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Perceptual Quality Assessment of Real-World Images

and Videos

Publication No.

Phani Deepti Ghadiyaram, Ph.D.

The University of Texas at Austin, 2017

Supervisor: Alan C. Bovik

The development of online social-media venues and rapid advances in tech-

nology by camera and mobile device manufacturers have led to the creation and

consumption of a seemingly limitless supply of visual content. However, a vast ma-

jority of these digital images and videos are often afflicted with annoying artifacts

during acquisition, subsequent storage, and transmission over the network. All these

factors impact the quality of the visual media as perceived by a human observer,

thereby compromising their quality of experience (QoE).

This dissertation focuses on constructing datasets that are representative

of real-world image and video distortions as well as on designing algorithms that

accurately predict the perceptual quality of images and videos. The primary goal

ix



of this research is to design and demonstrate automatic image and continuous-

time video quality predictors that can effectively tackle the widely diverse authentic

spatial, temporal, and network-induced distortions – contrary to all present-day

algorithms that operate on single, synthetic visual distortions and predict a single

overall quality score for a given video.

I introduce an image quality database which contains a large number of

images captured using a representative variety of modern mobile devices and afflicted

with a widely diverse authentic image distortions. I will also describe the design

of an online crowdsourcing system which aided a very large-scale image quality

assessment subjective study. This data collection facilitated the design of a new

image quality predictor that is founded on the principles of natural scene statistics

of images in different color spaces and transform domains. This new quality method

is capable of assessing the quality of images with complex mixtures of distortions

and yields high correlation with human perception.

Pertaining to videos, this dissertation describes a video quality database

created to understand the impact of network-induced distortions on an end user’s

quality of experience. I present the details of a large-scale subjective study that

I conducted to gather continuous-time ground truth QoE scores on a collection of

180 videos afflicted with diverse stalling events. I also present my analysis of the

temporal variations in the perceived QoE due to the time-varying video quality and

present insights on the impact of relevant human cognitive aspects such as long-

term and short-term memory and recency on quality perception. Next, I present a

continuous-time objective QoE predicting model that effectively captures the com-

plex interactions between the aforementioned human cognitive elements, spatial and

temporal distortions, properties of stalling events, and models the state of any given

client-side network buffer. I also show how the proposed framework can be extended

by further supplementing with any number of additional inputs (or by eliminating

x



any ineffective ones), based on the information available at the content providers

during the design of adaptive stream-switching algorithms. This QoE predictor

supports future research in the design of quality-aware stream-switching algorithms

which could control the position, location, and length of stalls, given a network

bandwidth budget and the end user’s device information, such that the end user’s

QoE is maximized.
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Chapter 1

Introduction

1.1 Perceptual Visual Quality Assessment

We live in a world obsessed with taking pictures, and recording and streaming videos.

Visual media is increasingly pervasive everywhere; entertainment, social networks,

and news reports are all available at the touch of a button, and the online film

industry and social media websites supply the populace with an almost bottomless

supply of visual content. The Internet offers many venues such as Instagram, Face-

book, YouTube, Vimeo, and Vine for publishing pictures and videos that reflect

the individualized creativity of the increasingly knowledgeable consumer base. Such

ubiquitousness of visual media has led to rapid, synergistic advances in technol-

ogy by camera and mobile device manufacturers, allowing consumers to efficiently

capture, share, and store high-resolution pictures and videos.

The fundamental problem I address in this dissertation is to effectively pre-

dict the perceptual quality of pictures and videos. The word “quality” is touted

as a measure of excellence, but there are several distinct connotations to it in the

image and video processing literature. For instance, “perceptual quality” refers to

the subjective quality of a visual stimuli as perceived by a human observer. By
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(a) The Image/Video Channel

(b) Amatuer camera users (c) Varied camera devices

(e) Network congestion(d) Ambient lighting conditions

Figure 1.1: Examples of sources of image and video distortions. To design robust
quality predictors, the algorithms must tackle an extraordinary amount of variation
introduced in the visual content by these different distortion sources.

contrast, “aesthetic quality” refers to the appreciation of beauty and possibly the

artistic quality of the visual stimuli. In this dissertation, however, I exclusively deal

with perceptual image and video quality. In this first chapter, I will discuss the

factors that affect visual quality, motivate the need for accurate quality methods,

and overview my contributions towards tackling this challenging problem.

1.1.1 Sources of Visual Distortions

A vast majority of the digital pictures (and videos) are captured by amateur photog-

raphers whose unsure hands and eyes could potentially introduce annoying artifacts

during the capture process. Furthermore, every digital image and video passes

through various stages during its acquisition, storage, and transmission – as illus-
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Figure 1.2: Sample images that illustrate few spatial distortions introduced during
the capture or storage process.

trated in Figure 1.1, and thus could suffer from a wide-variety of spatial, temporal,

and network-induced distortions.

This leads to large numbers of images and videos of unsatisfactory perceptual

quality being captured and stored along with more desirable ones. Pertaining to

over-the-top (OTT) video streaming, network impairments or bandwidth limitations

can cause volatile network conditions, resulting in rebuffering or stalling events and

bitrate fluctuations, which interrupt a video’s playback and cause user annoyance.

Blocking, overexposure, underexposure, ringing, noise, compression, and blur-

ring are some of the examples of commonly-occurring spatial distortions whereas

compression, distortions due to transmission loss, ghosting, smearing, and flickering

are some examples of temporal distortions that typically afflict videos. Figures 1.2

and 1.3 show a sample of typical distortions that afflict visual media.
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Figure 1.3: Sample video frames that illustrate some commonly occurring distortions
(a) MPEG-2 compressed frame (b) H.264 compressed frame (c) IP loss simulated
frame (d) Wireless loss simulated frame.

1.1.2 Advantages and Challenges of Quality Assessment

The increasing demand for visual data necessitates the development of accurate met-

rics that understand and even estimate its quality in light of the evolving standards

and devices. Furthermore, given that the ultimate receiver of any visual media is

the human eye, and that an increasingly knowledgeable base of consumer users are

demanding better quality image and video display services, accounting for an end

user’s quality of experience (QoE) has also become very important. QoE refers to

a viewer’s holistic perception and satisfaction while viewing any visual media. The

presence of poor quality images and videos on any multimedia service impacts a
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viewer’s QoE with that service. With regards to OTT video streaming, network-

induced stalling events can negatively impact a viewer’s satisfaction with content

and network services and could lead to user attrition for those services.

Efficiently predicting the perceptual quality of images and videos and QoE

has several important advantages [12]. They can assist in identifying and eliminating

poor quality pictures and videos that are captured and stored along with good

quality videos and pictures on any digital device. They can also assist the design

of automatic image and video enhancement algorithms by identifying the type and

severity of the potential distortions afflicting the image, thereby guiding the choice of

the appropriate enhancement techniques. These algorithms can be adapted to design

perceptually optimized digital cameras and lenses which can potentially maximize

the quality of the pictures (videos) during their capture. QoE prediction models

can control and monitor the quality of streaming video content and assist in the

reduction of network operational costs by encouraging the design and deployment

of efficient “quality-aware” network solutions. Such strategies could help ensure that

end users have a satisfactory quality of experience (QoE).

However, both perceptual visual quality and an end user’s quality of experi-

ence are highly subjective in nature and are the result of a combined effect produced

by factors such as diverse distortions, visual content, an individual’s sensitivity to

distortions, aesthetics, visual foveation, and so on. More importantly, how the vi-

sual brain plausibly perceives the affect of simultaneously-occurring distortions in a

picture (or a video) and effectively carries out various recognition tasks nevertheless

is not well-understood. Therefore, designing a quality predictor that accounts for all

these subjective factors but still correlates well with human opinion scores is highly

challenging.
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1.2 Thesis Overview

1.2.1 Concepts in Quality Assessment

Given that the ultimate receivers of most images and videos are humans, the only

reliable way to understand and predict the effect of distortions on a typical person’s

viewing experience is to capture opinions from a large sample of human subjects,

which is termed subjective visual quality assessment. These subjective studies are

vital for understanding human perception of visual quality and aid in gathering

authentic data. Subjective quality is measured by displaying images or videos to

human observers. The subject then indicates a quality score on a numerical or qual-

itative scale. To account for human variability and to assert statistical confidence,

multiple subjects are required to view each image/video, and a Mean Opinion Score

(MOS) is computed. While subjective quality assessment is the only completely

reliable method, these studies are cumbersome, expensive, given the tremendous

surge in the volume of visual media content across the Internet. Nevertheless, the

data gathered from the subjective studies is crucial for designing, evaluating, and

benchmarking objective quality models to measure their degree of consistency with

subjective human evaluations.

An objective full-reference quality assessment algorithm assumes that a pris-

tine signal is available to it, thus allowing a full comparison between pristine and

distorted signals. Requiring the reference signal is favorable for explicitly interpret-

ing the fidelity of the distorted signal by measuring the mutual information of the

two signals. However, the availability of a pristine signal along with its distorted

version is impractical in many real-world scenarios, which poses serious limitations

on the applicability of full-reference quality assessment models to several practical

applications and analysis. No-reference (NR) or blind QA techniques lie on the

other end of this spectrum of information availability as they are not based on any

additional information except for the distorted signal whose quality needs to be
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ascertained. Blind quality assessment is certainly the most challenging as well as

the most interesting problem with a potential for being integrated into various real-

world applications. In this dissertation, I focus exclusively on no-reference quality

predictors for images and videos.

A large number of image and video quality assessment databases have been

designed in the past decade. These legacy image and video quality databases have

played an important role in advancing the field of quality prediction. Existing bench-

mark databases have been designed to contain a small set of high quality real-world

photographs (or videos), each corrupted by only one of a few synthetically introduced

distortions, e.g., images corrupted by simulated camera sensor noise, Gaussian blur,

or H.264/MPEG-2 compressed videos. Current top-performing IQA/VQA models

are designed, trained, and evaluated based only on the statistical perturbations ob-

served on such ‘singly’ distorted datasets. This might result in quality prediction

models that inadvertently assume that every image/video has a single distortion

that most objective viewers could agree upon.

However, the unsure eyes and hands of most amateur photographers fre-

quently lead to occurrences of annoying visual artifacts, which are usually mixtures

of several possible distortions. The unrepresentativeness of the legacy benchmark

databases challenges the robustness, scalability, and applicability of the current qual-

ity assessment models in several user-centric visual media applications. It is thus

desirable to design challenging databases containing a large number of authentically

distorted images and videos of different quality “types,” mixtures, and distortion

severities, and a wide variety of visual content. It is also crucial to design efficient

no-reference quality prediction algorithms that have better prediction capability on

real-world image and video distortions.
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1.2.2 Contributions

This dissertation is divided into two major topics. The first deals with no-reference

image quality assessment for authentically distorted pictures, while the second topic

is about predicting an end user’s quality of experience in streaming videos under

constrained network environments. In both these scenarios, I describe my approach

on attacking the difficult problem of objective quality assessment from the ground

up and summarize my contributions below:

No-Reference Image Quality Assessment

1. A distortion-representative Image Database: I will first describe a chal-

lenging blind image quality database that I created that contains images that

were captured using numerous individual mobile devices, including tablets and

smart-phones on real scenes in the U.S and Korea. Each picture was collected

without artificially introducing any distortions beyond those occurring during

capture, processing, and storage by a user’s device. These images are affected

by unknown mixtures of single or more commonly occurring multiple inter-

acting authentic distortions of diverse severities. I will introduce the content

and characteristics of the new LIVE In the Wild Image Quality Challenge

Database, which contains 1162 authentically distorted images captured from

many diverse mobile devices in Chapter 3.

2. Crowdsourcing Framework for Subjective Quality Assessment: With

an aim to gather very rich human data on the aforementioned authentic pic-

ture collection, I designed and implemented an extensive online subjective

study by leveraging Amazon’s crowdsourcing system, the Mechanical Turk.

