computational complexity of our algorithm depends on norm-products over the
labels of regions. Therefore, efficient techniques over large regions in inference can be
applied as sub-procedure in our algorithm, e.g., Kohli et al. (2009); Batra et al. (2010);
Tarlow et al. (2010, 2011); Tarlow and Zemel (2012).

In our framework, we can enforce the moment matching constraints through general
concave functions. These function translate to a regularization in the primal. For compu-
tational efficiency we choose the square function but we did not investigate the different
moment matching and regularization functions. Moreover, we enforce the marginalization
constraints through indicator functions, in order to obtain closed-form solution in the pri-
mal block coordinate descent. However, we have shown that using the penalty method we
can enforce the marginalization constraints with different convex functions. Further ex-
plorations of structured prediction with squared penalties appears in work by Meshi et al.
(2015). We leave the affect of general convex functions on moment matching and regu-
larization, as well as marginalization constraints and efficient message-passing to future
research.

Interestingly, our approach confirms that the parameters of graph based structured
predictors can be efficiently learned in many real-life problems. This validates the intuition
behind the theoretical results of Wainwright et al. (2003); Wainwright (2006) which asserts
that whenever learning and inference occur together one can use pseudo moment matching
for learning the parameters. This concept was put forward in the general framework of
learning to reason by Khardon and Roth (1997) and we leave for future research to find
different frameworks which have similar learning-prediction robustness.

8. Extensions: regularizations and the penalty method

Duality theory turned out to be very effective in machine learning as it provides a principled
way to decompose the different ingredients of the primal objective through its Lagrange
multipliers. The dual decomposition in turn provides the means to efficiently estimate the
different ingredients while maintaining their consistency using the dual objective.

When dealing with convex programs one usually needs to consider the set of primal
feasible solutions while constructing the dual function. We find it simpler to describe
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the primal program using extended real-valued convex functions, which are functions that
can take on the value of infinity. By using extended real-valued functions we can ignore
their domains, i.e., points for which a function attains the value other than infinity, thus
simplifying the derivations. The dual programs of extended real valued convex functions
g(µ) are conveniently formulated in terms of their conjugate dual

g∗(z) = max
µ

{
µ>z − g(µ)

}
.

Throughout this work we use the following duality theorem, known as the Fenchel duality
(cf. Fenchel (1951); Rockafellar (1970); Bertsekas et al. (2003)):

Theorem 6 Let f(·), h1(·), h2(·) be extended real-valued, continuous and convex functions.
The following are primal and dual programs:

min
λ,w

∑
(x,y)∈S,r∈R

f
(
θr(·;x,w, λ) + `r(·, yr)

)
+
∑
k

h1(wk) +
∑

(x,y),r,ŷr,p∈P (r)

h2(λr→p(ŷr;x))

max
br

∑
(x,y)∈S,r∈R

(
− f∗(br) +

∑
ŷr

br(ŷr|x)`r(yr, ŷr)
)

−
∑
k

h∗1

( ∑
(x,y),r

(∑
ŷr

br(ŷr)φk,r(x, ŷr)− φk,r(x, yr)
))

−
∑

(x,y),r,ŷr,p

h∗2

( ∑
ŷp\ŷr

bp(ŷp|x)− br(ŷr|x)
)

Proof The proof goes along the lines of Theorem 5. The dual program takes the form∑
(x,y)∈S,r∈R

(
− f∗(br) +

∑
ŷr

br(ŷr|x)`r(yr, ŷr)
)
−
∑
k

h∗1(uk)−
∑

(x,y),r,ŷr,p

h∗2(δr→p(ŷr;x))

s.t. uk =
∑

(x,y),r

(∑
ŷr

br(ŷr|z)φk,r(x, ŷr)− φk,r(x, yr)
)

δr→p(ŷr;x) =
∑
ŷp\ŷr

bp(ŷp|x)− br(ŷr|x)

Constructing its Lagrangian with the Lagrange multipliers wk, λr→p(ŷr;x), we obtain the
primal program p(w, λ) = maxb,u,d L(br, λ, w) which decomposes to

∑
(x,y),r maxbr{−f∗(br)+∑

ŷr
br(yr|x)(`r(yr, ŷr)+θr(ŷr;x,w, λ))}+

∑
(x,y),r,ŷr,p

maxδ{δr→p(ŷr)λr→p(ŷr)−h∗2(δr→p(ŷr))}+
w>e +

∑
k maxuk{wkuk − h∗1(uk)}, where ek =

∑
(x,y),r φk,r(x, yr). The result then follows

since the conjugate dual of f∗(), h∗1(), h∗2() are f(), h1(), h2() respectively.

The above formulation describes a dual program with a selection rule f∗(·), a penalty
function for learning moment matchings h∗1(·) and a penalty function h∗2(·) for fitting the
marginalization constraints. Although these penalty functions are conceptually different
— h∗1(·) relates to learning the parameters w and h∗2(·) relates to inferring the marginal
probabilities — they have the same variational interpretation.
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The primal program translates the dual penalty functions h∗1(·), h∗2(·) to regularization
functions h1(·), h2(·). Whenever the primal functions are smooth we can use the chain rule
to derive the primal program gradients:

∂

∂wk
:

∑
(x,y)∈S

∑
r∈R

(∑
ŷr

∂f(θr(·; z, w, λ))

∂θr(ŷr; z, w, λ)
φk,r(x, ŷr)− φk,r(x, yr)

)
+∇hk(wk)

∂

∂λr→p(ŷr;x)
:
∑
ŷp\ŷr

∂f(θp(·; z, w, λ))

∂θp(ŷp; z, w, λ)
− ∂f(θr(·; z, w, λ))

∂θr(ŷr; z, w, λ)
+∇h2(λr→p(ŷr;x))

The above generalizes the learning-inference blending algorithm for general functions
f(·) and regularizations h1(·), h2(·). The power of setting f(·) to be the log-partition func-
tion is that its derivatives are beliefs therefore we obtain an intuitive probabilistic interpre-
tations. The parameters derivatives result in moment matching constraints∑

(x,y)∈S

∑
r∈R

(∑
ŷr

∂f(θr(·; z, w, λ))

∂θr(ŷr; z, w, λ)
φk,r(x, ŷr)− φk,r(x, yr)

)
.

The re-parametrization derivatives with respect to the messages λr→p(yr;x) are then marginal-
ization constraints ∑

ŷp\ŷr

∂f(θp(·; z, w, λ))

∂θp(ŷp; z, w, λ)
− ∂f(θr(·; z, w, λ))

∂θr(ŷr; z, w, λ)

Moreover, whenever h2(·) ≡ 0, we are able to derive closed-form update rules.
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