583 research outputs found

    Understanding user experience of mobile video: Framework, measurement, and optimization

    Get PDF
    Since users have become the focus of product/service design in last decade, the term User eXperience (UX) has been frequently used in the field of Human-Computer-Interaction (HCI). Research on UX facilitates a better understanding of the various aspects of the user’s interaction with the product or service. Mobile video, as a new and promising service and research field, has attracted great attention. Due to the significance of UX in the success of mobile video (Jordan, 2002), many researchers have centered on this area, examining users’ expectations, motivations, requirements, and usage context. As a result, many influencing factors have been explored (Buchinger, Kriglstein, Brandt & Hlavacs, 2011; Buchinger, Kriglstein & Hlavacs, 2009). However, a general framework for specific mobile video service is lacking for structuring such a great number of factors. To measure user experience of multimedia services such as mobile video, quality of experience (QoE) has recently become a prominent concept. In contrast to the traditionally used concept quality of service (QoS), QoE not only involves objectively measuring the delivered service but also takes into account user’s needs and desires when using the service, emphasizing the user’s overall acceptability on the service. Many QoE metrics are able to estimate the user perceived quality or acceptability of mobile video, but may be not enough accurate for the overall UX prediction due to the complexity of UX. Only a few frameworks of QoE have addressed more aspects of UX for mobile multimedia applications but need be transformed into practical measures. The challenge of optimizing UX remains adaptations to the resource constrains (e.g., network conditions, mobile device capabilities, and heterogeneous usage contexts) as well as meeting complicated user requirements (e.g., usage purposes and personal preferences). In this chapter, we investigate the existing important UX frameworks, compare their similarities and discuss some important features that fit in the mobile video service. Based on the previous research, we propose a simple UX framework for mobile video application by mapping a variety of influencing factors of UX upon a typical mobile video delivery system. Each component and its factors are explored with comprehensive literature reviews. The proposed framework may benefit in user-centred design of mobile video through taking a complete consideration of UX influences and in improvement of mobile videoservice quality by adjusting the values of certain factors to produce a positive user experience. It may also facilitate relative research in the way of locating important issues to study, clarifying research scopes, and setting up proper study procedures. We then review a great deal of research on UX measurement, including QoE metrics and QoE frameworks of mobile multimedia. Finally, we discuss how to achieve an optimal quality of user experience by focusing on the issues of various aspects of UX of mobile video. In the conclusion, we suggest some open issues for future study

    Video Quality Assessment

    Get PDF

    Standardized toolchain and model development for video quality assessment: the mission of the joint effort group in VQEG

    Get PDF
    International audienceSince 1997, the Video Quality Experts Group (VQEG) has been active in the field of subjective and objective video quality assessment. The group has validated competitive quality metrics throughout several projects. Each of these projects requires mandatory actions such as creating a testplan and obtaining databases consisting of degraded video sequences with corresponding subjective quality ratings. Recently, VQEG started a new open initiative, the Joint Effort Group (JEG), for encouraging joint collaboration on all mandatory actions needed to validate video quality metrics. Within the JEG, effort is made to advance the field of both subjective and objective video quality measurement by providing proper software tools and subjective databases to the community. One of the subprojects of the JEG is the joint development of a hybrid H.264/AVC objective quality metric. In this paper, we introduce the JEG and provide an overview of the different ongoing activities within this newly started group

    HDR or SDR? A Subjective and Objective Study of Scaled and Compressed Videos

    Full text link
    We conducted a large-scale study of human perceptual quality judgments of High Dynamic Range (HDR) and Standard Dynamic Range (SDR) videos subjected to scaling and compression levels and viewed on three different display devices. HDR videos are able to present wider color gamuts, better contrasts, and brighter whites and darker blacks than SDR videos. While conventional expectations are that HDR quality is better than SDR quality, we have found subject preference of HDR versus SDR depends heavily on the display device, as well as on resolution scaling and bitrate. To study this question, we collected more than 23,000 quality ratings from 67 volunteers who watched 356 videos on OLED, QLED, and LCD televisions. Since it is of interest to be able to measure the quality of videos under these scenarios, e.g. to inform decisions regarding scaling, compression, and SDR vs HDR, we tested several well-known full-reference and no-reference video quality models on the new database. Towards advancing progress on this problem, we also developed a novel no-reference model called HDRPatchMAX, that uses both classical and bit-depth sensitive distortion statistics more accurately than existing metrics

    Video Quality Assessment in Underwater Acoustic Networks

    Get PDF
    Fecha de Lectura de Tesis Doctoral: 23 de mayo de 2018.Las imágenes subacuáticas reciben una atención cada vez mayor por parte de la comunidad científica dado que las fotografías y los vídeos son herramientas de gran valor en el estudio del entorno oceánico que cubre el 90% de la biosfera de nuestro planeta. Sin embargo, las Redes de Sensores Submarinas deben enfrentarse al canal hostil que el agua de mar constituye. Las comunicaciones de medio rango son sólo posibles con modems acústicos de capacidades muy limitadas con tasas binarias de pico de unas decenas de kbps. En transmisión de vídeo, estas reducidas tasas binarias fuerzan una compresión elevada que produce niveles de distorsión mucho mayores que en otros entornos. Además, los usuarios de vídeo submarino son oceanógrafos u otros especialistas con una percepción de la calidad diferente a la de un grupo genérico de usuarios. Las peculiaridades descritas exigen un estudio dedicado de la evaluación de calidad de vídeo para redes submarinas. Esta tesis doctoral aborda el problema de la evaluación de calidad de vídeo y presenta contribuciones en las dos áreas principales de esta disciplina: evaluación subjetiva y evaluación objetiva. La referencia para la percepción de calidad en cualquier servicio es la opinión de los usuarios y, por tanto, un análisis de la calidad subjetiva es el primer paso en este trabajo. Se presentan el diseño experimental y los resultados de un test de acuerdo a métodos psicométricos estándares. Los participantes del test fueron científicos del océano y las secuencias de vídeo utilizadas fueron grabadas en campañas de exploración y procesadas para simular las condiciones de las comunicaciones submarinas. Los resultados experimentales muestran como los vídeos son útiles para tareas científicas incluso en condiciones de muy baja tasa binaria. Los métodos de evaluación de la calidad objetiva son algoritmos diseñados para calcular puntuaciones de calidad

    Perceptual Quality Assessment of Omnidirectional Audio-visual Signals

    Full text link
    Omnidirectional videos (ODVs) play an increasingly important role in the application fields of medical, education, advertising, tourism, etc. Assessing the quality of ODVs is significant for service-providers to improve the user's Quality of Experience (QoE). However, most existing quality assessment studies for ODVs only focus on the visual distortions of videos, while ignoring that the overall QoE also depends on the accompanying audio signals. In this paper, we first establish a large-scale audio-visual quality assessment dataset for omnidirectional videos, which includes 375 distorted omnidirectional audio-visual (A/V) sequences generated from 15 high-quality pristine omnidirectional A/V contents, and the corresponding perceptual audio-visual quality scores. Then, we design three baseline methods for full-reference omnidirectional audio-visual quality assessment (OAVQA), which combine existing state-of-the-art single-mode audio and video QA models via multimodal fusion strategies. We validate the effectiveness of the A/V multimodal fusion method for OAVQA on our dataset, which provides a new benchmark for omnidirectional QoE evaluation. Our dataset is available at https://github.com/iamazxl/OAVQA.Comment: 12 pages, 5 figures, to be published in CICAI202
    • …
    corecore