This substantial effort helped in gathering over 350, 000 human opinion scores

from more than 8, 100 unique subjects, making it the world’s largest, most

comprehensive study of perceptual image quality ever conducted. I will de-
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scribe the design and infrastructure of this online crowdsourcing system and

how it was used to conduct a very large-scale, multi-month image quality as-

sessment subjective study, wherein a wide range of diverse observers recorded

their judgments of image quality in Chapter 3.

3. Objective, Automatic Image Quality Prediction: A significant prag-

matic contribution that I make is a potent new blind image quality assessment

model called Feature maps based Referenceless Image QUality Evaluation

Engine (FRIQUEE), which more accurately predicts the perceptual qual-

ity of authentically distorted images than state-of-the-art NR IQA models.

FRIQUEE is based on the principles of natural scene statistics of images (more

in Chapter 2). FRIQUEE combines a larger and more diverse collection of per-

ceptually relevant statistical features across multiple transform domains and

color spaces, that is able to generalize over many different authentic distortion

types, mixtures, and severities. These features avoid assumptions about the

type of distortion(s) contained in an image and focus instead on capturing

consistencies, or departures therefrom, of the statistics of real world images.

I will also present the prediction performance of FRIQUEE along with cur-

rent top-performing image quality predictors on six different image quality

databases in Chapter 4.

No-Reference, Continuous-time Video QoE Prediction

Given the increasing demand for over-the-top (OTT) video content, my overarching

goal was to thoroughly study and understand the influence of the effect of several

quality-degrading factors caused due to volatile network conditions on quality of

experience (QoE) and design generalizable QoE models for mobile videos. Below, I

summarize my efforts towards realizing this goal:
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1. A video collection modeling playback interruptions: I designed a new

mobile video database that accurately represents the diverse stalling events

and startup delays typically encountered while streaming videos. The database

contains 180 distorted videos that were generated by simulating 26 unique

stalling events and startup delays on 24 high-quality reference videos. These

26 stall patterns varied in the position, frequency, and length of video stalling

events. A large-scale subjective study was conducted on these videos, hence

each video has an associated per-frame continuous-time as well as an overall

QoE subjective score. I will describe the way I simulated the diverse stalling

events to create a corpus of distorted videos and the details of the human

study in Chapter 5. I will also present the outcomes of my comprehensive

analysis of the impact of several factors that influence subjective quality of

experience (QoE) in Chapter 5.

2. A Continuous-Time Video QoE Predictor With a goal to assist the

design of “quality-aware” stream-switching algorithms, I developed a model

that can accurately predict viewers’ instantaneous subjective QoE for stream-

ing video in the wild under volatile network conditions. This model, called

the Time-Varying QoE (TV-QoE) Indexer, accounts for the interactions be-

tween stalling events, analyzes the spatial and temporal content of a video,

predicts the perceptual video quality, models the state of the client-side net-

work buffer, and consequently predicts continuous-time quality scores that

agree quite well with human opinion scores. TV-QoE also embeds the impact

of relevant human cognitive factors, such as memory and recency, and their

complex interactions with the video content being viewed. I present the details

of this very simple and easily extensible quality predictor in Chapter 6.

I conclude this dissertation with a discussion of avenues for future work.

Throughout my dissertation, I provide extensive evaluation on challenging
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image and video datasets and also compare with many state-of-the-art meth-

ods and other baselines, thereby validating the strengths of the proposed al-

gorithms. The outcomes across several different experiments show that the

proposed quality prediction algorithms significantly outperform all prior IQA

and QoE models and are of great pragmatic value.
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Chapter 2

Background and Prior Work

In this chapter, I first discuss the fundamentals of human visual system and provide

some background on visual neuroscience in Section 2.1.1. I then proceed to intro-

duce the remarkable statistical regularities observed in natural images and videos

and their relation to the design of objective quality assessment models. I organize

my discussion of previous work on image and video quality assessment into four

main subtopics: approaches for constructing image quality databases (Section 2.2),

objective quality assessment models (Section 2.3), approaches for designing video

databases that reflect constrained network environments (Section 2.4), and tech-

niques for predicting temporal quality of streaming videos. Throughout, I identify

the unaddressed issues in the existing approaches and propose my solutions to the

same. I also draw comparisons and differences between the existing approaches and

this work.
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2.1 Human Visual Processing and Natural Scene Statis-

tics

2.1.1 Human Visual System (HVS)

The human visual system (HVS) processes all of the information incident upon an

eye and renders it into an efficient form amenable for the human brain to conduct

high-level cognitive tasks. Substantial strides have been made towards understand-

ing and modeling low-level visual processing in the human visual system [13] (Figure

2.1). As light from the outside world falls onto the retina of a human eye, multiple

photoreceptors contained in the retina produce local responses to the visual signal.

First, the bipolar cells near the surface of the retina relay the gradient potentials

from the photoreceptors to the ganglion cells. There is considerable evidence that

local center-surround excitatory-inhibitory processes occur at the receptive fields of

the ganglion cells, thus providing a bandpass response to the input luminance (Fig.

2.2). These ganglion cells are interconnected and together, they compute a retinal

contrast signal that can simply be approximated as

A(x, t) =
f(x, t)− f(x, t)

f(x, t)
(2.1)

This spatial contrast signal is directed to the Lateral Geniculate Nucleus

(LGN) (depicted in Fig. 2.1). LGN decomposes these two center-surround contrast

response signals from each retina, and is primarily responsible for the temporal

decorrelation of the responses using a set of difference of temporal gamma filters.

This operation yields a set of lagged and unlagged temporal responses. Thus, the

retina decorrelates the spatial signal while the LGN decorrelates the retinal signal

temporally. These four response signals provide a simple and complete “dictionary”

necessary to describe the visual input signal [14] for later parts of the visual path-

way. Even though the model assumes separability and linearity, it closely predicts
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Figure 2.1: The big picture of the visual pathway. The ganglion cells in the retina
spatially decorrelate the incoming visual input, and the cells in the Lateral Genicu-
late Nucleus (LGN) temporally decorrelate the resulting spatial signal. This spatio-
temporally decorrelated signal is transmitted to area V1 for further processing. After
V1, the two streams split to perform two main categories of processing (popularly
known as the what and where pathways) in the Human Visual System.

On-center, Off-surround Off-center, On-surround

Figure 2.2: Depiction of On-center and Off-center excitatory-inhibitory responses of
ganglion cells in the retina.

the behavior observed in human visual system, thus reinforcing the “efficient cod-

ing” hypothesis, which we describe later in Section 2.1.2. A bridge connecting

LGN to V1 transmits these four response signals to the simple and complex cells in

V1. The simple cells in area V1 can be modeled as collectively providing a large

bank of quadrature pairs of log-gabor type responses. Complex cells can be simply

modeled as adding the local half-square rectified responses of simple cells, and fur-

ther normalizing them. The collective output of complex cells mimics a filter-bank

of log-gabor filters tuned for various spatio-temporal orientations of visual stimuli

across scales.

After area V1, the flow of information along the visual pathway is often
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Figure 2.3: Illustration of a few sparse spatial codes derived on natural image data.
These codes strongly resemble the receptive field profiles (2D impulses responses) of
2D simple cells in primary visual cortex Figure reproduced from [10] with permission.

broadly modeled as being split into ventral and dorsal streams. The ventral stream

(“What Pathway”) mostly follows the pathway from V1 to the temporal lobe via

V2 and V4, and corresponds to object recognition and shape representation. The

dorsal stream (“Where Pathway”) follows the pathway from V1 to MT via V2 and

corresponds to motion computation of object locations and trajectories including

the control of eyes and arms.

Much has been understood about the functionalities of many neurons in

the human visual system, however a lot remains unknown [15]. However, it is

clear that the spatial-visual signal is decomposed over multiple orientations and

scales/frequency bands in area V1 [16]. A number of low-level image processing and

computer vision algorithms are based on this model [17, 18, 19, 20, 21, 22].
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Figure 2.4: A natural undistorted image (shown in the upper left) when processed by
applying the debiasing and normalization produces a decorrelated NLC map (shown
in upper right). The histogram of the intensity values of the NLC map (middle right)
follows a Gaussian distribution. The scatter plots (lower row) contrast the highly
correlated natural image and the nearly decorrelated NLC map.

2.1.2 Natural Scene Statistics (NSS)

The development of human visual system is strongly dependent on early visual

stimulation and the statistics of the surrounding visual environment. Although sta-

tistically analyzing the image environment could lead to a deeper understanding of

human visual processing, there is no way to collect enough data to fully characterize

the same.
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Figure 2.5: (Left) The residual when the Difference of Gaussian filter is applied on
a natural image shown in Fig. 2.4 (a). (Middle) The histogram of the DoG resid-
ual. (Right) The debiased and normalized residual also closely follows a Gaussian
distribution.

Nevertheless, the statistics of real-world natural images, generally referred

to as Natural Scene Statistics (NSS), have been deeply studied for the past sev-

eral years. NSS models are based on the principled observation that good quality

real-world photographic images exhibit certain perceptually relevant statistical reg-

ularities. Despite the tremendous diversity of natural images in terms of content

and capture processes, these statistical regularities are remarkably consistent. For

instance, the amplitude spectra of the spatial Fourier transforms of natural im-

ages obey an approximate reciprocal law [23, 24]. This is a statistically self-similar

phenomenon and is invariant to the scale of the natural images.

Another powerful statistical regularity is founded on the thesis that the firings

of sensory neurons along the visual pathways carry efficient representations of the
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visual information. Olshausen and Field [10] thus conjectured that natural images

also have such an efficient and sparse representation that can be exploited by the

visual system. The ‘sparse codes’ derived from natural images provide minimal

reconstruction error while preserving information. They strongly resemble Gabor

filters, or the receptive field profiles of 2D simple cells in primary visual cortex.

Another analysis showed that the principal and independent spatial (and spatio-

temporal) components of natural time-varying images strongly resemble the simple

cell responses in the visual cortex [25, 26].

Another particularly useful statistical regularity of natural images surfaces

when subjected to a spatial linear bandpass filter such as a Difference of Gaussian

(DoG) or a predictive coding filter. This filter attenuates the low spatial frequencies

(such as smoothly varying content in the image) and the resulting filtered responses

can be reliably modeled using a Gaussian probability distribution [11].

For example, given an image’s intensity map I of size M × N , a divisive

normalization operation [11] yields a normalized luminance coefficients (NLC) map:

NLC(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + 1
, (2.2)

where

µ(i, j) =
3∑

k=−3

3∑
l=−3

wk,lIk,l(i, j) (2.3)

and

σ(i, j) =

√√√√ 3∑
k=−3

3∑
l=−3

wk,l [Ik,l(i, j)− µ(i, j)]2, (2.4)

where i ∈ 1, 2..M, j ∈ 1, 2..N are spatial indices and w is a 2D circularly-symmetric

Gaussian weighting function. This debiasing and divisive normalization process

mimics the normalization operation performed by complex cells.

Similarly, a good filter to model the center-surround excitatory-inhibitory
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processes that occur at various stages of visual processing (as described earlier in

Sec. 2.1.1) is the 2D difference of isotropic Gaussian filters (DoG):

DoG =
1√
2π

(
1

σ1
e
−(x2+y2)

2σ2
1 − 1

σ2
e
−(x2+y2)

2σ2
2

)
, (2.5)

where σ2 = 1.5σ1.

Figure 2.4 depicts a pristine natural image, its NLC map, their correspond-

ing histograms of intensity values along with the scatter plots of horizontally adja-

cent pixels. The white noise like scatter plot of the NLC map of I is indicative of the

decorrelation of the pixels which contrasts from the near linear correlation between

the plot of I. As illustrated in Fig. 2.5 the empirical probability density function of

I ′′(x, y) (obtained from applying DoG on I) of natural images also closely follow a

Gaussian-like distribution.

Applying divisive normalization using the neighboring coefficient energies in

a wavelet or other bandpass transform domain yields a similar result of reduction

of statistical dependencies and Gaussianization of the data. Divisive normalization

or contrast-gain-control [27] accounts for specific measured nonlinear interactions

between neighboring neurons. It models the response of a neuron as governed by the

responses of a pool of neurons surrounding it. Further, divisive normalization models

partially account for contrast masking [28] – when a signal reduces or eliminates the

visibility of another signal, typically of similar frequency, orientation, motion, color,

or other attribute.

I will revisit the concepts of natural scene statistics and divisive normalization

and present their significance and relevance to the design of accurate perceptual

quality prediction models in Section 2.3 and also in Chapter 4. In the following

section, I describe the current approaches of designing image quality assessment

databases.
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2.2 Benchmark Image Quality Databases

2.2.1 Image content

As mentioned in Section 1.2.1, subjective quality assessment is the only reliable way

to truly understand the impact of distortions on an end user’s quality of experience.

Several subjective studies have been conducted in the past decade which has led to

the design of a large number of quality assessment models (Figure 2.6). Most of

the top-performing IQA models (full, reduced, and no-reference) [29] [30] [31] [32]

[33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] have been designed

and extensively evaluated on two popular benchmark databases: the LIVE IQA

Database [3] which was designed in 2005 and the TID2008 Database [48], designed

and released in 2008. The LIVE IQA Database, one of the first comprehensive

IQA databases, consists of 779 images, much larger than the small databases that

existed at the time of its introduction [49] [50] [51]. This legacy database contains 29

pristine reference images and models five distortion types - jp2k, jpeg, Gaussian blur,

white noise, and fast fading noise [3]. The TID2008 Database is larger, consisting

of 25 reference and 1700 distorted images over 17 distortion categories. TID2013

[5] is a recently introduced image quality database with an end goal to include the

peculiarities of color distortions in addition to the 17 simulated spatial distortions

included in TID2008. It consists of 3000 images and includes seven new types of

distortions, thus modeling a total of 24 distortions. More details on the categories

and severities of image distortions contained in these database can be found in [3]

[48] [5]. Aside from these three databases, there exist a few other smaller databases

[6] [52] all modeling single, synthetic distortions.
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Figure 2.6: A few popular legacy Image Quality Assessment Databases designed in
the past decade.

Limitations - Inauthentic Distortions:

The aforementioned legacy IQA databases, have been designed to contain images

corrupted by only one of a few synthetically introduced distortions. Specifically, all

of these databases have been developed beginning with a small set of high-quality

pristine images (29 distinct image contents in [3] and 25 in [48] [5]), which are

subsequently distorted. The distortions are introduced in a controlled manner by

the database architects (Figure 2.7) and these distortion databases have three key

properties. First, the distortion severities / parameter settings are carefully (but

artificially) selected, typically for psychometric reasons, such as mandating a wide

range of distortions, or dictating an observed degree of perceptual separation be-

tween images distorted by the same process. Second, these distortions are introduced

by computing them from an idealized distortion model. Third, the pristine images

are of very high quality, and are usually distorted by one of several single distortions.

These databases therefore contain images that have been impaired by one of a few

synthetically introduced distortion types, at a level of perceptual distortion chosen

by image quality scientists.
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Figure 2.7: Outline of the standard procedure followed by most legacy image
database originators.

Though the existing legacy image quality databases have played an important

role in advancing the field of image quality prediction and facilitated the study of

the effects of distortion-specific parameters on human perception, I contend that

determining image quality databases such that the distorted images are derived from

a set of high quality source images and by simulating image impairments on them

is much too limiting. In particular, traditional databases fail to account for difficult

mixtures of distortions that are inherently introduced during image acquisition and

subsequent processing and transmission. For instance, consider the images shown in

Fig. 2.8(a) - Fig. 2.8(d). Figure 2.8(d) was captured using a mobile device and can

be observed to be distorted by both low-light noise and compression errors. Figure

2.8(b) and (c) are from the legacy LIVE IQA Database [3] where JPEG compression
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Figure 2.8: (a) A pristine image from the legacy LIVE Image Quality Database [3]
(b) JPEG compression distortion artificially applied to (a). (c) White noise added
to (a). (d) A blurry image also distorted with low-light noise from the new LIVE
In the Wild Image Quality Challenge Database.

and Gaussian blur distortions were synthetically introduced on a pristine image (Fig.

2.8(a)).

Since cameras on mobile devices make it extremely easy to snap images

spontaneously under varied conditions, the complex mixtures of image distortions

that occur are not well-represented by the distorted image content in either of these

legacy image databases. This limitation is especially problematic for blind IQA mod-

els which have great potential to be employed in large-scale user-centric visual media

applications. Designing, training, and evaluating IQA models based only on the sta-

tistical perturbations observed on these restrictive and non-representative datasets

might result in quality prediction models that inadvertently assume that every image
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has a “single” distortion that most objective viewers could agree upon. Although

top-performing algorithms perform exceedingly well on these legacy databases (e.g.,

the median Spearmann correlation of 0.94 on the legacy LIVE IQA Database [3]

reported by BRISQUE [29] and 0.96 reported by Tang et. al in [34]), their perfor-

mance is questionable when tested on naturally distorted images that are normally

captured using mobile devices under highly variable illumination conditions.

In this dissertation, I address this limitation by designing a new image quality

database that models naturally occurring, authentic image distortions. I describe

the content and characteristics of this unique data collection in Chapter 3.

2.2.2 Traditional subjective study methodologies

All of the benchmark image quality assessment databases have human opinion scores

captured from a large sample of human subjects. These human opinion scores in

most of the legacy datasets [3, 48, 5] were collected by conducting subjective stud-

ies in laboratory settings with stringent controls on the experimental environments.

The TID2008 opinion scores were obtained from 838 observers by conducting batches

of large scale subjective studies, whereby a total of 256, 000 comparisons of the vi-

sual quality of distorted images were performed. Although this is a large database,

some of the test methodologies that were adopted do not abide by the ITU recom-

mendations. For instance, the authors followed a swiss competition principle and

presented three images, wherein two of them are the distorted versions of the third

one. A subject was asked to choose one image of superior quality amongst the two

distorted images. I believe that this kind of presentation does not accurately reflect

the experience of viewing and assessing distorted images in the most common (e.g.

mobile) viewing scenarios. Furthermore, in each experiment, a subject would view

and compare 306 instances of the same reference image containing multiple types

and degrees of distortions, introducing the significant possibility of serious hysteresis
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effects that are not accounted for when processing the individual opinion scores.

In pairwise comparison studies, the method for calculating preferential rank-

ing of the data can often dictate the reliability of the results. Certain probabilistic

choice model-based ranking approaches [53, 54, 55] offer sophisticated ways to ac-

curately generate quality rankings of images. However, the opinion scores in the

TID2008 database were obtained by first accumulating the points “won” by each

image. These points are driven by the preferential choices of different observers dur-

ing the comparative study. The mean values of the winning points on each image

were computed in the range [0− 9] and are referred to as mean opinion scores. This

method of gathering opinion scores, which diverges from accepted practice, is in our

view questionable.

The LIVE IQA Database was created by following a single-stimulus method-

ology. Both the reference images as well as their distorted versions were evaluated

by each subject during each session. Thus, quality difference scores which address

user biases were derived for all the distorted images and for all the subjects. The

creators of the LIVE IQA Database used two 21-inch CRT monitors with display

resolutions of 1024 × 768 pixels in a normally lit room, which the subjects viewed

from a viewing distance of 2 - 2.5 screen heights. Although the LIVE test method-

ology and subject rejection method adheres to the ITU recommendations, the test

sessions were designed to present a subject with a set of images, all afflicted by the

same type of distortion (for instance, all the images in a given session consisted of

different degrees of JPEG 2000 distortion) that were artificially added to different

reference images. It is possible that this could have led to over-learning of each

distortion type by the subjects as the study session progressed.
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Limitations with traditional study setups:

As mentioned earlier, the above subjective studies were conducted in a controlled

laboratory environment, where images were displayed on a single device with a fixed

display resolution and which the subjects viewed from a fixed distance, involving

small, non-representative subject samples (typically graduate and undergraduate

university students). Additionally, each subjective study setup has a few shortcom-

ings with regards to the order in which the pictures are presented during the study

as mentioned above.

However, significant advances in technology made by camera and mobile de-

vice manufacturers now allow users to efficiently access visual media over wired and

wireless networks. Thus, the subjective image quality opinions gathered under ar-

tificially controlled settings do not necessarily mirror the picture quality perceived

on widely used portable display devices having varied resolutions. Gathering rep-

resentative subjective opinions by simulating different viewing conditions would be

exceedingly time-consuming, cumbersome, and would require substantial manual

effort.

2.2.3 Online Subjective Studies

The highly variable ambient conditions and the wide array of display devices on

which a user might potentially view images will have a considerable influence on

her perception of picture quality. This greatly motivated my interest in conducting

IQA studies on the Internet, which can allow access to a much larger and more

diverse subject pool while allowing for more flexible study conditions. A few studies

have recently been reported that used web-based image, video, or audio rating plat-

forms [56] [57] [58] [59] [60] [61] [62] [63]. Some of these studies employed pairwise

comparisons followed by ranking techniques [53] [54] [55] to derive quality scores,

while others adopted the single stimulus technique and an absolute category rating
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(ACR) scale. Since performing a complete set of paired comparisons (and ranking)

is time-consuming and monetarily expensive when applied on a large scale, Xu et

al. [64] [65] introduced the HodgeRank on Random Graphs (HRRG) test, where

random sampling methods based on Erdös-Rényi random graphs were used to sam-

ple pairs and the HodgeRank [66] was used to recover the underlying quality scores

from the incomplete and imbalanced set of paired comparisons. More recently, an

active sampling method [67] was proposed that actively constructs a set of queries

consisting of single and pair-wise tests based on the expected information gain pro-

vided by each test with a goal to reduce the number of tests required to achieve a

target accuracy.

However, all of these studies were conducted on small sets of images taken

from publicly available databases of synthetically distorted images [3], mostly to

study the reliability and quality of the opinion scores obtained via the Internet test-

ing methodology. In most cases, the subjective data from these online studies is

publicly unavailable. By contrast, in this dissertation, I present the design of a web-

based crowdsourced subjective study which enabled the collection of high-quality

subjective scores on about 1200 pictures by engaging over 8100 unique subjects.

Furthermore, as I mention in Chapter 3, this image collection as well as the subjec-

tive scores are made publicly available [68].

2.3 No-reference Image Quality Assessment Models

As already mentioned in Section 2.1.2, the statistics of real-world natural1 images,

generally referred to as Natural Scene Statistics (NSS), have been deeply studied for

the past several years [11] [69]. NSS models are based on the principled observation

1Natural images are not necessarily images of natural environments such as trees or skies. Any
natural visible-light image that is captured by an optical camera and is not subjected to artificial
processing on a computer is regarded here as a natural image including photographs of man-made
objects.
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that good quality real-world photographic images exhibit certain perceptually rele-

vant statistical regularities. Despite the tremendous diversity of natural images in

terms of content and capture processes, these statistical regularities are remarkably

consistent. Wainwright et al. [27], building on Ruderman’s work [11], empirically

determined that applying a non-linear divisive normalization operation, similar to

the non-linear behavior of certain cortical neurons, wherein the rectified linear re-

sponses are divided by a weighted sum of rectified neighboring responses, greatly

reduce such observed statistical dependencies. Furthermore, the empirical probabil-

ity distributions of these filtered responses can be reliably modeled using a Gaussian

probability distribution as described in Section 2.1.2. To further illustrate this well-

studied phenomenal regularity, I processed 29 pristine images from the legacy LIVE

IQA Database [3] which vary greatly in their image content and plotted the collective

histogram of the normalized coefficients of all 29 images in Figure 2.9. Specifically,

I concatenated the normalized coefficients of all the images into a single vector and

plotted its histogram.

Most efficient quality assessment algorithms to date are perceptual-based and

are founded on the basis of natural scene statistics (NSS). It has been observed by

vision scientists and image engineers that certain perceptually relevant statistical

laws obeyed by natural scenes are violated by the presence of common distortions.

Pertaining to images, if they are singly distorted, that is, if images contain only one

of the few synthetically introduced distortions, then the natural statistics of such

distorted images make it possible to determine the presence and identify the type of

distortion as well. Effectively quantifying these deviations is crucial for being able

to predict the perceptual quality of that image.
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Figure 2.9: Histogram of normalized luminance coefficients of all 29 pristine im-
ages contained in the legacy LIVE IQA Database [3]. Notice how irrespective of
the wide-variety of image content of the 29 pristine images, their collective normal-
ized coefficients follow a Gaussian distribution (Estimated GGD shape parameter
= 2.15.)

2.3.1 Overview of the Existing Approaches

Perceptual-based Techniques

State-of-the-art NSS-based NR IQA models [29] [30] [31] [32] [35] [33] [70] [71] exploit

the statistical perturbations of these statistics by first extracting image features in

a normalized bandpass space in different transform domains, then learning a kernel

function that maps these features to ground truth subjective quality scores. These

models do not make a priori assumptions on the contained distortion or image

content. Tang et al. [32] proposed an approach combining NSS features along

with texture, blur, and noise statistics. The DIIVINE Index [30] deploys summary

statistics under an NSS wavelet coefficient model. Another model, BLIINDS-II [31]

extracts a small number of NSS features in the DCT domain. BRISQUE [29] trains

an SVR on a small set of spatial NSS features. CORNIA [36], which is not an NSS-
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based model, builds distortion-specific code words to compute image quality. NIQE

[33] is an unsupervised technique driven by spatial NSS-based features, requiring no

exposure to distorted images at all.

Deep Learning based techniques

The authors of [72] use a convolutional neural network (CNN), divide an input image

to be assessed into 32×32 non-overlapping patches, and assign each patch a quality

score equal to its source image’s ground truth score during training. The CNN is

trained on these locally normalized image patches and the associated quality scores.

In the test phase, an average of the predicted quality scores is reported. This data

augmentation and quality assignment strategy could be acceptable in their work

[72] since their model is trained and tested on legacy benchmark datasets containing

single homogeneous distortions [3, 48]. However, real-world pictures suffer from non-

homogeneous, authentic distortions, i.e., they different types of distortions affect

different parts of images with varied severities. Thus, the CNN model and the

quality assignment strategy in the training phase and the predicted score pooling

strategy in the test phase, as used in [72] cannot be directly extended to real-world

images. Similarly, the authors of [34] use a deep belief network (DBN) combined

with a Gaussian process regressor to train a model on quality features proposed in

their earlier work [73]. This model also has not been evaluated on real-world image

distortions.

2.3.2 Limitations of the state-of-the-art IQA models:

All of these models (other than NIQE) were trained on synthetic, and usually singly

distorted images contained in benchmark databases [3] [48]. They are also evalu-

ated on the same data challenging their extensibility on images containing complex

mixtures of authentic distortions such as those found in the real-world pictures that
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(a) (b) (c) (d)

Figure 2.10: (a) A pristine image from the legacy LIVE Image Quality Database [3]
(b) JP2K compression distortion artificially added to (a). (c) White noise added to
(a). (d) A blurry image also distorted with low-light noise from the new LIVE In
the Wild Image Quality Challenge Database [1, 2].

are captured using mobile devices.

Consider the images in Fig. 2.10. These images were transformed by a band-

pass debiasing and divisive normalization operation [11]. This normalization process

reduces spatial dependencies in natural images. The empirical probability density

function (histogram) of the resulting normalized luminance coefficient (NLC) map

of the pristine image in Fig. 2.10(a) is quite Gaussian-like (Fig. 2.11). I deployed a

generalized Gaussian distribution (GGD) model [74] and estimated its parameters

- shape (α) and variance (σ2) (more details in Chapter 4). I found that the value

of α for Fig. 2.10(a) is 2.09, in accordance with the Gaussian model of the his-

togram of its NLC map. It should be noted that the family of generalized Gaussian

distributions include the normal distribution when α = 2 and the Laplacian distri-

bution when α = 1. This property is not specific to Fig 2.10(a), but is generally

characteristic of all natural images (as already described in Section 2.1.2).

The same property is not held by the distorted images shown in Fig. 2.10(b)

and (c). The estimated shape parameter values computed on those images was 1.12

and 3.02 respectively. This deviation from Gaussianity of images containing single

distortions has been observed and established in numerous studies on large compre-

hensive datasets of distorted images, irrespective of the image content. Quantifying
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Figure 2.11: Histogram of normalized luminance coefficients of the images in Figures
2.10(a) - (d). Notice how each single, unmixed distortion affects the statistics in a
characteristic way, but when mixtures of authentic distortions afflict an image, the
histogram resembles that of a pristine image. (Best viewed in color).

these kinds of statistical deviations as learned from databases of annotated dis-

torted images is the underlying principle behind several state-of-the-art objective

blind IQA models [29, 31, 30, 73, 35, 33, 70, 71].

While this sample anecdotal evidence suggests that the statistical deviations

of distorted images may be reliably modeled, consider Fig. 2.10(d), from the new

LIVE In the Wild Image Quality Challenge Database [2]. This image contains an

apparent mixture of blur, sensor noise, illumination, and possibly other distortions,

all nonlinear and difficult to model. Some distortion arises from compositions of

these, which are harder to understand or model. The empirical distribution of its

NLC (Fig. 2.11) also follows a Gaussian-like distribution and the estimated shape
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Figure 2.12: 2D scatter plots of subjective quality scores against estimated shape
parameters (α) obtained by fitting a generalized Gaussian distribution to the his-
tograms of normalized luminance coefficients (NLC) of all the images in (a) the
legacy LIVE Database [3] and (b) the LIVE Challenge Database [1, 2].

parameter value (α) is 2.12, despite the presence of multiple severe and interacting

distortions. As a way of visualizing this problem, I show scatter plots of subjec-

tive quality scores against the α values of the best GGD fits to NLC maps of all

the images (including the pristine images) in the legacy LIVE IQA Database (of

synthetically distorted pictures) [3] in Fig. 2.12(a) and for all the authentically dis-

torted images in the LIVE Challenge Database in Fig. 2.12(b). From Fig. 2.12(a),

it can be seen that most of the images in the LIVE legacy IQA Database that have

high human subjective quality scores (i.e., low Difference of Mean Opinion Scores

(DMOS)) associated with them (including the pristine images) have estimated α

values close to 2.0, while pictures having low quality scores (i.e., high DMOS), take

different α values, thus are statistically distinguishable from high-quality images.

However, Fig. 2.12(b) shows that authentically distorted images from the new
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Figure 2.13: Bar plots illustrating the distribution of the fraction of images from
(Left) the legacy LIVE IQA Database and (Right) the LIVE Challenge Database
belonging to 4 different DMOS and MOS categories respectively. These histograms
demonstrate that the distorted images span the entire quality range in both the
databases.

LIVE Challenge Database may be associated with α values close to 2.0, even on

heavily distorted pictures (i.e., with low Mean Opinion Scores (MOS)). Figure 2.13

plots the distribution of the fraction of all the images in the database that fall into

four discrete MOS and DMOS categories. It should be noted that legacy LIVE IQA

Database provides DMOS scores while the LIVE Challenge Database contains MOS

scores. These histograms show that the distorted images span the entire quality

range in both databases and that there is no noticeable skew of distortion severity

in either databases that could have affected the results in Fig. 2.12 and Fig. 2.14.

Figure 2.14 also illustrates our observation that authentic and inauthentic

distortions affect scene statistics differently. In the case of single inauthentic distor-

tions, it may be observed that pristine and distorted images occupy different regions

of this parameter space. For example, images with lower DMOS (higher quality) are

more separated from the distorted image collection in this parameter space, making

it easier to predict their quality. There is a great degree of overlap in the parameter

space among images belonging to the categories ‘DMOS <= 25’ and ‘DMOS > 25

and <= 50’, while heavily distorted pictures belonging to the other two DMOS
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Figure 2.14: 2D scatter plots of the estimated shape and scale parameters obtained
by fitting a generalized Gaussian distribution to the histograms of normalized lumi-
nance coefficients (NLC) of all the images in (a) the legacy LIVE Database [3] and
(b) the LIVE Challenge Database [1, 2]. Best viewed in color.

categories are separated in the parameter space. On the other hand, all the images

from the LIVE Challenge Database, which contain authentic, often agglomerated

distortions overlap to a great extent in this parameter space despite the wide spread

of their quality distributions.

Although the above visualizations in Figs. 2.12 and 2.14 were performed in

a lower-dimensional space of parameters, it is possible that authentically distorted

images could exhibit better separation if modeled in a higher dimensional space of

perceptually relevant features. It is clear, however that mixtures of authentic dis-

tortions may affect the statistics of images distorted by single, synthetic distortions

quite differently. Figures 2.12 and 2.14 also suggest that although the distortion-

informative image features used in several state-of-the-art IQA models are highly

predictive of the perceived quality of inauthentically distorted images contained in

legacy databases [3, 48], these features are insufficient to produce accurate predic-
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tions of quality on real-world authentically distorted images.

In this dissertation, I address these limitations by capturing other, more

diverse statistical image features that improve the quality prediction power on au-

thentically distorted images. Specifically, in Chapter 4, I present the perceptually

relevant natural scene statistics of authentically distorted images, in different color

spaces and transform domains. I propose a bag of feature-maps approach which

avoids assumptions about the type of distortion(s) contained in an image and fo-

cuses instead on capturing consistencies, or departures therefrom, of the statistics

of real world images and achieves standout performance.

2.4 Stalling Events in Mobile Streaming Videos

In this section, I will frame the setting for quality assessment in the context of

streaming videos. I first provide some background of over-the-top adaptive stream-

ing protocols adapted by a number of media streaming services and motivate the

need for high-quality subjective QoE data and accurate objective predictors.

2.4.1 Quality of Experience and HTTP-based Adaptive Bitrate

Streaming Protocols

Most digital content goes through several stages of processing, which can degrade

quality, before ultimately being delivered to viewers. One of these stages is the

transmission of videos over wired or wireless networks. The limits of network capac-

ities, network fluctuations, and bandwidth limitations can cause volatile network

conditions, that, at the client, can result in rebuffering or stalling events, which

interrupt video playback.

An example of a stalling event in a video is illustrated in Fig. 2.15. Such

network-induced stalling events, along with bitrate fluctuations, can negatively im-

pact a viewer’s degree of satisfaction with the experience of the delivered video
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Figure 2.15: A sample stalled video sequence.

content or of the network service, which can lead to user attrition and even viewer

abandonment.

As mentioned in Chapter 1, Quality of Experience (QoE) refers to a viewer’s

holistic perception and satisfaction with a given content, communication network, or

content-providing service. As a consequence of viewers’ demand for higher-quality

video content, cast against the increasing competition among an expanding crowd of

content and network providers (e.g., Netflix, HBO, T-Mobile, AT&T), accounting for

and improving an end user’s QoE has become an essential goal of content, network,

and cellular services.

Media streaming services, such as YouTube and Netflix, typically leverage

HTTP-based adaptive streaming protocols such as Dynamic Adaptive Streaming

over HTTP (DASH) [75] and HTTP Live Streaming (HLS) [76] to make video de-

livery scalable and adaptable to the available network bandwidth. Under such proto-

cols, videos are typically divided into segments (of fixed duration), where each video

segment is encoded at multiple bitrates and resolutions (also called video levels). A

stream-switching controller designed either at the server-side [77] or the client-side

[78, 79, 80, 81] adaptively predicts (and then requests) an “optimal” video level de-

pending on the requester’s device, network buffer occupancy, network conditions, or

other factors. These algorithms aim to minimize the number of rebuffering events

and bitrate switches as a way to lessen user annoyance.
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The main drawback of these algorithms is that the end user’s perceived QoE

is not being objectively measured (or maximized). Though reducing the number of

stalls and bitrate switches is a reasonable approach to reduce viewer annoyance, it

does not capture a viewer’s holistic perception of quality or guarantee the best QoE.

A user’s perceived QoE is greatly influenced by the complex interplay of video con-

tent, number of rebuffering events, rebuffering lengths, rebuffering locations within

a video, and so on. Therefore, having a fast and accurate objective QoE predictor

that automatically predicts quality scores that correlate well with perceived QoE

can serve as feedback to improve the performance of stream-switching algorithms

(at either the client or the server side).

2.4.2 Subjective Assessment of Viewer’s QoE

A key ingredient towards designing accurate QoE predictors is the availability of

realistic, representative training data, i.e., videos containing stalling events, that are

annotated with human opinion scores. These human opinion scores obtained from

conducting subjective studies help to thoroughly understand the specific factors

regarding video stream quality that effect viewers’ QoE can help researchers better

understand how increases in network video quality affect viewer behavior. This

understanding can lead to design choices that make more efficient use of network

resources. These studies are also critical for designing reliable models for objective

evaluation of QoE that account for stalling events in a way that is consistent with

subjective human evaluation, regardless of video content or the type and strength

of rebuffering.

Video Quality Assessment is a thriving area of research, and a number of

popular, public-domain video quality databases have been designed in the past

decade [82, 83, 84, 85, 86, 87]. The videos in these data collections are about

10–15 seconds long and model different post-capture and in-capture spatial and
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temporal distortions, such as compression, transmission errors, frame freezes, arti-

facts due to exposure and lens limitations, focus distortions, and color aberrations.

Though these databases have undoubtedly guided the development of VQA algo-

rithms [88, 89, 90, 91, 92, 93, 94], they do not model network-induced distortions,

such as start-up delays and stalling events.

A few video quality studies have been conducted in the recent past to analyze

the effects of network streaming quality on QoE [95, 96, 97, 98, 99]. The focus of

these studies has been to investigate the influence of simple factors such as startup

delays and total stall length on an end user’s QoE. Certain general conclusions, e.g.,

that longer start-up delays are more annoying than shorter ones, have been reported

in these studies. However, the datasets and the subjective scores used in these

studies are not publicly available. Other recent studies have focused specifically

on stall, or as they refer to it – pause, features, such as position and duration,

in Transmission Control Protocol (TCP) applications [100, 101, 102]. However,

these works draw very general conclusions about the correlations between pause

features and subjective QoE, and again, none of the source content or subjective

data is publicly available. Recent works have also focused on how HTTP Adaptive

Streaming (HAS), specifically, impacts QoE [103, 104, 105, 106, 107, 105, 106, 107],

but because the goal of HAS is to limit the chance of a stall occurrence, these studies

focus primarily of spatial quality fluctuations.

The authors of the publicly available Waterloo Quality-of-Experience database

[8] combine bitrate variations and stalling events in their videos. However, their stall

patterns are unvaried, as all of the stalls are of fixed duration (5 seconds) and are

added at fixed locations (start and middle) in every video in their collection. Such

fixed distortion patterns do not reflect typical video streaming situations, and may

even bias the subjects to have expectations of subsequent videos after initial view-

ings. Repetitive patterns may also cause even shallow learners to overfit to the data.
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Further, none of these studies attempt to gather continuous-time human judgments

of quality, and they only record overall subjective QoE scores. Real-time QoE mea-

surements are of far more interest, because when streaming video to a client, bitrate

decisions must be made to maximize QoE, so continuous-time video quality must

be balanced against the likelihood of stall events.

The study presented in [9] is similar to this work, as their database was

also designed by taking realistic network bandwidth usage into account. However,

their database is not publicly available in its entirety (only 24 out of 112 videos

are publicly available). While I seek to deeply understand the effect of the complex

interplay of different stall-specific parameters by looking at 26 diverse stall pat-

terns, [9] only considers 8 distortion patterns that combine bitrate variations and

rebuffering events in very specific ways.

Thus, in summary, the methods used in previous studies do not adequately

advance my goals, as they suffer from one or more of the following problems:

1. Small, insignificant sizes of the video collections.

2. Insufficient number of subjective judgments.

3. Unknown video sources with limited variability in content.

4. Lack of public availability of the databases.

5. Lack of fine-grained and continuous-time subjective ratings.

6. Lack of a variety in the distortion severities and patterns that would broadly

reflect the different bandwidth limitations that need to be tackled by video-

streaming services such as Netflix and YouTube.

In this dissertation, I sought to address all of the above shortcomings of the existing

data collections. Moreover, as I will discuss in Chapter 5, every key aspect of the

proposed database construction, such as the choice of reference videos, the design of
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distortion patterns, and the subjective study, were tailored to be as close as possible

to the real world scenario of streaming online videos on mobile devices. Furthermore,

I also present details of a novel subject rejection strategy for continuous-time data

and present my analysis of continuous-time subjective responses.

2.4.3 Automatic QoE Predictors

As mentioned in Section 2.4.1, automatic QoE models have the potential to motivate

the design of solutions that strike a balance between reducing network operational

costs while delivering video with the highest possible quality to customers. Top-

performing video quality predictors [88, 89, 90, 91, 93] that have been developed

in the past decade deal with post-processing distortions but not network-induced

impairments. Although the impact of bitrate fluctuations on viewer QoE can be un-

derstood by employing these VQA models, the impact of stalling events interspersed

with bitrate variations cannot be captured using them, thus creating a demand for

reliable QoE predictors for analyzing streaming videos. A handful of objective QoE

predictors have been designed [108, 109, 98] that derive global video statistics based

on the total stall length and the number of random video stalls. The DQS model

[110] also considers global stall statistics and a linear model to predict a continuous-

time QoE score. Specifically, this model defines three events: start-up delay, first

rebuffering, and multiple rebuffering (explicitly) based on empirical observations on

the final QoE scores of the LIVE Mobile Stall Video Database-I [111]. The under-

lying assumption of the DQS model is that an end user’s QoE is driven by these

predefined events. Different model parameters are chosen for each event that drives

the DQS model’s quality prediction. Specifically, the mean and variance of the opin-

ion scores of videos afflicted only by startup delays, or by a startup delay followed by

a single (or multiple) rebuffering event(s) are computed, and the parameters of the

DQS model are determined. Thus, the generalizability of the DQS model to more
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Figure 2.16: Illustrating the affect of hysteresis on perceived quality of experience.
A video content afflicted with two different stalling patterns (video 1a and 1b) with
equal total stall length time. Stalls in a video are illustrated in red and the video
playback is illustrated in blue. Despite their common attributes, these two videos
will be perceived very differently by a viewer.

diverse stall patterns is questionable. The recently proposed SQI model [8] com-

bines perceptual video presentation quality and simple stalling event-based features

to predict QoE.

Limitations of the existing approaches:

One key limitation of most models is that they are based only on global statistics

and cannot capture the time-varying levels of satisfaction experienced when viewing

streaming videos. Furthermore, QoE also depends on a behavioral hysteresis or

recency “after effect,” whereby a user’s QoE at a particular moment also depends

on their viewing experiences preceding that moment. For example, the memory of

an early unpleasant viewing experience caused by a stalling event may negatively

impact future QoE and, thus, may also negatively impact the overall QoE. A long

initial delay (of length L, for example) at the beginning of a video sequence may more

likely to lead to viewer abandonment, than when viewing the same video content

containing multiple stalls whose total length equals L. Additionally, a stalling event
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occurring towards the end of a video sequence could have a more negative impact

on the final overall perception of video quality, than a stall of the same length

occurring at an earlier position in the same video. This dependency on previous

viewing experiences is generally nonlinear and can be crucial in determining both

the overall as well as the instantaneous QoE of viewers, but this information is not

currently being exploited by contemporary QoE prediction models.

I illustrate the affect of memory on perceived quality in Figure 2.16. Consider

a given video content that is afflicted with two different stalling patterns, such that

the sum of the individual stalls in both the patterns is the same. in both the cases.

It is reasonable to assume that a user is more likely to be annoyed during and

immediately after a stall, but would probably recover from this bad experience after

some period of uninterrupted video playback. Thus, these two video contents will

be perceived very differently by an end user. This behavioral response is not specific

to stalls and has been observed in videos with bitrate specific distortions.

Thus, the memory of the past poor quality is retained in the memory for

some non-negligible amount of time even after the video has returned to acceptable

levels of quality. Clearly such a complex property of our HVS is not effectively

modeled when global features such as the sum of the stall length and their number

is taken into consideration.

In this dissertation, I propose a perceptually-driven objective predictor that

predicts the time-varying QoE by modeling the non-linearities and the hysteresis

properties of the human visual system. As I describe in Chapter 6, I also model

the client-side network buffer state, measure the spatial and temporal video com-

plexity, and the perceptual video quality and effectively combine them to create a

continuous-time QoE predictor.
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Chapter 3

Crowdsourced Study of

Subjective Picture Quality

As mentioned earlier, I approached the problem of blind image quality assessment

on authentically distorted images from the ground up and first constructed a novel

image quality database of real-world distortions. In this chapter, I will introduce

this database and present the details of the subjective study I conducted to obtain

a very large number of human opinion scores. This chapter is organized as follows:

1. First, I introduce the content and characteristics of the new LIVE In the

Wild Image Quality Challenge Database, which contains 1162 authen-

tically distorted images captured from many diverse mobile devices. Each

image was collected without artificially introducing any distortions beyond

those occurring during capture, processing, and storage by a user’s device.

2. Next, I aimed to gather very rich human data and designed and implemented

an extensive online subjective study by leveraging Amazon’s crowdsourcing

system, the Mechanical Turk. I will describe the design and infrastructure of

my online crowdsourcing system and how I used it to conduct a very large-
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scale, multi-month image quality assessment subjective study, wherein a wide

range of diverse observers recorded their judgments of image quality.

3. I also discuss the critical factors that are involved in successfully crowdsourcing

human IQA judgments, such as the overall system design of the online study,

methods for subject validation and rejection, task remuneration, influence of

the subjective study conditions on end users’ assessment of perceptual quality,

and so on.

3.1 LIVE In the Wild Image Quality Challenge Database

As already mentioned in Section 2.2.1, current IQA models have been designed,

trained, and evaluated on benchmark databases such as the LIVE Image Quality

Database [3], the TID databases [48, 5], the CSIQ database [6], and a few other

small databases [52], all of which model single, inauthentic distortions. These image

distortions fixed by a database designer for the purpose of ensuring a statistically

significant set of human responses are not the same as real-world distortions intro-

duced by highly diverse cameras in the hands of real-world users. In my work, I

refer to the latter distorted images obtained as authentically distorted.

Some important characteristics of real-world, authentically distorted images

captured by näıve users of consumer camera devices, is that the pictures obtained

generally cannot be accurately described by a simple generative model, nor as suffer-

ing from single, statistically separable distortions. For example, a picture captured

using a mobile camera under low-light conditions is likely to be under-exposed, in

addition to being afflicted by low-light noise and blur. Subsequent processes of sav-

ing and/or transmitting the picture over a wireless channel, will generally introduce

further compression and transmission artifacts. Further, the characteristics of the

overall distortion “load” of an image will depend on the device used for capture
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and on the camera-handling behavior of the user. Consumer-grade digital cameras

differ widely in their lens configurations, levels of noise sensitivity and acquisition

speed, and in post-acquisition in-camera processing. Camera users differ in their

shot selection preferences, hand steadiness, and situational awareness. Overall, our

understanding of true, authentic image distortions is quite murky. Such complex,

unpredictable, and currently un-modeled mixtures of distortions are characteristic

of real-world pictures that are authentically distorted. There currently isn’t any

known way to categorize, characterize, or model such complex and uncontrolled

distortion mixtures, and it is certainly unreasonable to expect an image quality sci-

entist to be able to excogitate a protocol for creating authentically distorted images

in the laboratory, by synthetically combining controlled, programmed distortions

into what must ultimately be regarded as highly authentically distorted images.

There is a way to create databases of authentically distorted images, which is

by acquiring images taken by many casual camera users. Normally, inexpert camera

users will acquire pictures under highly varied and often suboptimal illuminations

conditions, with unsteady hands, and with unpredictable behavior on the part of

the photographic subjects. Such real-world, authentically distorted images exhibit

a broad spectrum of authentic quality “types,” mixtures, and distortion severities,

that defy attempts at accurate modeling or precise description. Authentic mixtures

of distortions are even more difficult to model when they interact, creating new ag-

glomerated distortions not resembling any of the constituent distortions. A simple

example would be a noisy image that is heavily compressed, where the noise pres-

ence heavily affects the quantization process at high frequencies, yielding hard-to-

describe, visible compressed noise artifacts. Users of mobile cameras will be familiar

with this kind of spatially-varying, hard-to-describe distortion amalgamation.

As mentioned in Section 2.2.1, the lack of content diversity and mixtures of

bonafide distortions in existing, widely-used image quality databases [48, 3] is a con-

46



Figure 3.1: Sample images from the LIVE In the Wild Image Quality Challenge
Database. These images include pictures of faces, people, animals, close-up shots,
wide-angle shots, nature scenes, man-made objects, images with distinct fore-
ground/background configurations, and images without any specific object of in-
terest.

tinuing barrier to the development of better IQA models and prediction algorithms

of the perception of real-world image distortions. To overcome these limitations

and towards creating a holistic resource for designing the next generation of robust,

perceptually-aware image assessment models, I designed and created the LIVE In

the Wild Image Quality Challenge Database, containing images afflicted by

diverse authentic distortion mixtures on a variety of commercial devices. Figure 3.1

presents a few images from this database. The images in the database were captured

using a wide variety of mobile device cameras as shown in Fig. 3.2. The images

include pictures of faces, people, animals, close-up shots, wide-angle shots, nature

scenes, man-made objects, images with distinct foreground/background configura-

tions, and images without any specific object of interest. Some images contain high

luminance and/or color activity, while some are mostly smooth. Since these images
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Figure 3.2: Distribution of different manufacturers of the cameras that were used
to capture a sample of images contained in my database.

are naturally distorted as opposed to being artificially distorted post-acquisition

pristine reference images, they often contain mixtures of multiple distortions creat-

ing an even broader spectrum of perceivable impairments.

3.2 Crowdsourced framework for gathering subjective

scores

With a goal to gather a large number of human opinion scores on the image collection

detailed in Section 3.1, I designed and implemented an online crowdsourcing system

which I used to gather more than 350, 000 human ratings of image quality which

amounts to about 175 ratings on each image in the new LIVE Challenge Database.

In this section, I will briefly describe the details of the online study framework and

the subjective study details.

Crowdsourcing systems like Amazon Mechanical Turk (AMT), Crowd Flower

[112], and so on, have emerged as effective, human-powered platforms that make it

feasible to gather a large number of opinions from a diverse, distributed populace

over the web. On these platforms, “requesters” broadcast their task to a selected

pool of registered “workers” in the form of an open call for data collection. Workers
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who select the task are motivated primarily by the monetary compensation offered

by the requesters and also by the enjoyment they experience through participation.

3.2.1 Instructions, Training, and Testing

The data collection tasks on AMT are packaged as HITs (Human Intelligence Tasks)

by requesters and are presented to workers, who first visit an instructions page which

explains the details of the task. If the worker understands and likes the task, she

needs to click the “Accept HIT” button which then directs her to the actual task

page at the end of which, she clicks a “Submit Results” button for the requester to

capture the data.

Crowdsourcing has been extensively and successfully used on several object

identification tasks [113, 114] to gather segmented objects and their labels. However,

the task of labeling objects is often more clearly defined and fairly straightforward

to perform, by contrast with the more subtle, challenging, and highly subjective

task of gathering opinion scores on the perceived quality of images. The generally

naive level of experience of the workers with respect to understanding the concept

of image quality and their geographical diversity made it important that detailed

instructions be provided to assist them in understanding how to undertake the task

without biasing their perceptual scores. Thus, every unique participating subject on

AMT that selects this HIT was first provided with detailed instructions to help them

assimilate the task. A screenshot of this web page is shown in Fig. 3.3. Specifically,

after defining the objective of the study, a few sample images were presented which

are broadly representative of the kinds of distortions contained in the database, to

help draw the attention of the workers to the study and help them understand the

task at hand. A screenshot of the rating interface was also given on the instructions

page, to better inform the workers of the task and to help them decide if they would

like to proceed with it.
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Figure 3.3: Instructions page shown before the worker accepts the task on AMT.

Ensuring unique participants:

After reading the instructions, if a worker accepted the task, and did so for the first

time, a rating interface was displayed that contains a slider by which opinion scores

could be interactively provided. A screenshot of this interface is also shown in Fig.

3.4. In the event that this worker had already picked this task earlier, I informed the

worker that the study requires unique participants and this worker was not allowed

to proceed beyond the instructions page. Only workers with a confidence value1

greater than 0.75 were allowed to participate. Even with such stringent subject

criteria, I gathered more than 350,000 ratings overall.

Study framework:

I adopted a single stimulus continuous procedure [115] to obtain quality ratings

on images where subjects reported their quality judgments by dragging the slider

located below the image on the rating interface. This continuous rating bar is

divided into five equal portions, which are labeled “bad,” “poor,” “fair,” “good,”

1AMT assigns a confidence score in the range of 0-1 to each worker, based on the accuracy of
their responses across all the HITs they have accepted thus far. The higher this number, the more
trustworthy a worker is.
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Figure 3.4: The rating interface presented to every subject on which they can provide
opinion scores on images.

and “excellent.” After the subject moved the slider to rate an image and pressed

the Next Image button, the position of the slider was converted to an integer quality

score in the range 1 − 100, then the next image was presented. Before the actual

study began, each participant is first presented with 7 images that were selected by

us as being reasonably representative of the approximate range of image qualities

and distortion types that might be encountered. I call this the training phase.

Next, in the testing phase, the subject is presented with 43 images in a random

order where the randomization is different for each subject. This is followed by a

quick survey session which involves the subject answering a few questions. Thus,

each HIT involves rating a total of 50 images and the subject receives a remuneration

of 30 cents for the task. Figure 3.5 illustrates the detailed design of the HIT on IQA

and Fig. 3.6 illustrates how I package the task of rating images as a HIT and
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Figure 3.5: Illustrating the design of the HIT. Once a worker clicked the “Accept
HIT” button and did so for the first time, I directed her to the training phase which
was followed by a test phase. A worker who had already participated once in my
study and attempted to participate again was not allowed to proceed beyond the
instructions page. For the purpose of illustration, I show gold standard and repeated
images in exclusion. In reality, the pool of 43 test images was presented in a random
order.

effectively disperse it online via AMT to gather thousands of human opinion scores.

3.2.2 Subject Reliability and Rejection Strategies

Crowdsourcing has empowered us to efficiently collect large amounts of ratings.

However, it raises interesting issues such as dealing with noisy ratings and address-

ing the reliability of the AMT workers.

Intrinsic metric To gather high quality ratings, only those workers on AMT with

a confidence value greater than 75% were allowed to select my task. Also, in order

to not bias the ratings due to a single worker picking my HIT multiple times, I

imposed a restriction that each worker could select my task no more than once.

Repeated images 5 of each group of 43 test images were randomly presented twice

to each subject in the testing phase. If the difference between the two ratings that a

subject provided to the same image each time it was presented exceeded a threshold

on at least 3 of the 5 images, then that subject was rejected. This served to eliminate

workers that were providing unreliable, “random” scores. Prior to the full-fledged
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Figure 3.6: Illustrating how the system I designed packages the task of rating images
as a HIT and disperses it on Mechanical Turk.

study, I conducted an initial subjective study and obtained ratings from 300 unique

workers. I then computed the average standard deviation of these ratings on all the

images. Rounding this value to the closest integer yielded 20 which I then used as

my threshold for subject rejection.

Gold Standard Data 5 of the remaining 38 test images were drawn from the

LIVE Multiply Distorted Image Quality Database [4] to supply a control. These

images along with their corresponding MOS from that database were treated as a

gold standard. The mean of the Spearman’s rank ordered correlation values com-

puted between the MOS obtained from the workers on the gold standard images

and the corresponding ground truth MOS values from the database was found to

be 0.9851. The mean of the absolute difference between the MOS values obtained

from my crowdsourced study and the ground truth MOS values of the gold standard

images was found to be 4.65. Furthermore, I conducted a paired-sampled t-test and
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observed that this difference between gold standard and crowdsourced MOS values

is not statistically significant. This high degree of agreement between the scores

gathered in a traditional laboratory setting and those gathered via an uncontrolled

online platform with several noise parameters is critical to us. Although the uncon-

trolled test settings of an online subjective study could be perceived as a challenge

to the authenticity of the obtained opinion scores, this high correlation value indi-

cates a high degree of reliability of the scores that are being collected by us using

AMT, reaffirming the efficacy of my approach of gathering opinion scores and the

high quality of the obtained subject data.

3.2.3 Subject-Consistency Analysis

In addition to measuring correlations against the gold standard image data as dis-

cussed above, I further analyzed the subjective scores in the following two ways:

Inter-Subject consistency To evaluate subject consistency, I split the ratings ob-

tained on an image into two disjoint equal sets, and computed two MOS values on

every image, one from each set. When repeated over 25 random splits, an average

Spearman’s rank ordered correlation between the mean opinion scores between the

two sets was found to be 0.9896.

Intra-Subject consistency Evaluating intra-subject reliability is a way to under-

stand the degree of consistency of the ratings provided by individual subjects [116].

I thus measured the Spearman’s rank ordered correlation (SROCC) between the in-

dividual opinion scores and the MOS values of the gold standard images. A median

SROCC of 0.8721 was obtained over all of the subjects.

All of these additional experiments further highlight the high degree of reli-

ability and consistency of the gathered subjective scores and of my test framework.
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3.2.4 Analysis of the Subjective Scores

The database currently comprises of more than 350, 000 ratings obtained from more

than 8, 100 unique subjects (after rejecting unreliable subjects). Enforcing the afore-

mentioned rejection strategies led us to reject 134 participants who had accepted

my HIT. Each image was viewed and rated by an average of 175 unique subjects,

while the minimum and maximum number of ratings obtained per image were 137

and 213, respectively. While computing these statistics, I excluded the 7 images

used in the training phase and the 5 gold standard images as they were viewed and

rated by all of the participating subjects. Workers took a median duration of 4.37

minutes to view and rate all 50 images presented to them. The Mean Opinion Scores

(MOS) after subject rejection was computed for each image by averaging the indi-

vidual opinion scores from multiple workers. MOS is representative of the perceived

viewing experience of each image. The MOS values range between [3.42 − 92.43].

Figure 3.7 is a scatter plot of the MOS computed from the individual scores I have

collected. In order to compare the MOS values with single opinion scores (SOS), I

computed the standard deviation of the subjective scores obtained on every image

and obtained an average standard deviation of 19.2721.

The uncontrolled online test environment poses certain unique challenges:

a test subject of any gender or age may be viewing the image content on any

kind of a display, under any sort of lighting, from an unknown distance, and an

unknown level of concentration, each of which can affect her choice of quality score.

Figures 3.9 (a) and 3.9 (b) illustrate the demographic details of the unique subjects

who have participated in my study2. Most of them reported in the final survey

that they are inexperienced with image quality assessment but do get annoyed by

image impairments they come across on the Internet. Since I did not test the

subjects for vision problems, they were instructed to wear corrective lenses during

2Gathering demographic details of the workers is a common practice on Mechanical Turk. None
of the workers expressed any concerns when providing us with these details.
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Figure 3.7: Scatter plot of the MOS scores obtained on all the images in the database.

the study if they do so in their day-to-day life. Later in the survey, the subjects

were asked if they usually wore corrective lenses and whether they wore the lenses

while participating in the study. The ratings given by those subjects who were not

wearing their corrective lenses they were otherwise supposed to wear were rejected.

Figures 3.9 (c) and 3.9 (d) illustrate the distribution of the distances from which

workers have viewed the images and the broad classes of different display devices

used by them. These four plots illustrate the highly varied testing conditions that

exist during the online study and also highlight the diversity of the subjects. Figure

3.8 (a) illustrates the distribution of the types of consumer image capture devices

that are preferred by the users. It is evident from this plot that most of the workers

reported that they prefer using mobile devices to capture photographs in their daily

use. One of the questions I posed to the subjects in the survey was whether the

poor quality of pictures that they encounter on the Internet bothers them. Subjects

chose between the following four options - “Yes,” “No,” “I don’t really care,” and “I

don’t know.” The distribution of the responses to this question is plotted in Fig.3.8

(b) which clearly indicates that a large population of the workers are bothered by
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Figure 3.8: Illustrating (a) the kind of consumer image capturing devices preferred
by users and (b) their sensitivity to perceived distortions in digital pictures viewed
on the Internet.

poor quality Internet pictures.

I next present my analysis of the influence of several factors such as age, gen-

der, and display devices on user’s perceptual quality. In all cases, I study the effect

of each factor independently while fixing the values of the rest of the factors. I be-

lieve this strategy helped to closely study the influence of each factor independently

and to help avoid combined effects caused by the interplay of several factors on a

user’s perceptual quality. Note that the results presented in the following sections

are consistent irrespective of the specific values that were fixed for the factors.

3.2.5 Gender

To understand to what extent gender had an affect on the quality scores, I sepa-

rately analyzed the ratings obtained from male and female workers on five randomly

chosen images (Figures 3.10(a)-(e)) while maintaining all the other factors constant.

Specifically, I separately captured the opinion scores of male and female subjects

who are between 20−30 years old, and reported in the survey to be using a desktop

and sitting about 15 − 30 inches from the screen. Under this setting and on the
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Figure 3.9: Demographics of the participants (a) gender (b) age (c) approximate dis-
tance between the subject and the viewing screen (d) different categories of display
devices used by the workers to participate in the study.

chosen set of images, both male and female workers appeared to have rated the

images in a similar manner. This is illustrated in Figure 3.11(a).

3.2.6 Age

Next, I considered both male and female workers who reported using a laptop during

the study and were sitting about 15 − 30 inches away from their display screen. I

grouped their individual ratings on these 5 images (Fig. 3.10) according to their

age and computed the MOS of each group and plotted them in Fig 3.11(b). For

the images under consideration, again, subjects belonging to different age categories
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Figure 3.10: A few randomly chosen images from the LIVE In the Wild Image
Quality Challenge Database that are used to illustrate the influence of various pa-
rameters on the QoE of the study participants. The upper caption of each image
gives the image MOS values and the associated 95% confidence intervals.

appeared to have rated them in a similar manner.

Although gender and age did not seem to significantly affect the ratings

gathered on the randomly chosen images discussed above, I believe that other factors

such as the content in the image can play a significant role in being appealing

to one group more than to another. A systematic study focused exclusively on

understanding the interplay of image content, gender, and age using this database

might help better understand the impact of each of these factors on perceptual

quality.
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Figure 3.11: Plots showing the influence of a variety of factors on a user’s perception
of picture quality. The factors are: (a) gender (b) age (c) approximate distance
between the subject and the viewing screen and (d) types of display devices used
by the workers to participate in the study. Plot (e) shows the influence of users’
distortion sensitivity on their quality ratings. The plots detail the range of obtained
MOS values and the associated 95% confidence intervals.

3.2.7 Distance from the Screen

I next explored the influence of the distance between a subject and her monitor,

on the perception of quality. One of the questions in the survey asked the subjects

to report which of the three distance categories best described a subject’s location

relative to the viewing screen - “less than 15 inches,” “between 15 to 30 inches,”

and “greater than 30 inches.”

I gathered the ratings of subjects who reported to be between 30−40 years old
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Figure 3.12: MOS plotted against the number of workers who viewed and rated the
images shown in Fig. 3.10.

and were participating in the study using their desktop computer. I grouped their

ratings3 on the five test images (Fig. 3.10) according to these distance categories and

report the results in Fig. 3.11(c). It may be noticed that the difference between the

mean of the ratings obtained on the same image when viewed from a closer distance

as compared to when the same image was viewed by subjects from a greater distance

is not statistically significant. However, I do not rule out the possible influences that

viewing distance may have on distortion perception from an analysis of 5 random

images. The observed indifference to viewing distance could be due to an interplay

of the resolution of the display devices, image content, and viewing distances which

is a broad topic worthy of future study.

3.2.8 Display Device

To better understand the influence of display devices on QoE, I focused on workers

between 20−30 years old and who reported to be 15−30 inches away from the screen

while participating in the study. I grouped the ratings of these subjects on the five

3I received very few ratings from subjects who reported to be sitting greater than 30 inches away
from their display screen and hence excluded those ratings from this segment of analysis.
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images in Fig. 3.10 according to the display device that the subjects reported to

have used while participating in the study.

As illustrated in Fig. 3.11(d), the influence of the specific display device that

was used for the study appears to have had little effect on the recorded subjective

ratings. Of course, I am not suggesting that the perceptual quality of images is

unaffected by the display devices on which they are viewed. It is possible that more

fine-grained detail regarding the type of display device used by the study participants

(e.g., screen resolution, display technology involved, shape of the screen etc.) could

deepen our understanding of the dependency between display device and perceptual

image quality. However, I chose to focus as much of each participants’ effort on the

visual tasks as reasonable, and so did not poll them on these details, leaving it for

future studies.

3.2.9 Annoyance of Low Image Quality

As mentioned earlier, one of the questions posed to the subjects in the survey was

whether the quality of pictures they encounter on the Internet bothers them (dis-

tribution of the responses in Fig. 3.8 (b)). When I grouped the ratings according

to these three answers, I noticed that the subjects from each of these three re-

sponse categories were almost equally sensitive to the visual distortions present in

the images from my dataset. This is illustrated in Figure 3.11 (e).

Figure 3.12 illustrates how MOS values flatten out with increases in the num-

ber of subjects rating the images. It is interesting to note that there is much more

consistency on images with very high and very low MOS values than on intermediate-

quality images. Of course, the opinion scores of subjects are affected by several

external factors such as the order in which images are presented, a subject’s viewing

conditions, and so on, and the MOS thus exhibit variability with respect to the

number of workers who have rated them.
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Table 3.1: Summary of my analysis of the different QoE influencing factors on the
perception of image distortions.

Influencing factor
Factors that were held

constant
Observation

Gender
Age: 20-30 years, Display device:

Desktop, Distance from the
screen: 15-30 inches

Both male and female workers
appeared to rate images in a

similar manner.

Age

Gender: Both male and female
workers, Display device: Desktop,
Distance from the screen: 15-30

inches

Very little difference was noticed
in the ratings of the subjects of

different age groups.

Subject’s distance
from the display

screen

Gender: Both male and female
workers, Age: 30-40 years, Display

device: Desktop

Little effect on the subjective
ratings.

Display device

Gender: Both male and female
workers, Age: 20-30 years,

Distance from the screen: 15-30
inches.

Little effect on subjective ratings.

Subject’s general
sensitivity to

perceptual quality
None

People who claimed to differ in
their level of annoyance in

response to image distortions
appeared to rate images in a

similar manner.

I summarize all the factors whose influence I studied and presented in this

section (by controlling the other factors) in Table 3.1.

3.2.10 Limitations of the current study

Crowdsourcing is a relatively new tool with considerable potential to help in the

production of highly valuable and generalized subjective databases representative

of human judgments of perceptual quality. However, the approach involves many

complexities and potential pitfalls which could affect the veracity of the subject

results. A good summary and analysis of these concerns may be found in [116].

For example, while I have a high degree of faith in the subject results, it is
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based on a deep analysis of them rather than simply because the participants were

screened to have high AMT confidence values. As mentioned earlier, the confidence

values of the workers computed by AMT is an aggregate that is measured over all

the tasks in which a worker has participated. This metric thus is not necessarily an

indicator of reliability with regards to any specific task and should be accompanied

by rigorous, task-specific subject reliability methods. Future studies would benefit

by a more detailed data collection and analysis of the details of workers’ display

devices [116] and viewing conditions. While the current philosophy, even in labo-

ratory studies, is to not screen the subjects for visual problems, given the newness

of the crowdsourcing modality, it might be argued that visual tests could be used

to improve subject reliability checks. Many other environmental details could be

useful, such as reports of the time spent by a worker in viewing and rating images,

to further measure worker reliability.

Conclusion

The crowdsourcing image quality study allowed diverse subjects to participate at

their convenience, and in diverse, uncontrolled viewing circumstances, enhancing

my ability to investigate the effects of each of these factors on perceived picture

quality. The results of my analysis of the factors affecting data reliability, and my

observations of the high correlations of the objective quality scores against the MOS

values of the gold standard images that were obtained under controlled laboratory

conditions, both strongly support the efficacy of my online crowdsourcing system

for gathering large scale, reliable data.
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Chapter 4

Objective Automatic Quality

Prediction of Images in the

Wild

In this chapter, I will describe the details of a new image quality predictor called

Feature maps based Referenceless Image QUality Evaluation Engine (FRIQUEE).

I designed FRIQUEE with a goal to tackle authentic distortions such as those cap-

tured in LIVE In the Wild Image Quality Challenge Database [117]. There is an

extensive prior work on statistical modeling of normalized coefficients that currently

drives top-performing blind IQA models as detailed in Section 2.3.1. However, as

illustrated in Figures. 2.11 - 2.14 in Section 2.3.2, complex mixtures of authentic

image distortions modify the image statistics in ways not easily predicted by these

models. They exhibit large, hard to predict statistical variations as compared to

synthetically distorted images. Thus, I devised an approach that leverages the idea

that different perceptual image representations may distinguish different aspects of

the loss of perceived image quality. Specifically, given an image, I first construct

several feature maps in multiple color spaces and transform domains, then extract
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individual and collective scene statistics from each of these maps.

I have described the perceptual significance and the operational details of

the divisive normalization operator in Section 2.3. Most of the feature maps I

construct as part of extracting the proposed bag of features are processed using

divisive normalization. Before I describe the types of feature maps that I compute in

this work, I first introduce the general statistical modeling techniques that I employ

to derive and extract features from any given (divisively normalized) feature map.

4.1 Statistical Modeling of Normalized Coefficients

4.1.1 Generalized Gaussian Distributions

My approach builds on the idea exemplified by observations like those depicted in

Fig. 2.11, viz., that the normalized luminance or bandpass/wavelet coefficients of

a given image have characteristic statistical properties that are predictably modi-

fied by the presence of distortions. Effectively quantifying these deviations is cru-

cial to be able to make predictions regarding the perceptual quality of images. A

basic modeling tool that I use throughout is the generalized Gaussian distribution

(GGD), which effectively models a broad spectrum of (singly) distorted image statis-

tics, which are often characterized by changes in the tail behavior of the empirical

coefficient distributions [74]. A GGD with zero mean is given by:

f(x;α, σ2) =
α

2βΓ(1/α)
exp

(
−
(
|x|
β

)α)
, (4.1)

where

β = σ

√
Γ(1/α)

Γ(3/α)
(4.2)
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Figure 4.1: Given any image, the proposed feature maps based model first constructs
channel maps in different color spaces and then constructs several feature maps in
multiple transform domains on each of these channel maps (only a few feature maps
are illustrated here). Parametric scene statistic features are extracted from the
feature maps after performing perceptually significant divisive normalization [11]
on them. The design of each feature map is described in detail in later sections.

and Γ(.) is the gamma function:

Γ(a) =

∫ ∞
0

ta−1e−tdt a > 0. (4.3)

A GGD is characterized by two parameters: the parameter α controls the

‘shape’ of the distribution and σ2 controls its variance. A zero mean distribution

is appropriate for modeling NLC distributions since they are (generally) symmet-

ric. These parameters are commonly estimated using an efficient moment-matching

based approach [74] [29].
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4.1.2 Asymmetric Generalized Gaussian Distribution Model

Additionally, some of the normalized distributions derived from the feature maps are

skewed, and are better modeled as following an asymmetric Generalized Gaussian

distribution (AGGD) [118]. An AGGD with zero mode is given by:

f(x; ν, σ2
l , σ

2
r ) =


ν

(βl+βr)Γ(1/ν)exp
(
−
(
−x
βl

)ν)
x < 0

ν
(βl+βr)Γ(1/ν)exp

(
−
(
x
βr

)ν)
x > 0,

(4.4)

where

βl = σl

√
Γ(1/α)

Γ(3/α)
(4.5)

βr = σr

√
Γ(1/α)

Γ(3/α)
, (4.6)

where η is given by:

η = (βr − βl)
Γ(2/ν)

Γ(1/ν)
. (4.7)

An AGGD is characterized by four parameters: the parameter ν controls

the ‘shape’ of the distribution, η is the mean of the distribution, and σ2
l , σ

2
r are

scale parameters that control the spread on the left and right sides of the mode,

respectively. The AGGD further generalizes the GGD [74] and subsumes it by

allowing for asymmetry in the distribution. The skew of the distribution is a function

of the left and right scale parameters. If σ2
l = σ2

r , then the AGGD reduces to a GGD.

All the parameters of the AGGD may be efficiently estimated using the moment-

matching-based approach proposed in [118].

Although pristine images produce normalized coefficients that reliably follow

a Gaussian distribution, this behavior is altered by the presence of image distortions.

The model parameters, such as the shape and variance of either a GGD or an AGGD

fit to the NLC maps of distorted images aptly capture this non-Gaussianity and

68



hence are extensively utilized in my work. Additionally, sample statistics such as

kurtosis, skewness, and goodness of the GGD fit, have been empirically observed to

also be predictive of perceived image quality and are also considered here. Thus, I

deploy either a GGD or an AGGD to fit the empirical NLC distributions computed

on different feature maps of each image encountered in any given data collection.

Images are naturally multi-scale, and distortions affect image structures

across scales. Existing research on quality assessment has demonstrated that in-

corporating multi-scale information when assessing quality produces QA algorithms

that perform better in terms of correlation with human perception [31, 40]. Hence,

I extract these features from many of the feature maps at two scales - the original

image scale, and at a reduced resolution (low pass filtered and downsampled by a

factor of 2). It is possible that using more scales could be beneficial, but I did not

find this to be the case on this large dataset, hence only report scores using two

scales.

4.2 Feature Maps

My approach to feature map generation is decidedly a “Bag of Features” approach,

as is highly popular in the development of a wide variety of computer vision algo-

rithms that accomplish tasks such as object recognition [119, 120]. However, while

my approach uses a large collection of highly heterogeneous features, as mentioned

earlier, all of them either have a basis in current models of perceptual processing

and/or perceptually relevant models of natural picture statistics, or are defined us-

ing perceptually-plausible parametric or sample statistic features computed on the

empirical probability distributions (histograms) of simple biologically and/or statis-

tically relevant image features.

I also deploy these kinds of features on a diverse variety of color space repre-

sentations. Currently, our understanding of color image distortions is quite limited.
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By using the “Bag of Features” approach on a variety of color representations, I

aim to capture aspects of distortion perception that are possibly distributed over

the different spaces. Figure 4.1 schematically describes some of the feature maps

that are built into my model, while Fig. 4.2 shows the flow of statistical feature

extraction from these feature maps. Further, I will use the images illustrated in

Figure 4.3 (a) - (d) in the below sections to illustrate the proposed feature maps

and the statistical variations that occur in the presence of distortions.

4.2.1 Luminance Feature Maps

Next I describe the feature maps derived from the luminance component of any

image considered.

a. Luminance Map

There is considerable evidence that local center-surround excitatory-inhibitory pro-

cesses occur at several types of retinal neurons [121, 122], thus providing a bandpass

response to the visual signal’s luminance. It is common to also model the local

divisive normalization of these non-oriented bandpass retinal responses, as in [29].

Thus, given an M×N×3 image I in RGB color space, its luminance compo-

nent is first extracted, which I refer to as the Luma map. A normalized luminance

coefficient (NLC) map as defined in Equation (2.2) is then computed on it by apply-

ing a divisive normalization operation on it [11]. A slight variation from the usual

retinal “contrast signal” model is the use of divisive normalization by the standard

deviation (as defined in Equation (2.4)) of the local responses rather than by the

local mean response. The best-fitting GGD model to the empirical distribution of

the NLC map is found [29]. Two parameters, (α, σ2) are estimated and two sample

statistics are computed (kurtosis, skewness) from the empirical distribution over two

scales, yielding a total of 8 features. The features may be regarded as essential NSS
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Figure 4.2: The proposed model processes a variety of perceptually relevant feature
maps by modeling the distribution of their coefficients (divisively normalized in some
cases) using either one of GGD (in real or complex domain), AGGD, or wrapped
Cauchy distribution, and by extracting perceptually relevant statistical features that
are used to train a quality predictor.

features related to classical models of retinal processing.

b. Neighboring Paired Products

The statistical relationships between neighborhood pixels of an NLC map are cap-

tured by computing four product maps that serve as simple estimates of local corre-

lation. These four maps are defined at each coordinate (i, j) by taking the product

of NLC(i, j) with each of its directional neighbors NLC(i, j + 1), NLC(i + 1, j),

NLC(i + 1, j + 1), and NLC(i + 1, j − 1). These maps have been shown to reli-

ably obey an AGGD in the absence of distortion [29]. A total of 24 parameters (4

AGGD parameters per product map and two sample statistics - kurtosis, skewness)

are computed. These features are computed on two scales yielding 48 additional fea-

tures. These features use the same NSS/retinal model to account for local spatial

correlations.
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(a) (b)

(c) (d)

Figure 4.3: (a) A high-quality image and (b) - (d) a few distorted images from the
LIVE Challenge Database [1, 2].

c. Sigma Map

The designers of existing NSS-based blind IQA models, have largely ignored the

predictive power of the sigma field Equation (2.4) present in the classic Ruderman

model. However, the sigma field of a pristine image also exhibits a regular structure

which is disturbed by the presence of distortion. I extract the sample kurtosis,

skewness, and the arithmetic mean of the sigma field at 2 scales to efficiently capture

structural anomalies that may arise from distortion. While this feature map has not

been used before for visual modeling, it derives from the same NSS/retinal model

and is statistically regular.
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d. Difference of Gaussian (DoG) of Sigma Map

Center-surround processes are known to occur at various stages of visual processing,

including the multi-scale receptive fields of retinal ganglion cells [123]. A good model

is the 2D difference of isotropic Gaussian filters [124, 125]:

DoG =
1√
2π

(
1

σ1
e
−(x2+y2)

2σ2
1 − 1

σ2
e
−(x2+y2)

2σ2
2

)
, (4.8)

where σ2 = 1.5σ1. The value of σ1 in my implementation was 1.16. The mean sub-

tracted and divisively normalized coefficients of the DoG of the sigma field (obtained

by applying Equation (2.4) on the DoG of the sigma field, denoted henceforth as

DoGsigma) of the luminance map of a pristine image exhibits a regular structure

that deviates in the presence of some kinds of distortion (Fig. 4.4(a)). Features

that are useful for capturing a broad spectrum of distortion behavior include the

estimated shape, standard deviation, sample skewness and kurtosis. The DoG of

the sigma field can highlight conspicuous, ‘stand-out’ statistical features that may

particularly affect the visibility of distortions.

I next extract the sigma field of DoGsigma and denote its mean subtracted

and divisively normalized coefficients as DoG
′
sigma. The sigma field of DoGsigma

is obtained by applying Equation (2.4) on DoGsigma. I found that DoG
′
sigma also

exhibit statistical regularities disrupted by the presence of distortions (Fig. 4.4(b)).

The sample kurtosis and skewness of these normalized coefficients are part of the

list of features that are fed to the regressor.

e. Laplacian of the Luminance Map

A Laplacian image is computed as the downsampled difference between an image

and a low-pass filtered version of it. The Laplacian of the luminance map of a

pristine image is well-modeled as AGGD, but this property is disrupted by image
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Figure 4.4: Histogram of normalized coefficients of a) DoGsigma and (b) DoG
′
sigma

of the luminance components of Figures 4.3 (a) - (d).

distortions [126]. I therefore compute the Laplacian of each image’s luminance map

(Luma) and model it using an AGGD. This is also a bandpass retinal NSS model,

but without normalization. The estimated model parameters (ν, σ2
l , σ

2
r ) of this fit

are used as features along with this feature map’s sample kurtosis and skewness.

f. Features extracted in the wavelet domain

The next set of feature maps are extracted from a complex steerable pyramid wavelet

transform of an image’s luminance map. This could also be accomplished using Ga-

bor filters [127] but the steerable pyramid has been deployed quite successfully in the

past on NSS-based problems [3, 30, 27, 45]. The features drawn from this decom-

position are strongly multi-scale and multi-orientation, unlike the other features.

C-DIIVINE [35] is a complex extension of the NSS-based DIIVINE IQA model [30]

which uses a complex steerable pyramid. Features computed from it enable changes

in local magnitude and phase statistics induced by distortions to be effectively cap-

tured. One of the underlying parametric probability models used by C-DIIVINE is
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the wrapped Cauchy distribution. Given an image whose quality needs to be as-

sessed, 82 statistical C-DIIVINE features are extracted on its luminance map using

3 scales and 6 orientations. These features are also used by the learner.

4.2.2 Chroma Feature Maps

Feature maps are also defined on the Chroma map defined in the perceptually rel-

evant CIELAB color space of one luminance (L*) and two chrominance (a* and

b*) components [128]. The coordinate L* of the CIELAB space represents color

lightness, a* is its position relative to red/magenta and green, and b* is its position

relative to yellow and blue. Moreover, the nonlinear relationships between L*, a*,

and b* mimic the nonlinear responses of the L, M, and S cone cells in the retina

and are designed to uniformly quantify perceptual color differences. Chroma, on

the other hand, captures the perceived intensity of a specific color, and is defined

as follows:

C∗ab =
√
a∗2 + b∗2 (4.9)

where a∗ and b∗ refer to the two chrominance components of any given image in

the LAB color space. The chrominance channels contained in the chroma map are

entropy-reduced representations similar to the responses of color-differencing retinal

ganglion cells.

g. Chroma Map:

The mean subtracted and divisively normalized coefficients of the Chroma map

Equation (4.9) of a pristine image follow a Gaussian-like distribution, which is per-

turbed by the presence of distortions (Fig. 4.5 (a)) and thus, a GGD model is apt

to capture these statistical deviations. I extract two model parameters – shape and

standard deviation and two sample statistics – kurtosis and skewness at two scales

to serve as image features.
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Figure 4.5: Histogram of normalized coefficients of (a) the Chroma map and (b)
Chromasigma of Fig. 4.3 (a) - (d).

h. Sigma field of the Chroma Map:

I next compute a sigma map (as defined in Equation (2.4)) of Chroma (henceforth

referred to as Chromasigma). The mean subtracted and divisively normalized coeffi-

cients of Chromasigma of pristine images also obey a unit Gaussian-like distribution

which is violated in the presence of distortions (Fig. 4.5(b)). I again use a GGD to

model these statistical deviations, estimate the model parameters (shape and stan-

dard deviation), and compute the sample kurtosis and skewness at two scales. All

of these are used as features deployed by the learner.

Furthermore, as was done on the luminance component’s sigma field in the

above section, I compute the sample mean, kurtosis, and skewness of Chromasigma.

I also process the normalized coefficients of the Chroma map and generate four

neighboring pair product maps, the Laplacian, DOGsigma, and DOG
′
sigma maps,

and extract the model parameters and sample statistics from them. C-DIIVINE

features on the Chroma map of each image are also extracted to be used later by

the learner.
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4.2.3 LMS Feature Maps

The LMS color space mimics the responses of the three types of cones in the human

retina. Hurvich and Jameson [129] suggested that the retina contains three types

of cone photoreceptors, selectively sensitive to different color mixtures of Long,

Medium, and Short wavelengths. They also postulated that each photo-receptor pair

has two physiologically opponent color members: red-green, yellow-blue, in addition

to an achromatic white-black. Later, Ruderman et al. [130] later experimentally

gathered cone response statistics and found robust orthogonal decorrelation of the

(logarithmic) data along three principal axes, corresponding to one achromatic (l̂)

and two chromatic-opponent responses (RG and BY ).

Denoting L, M , and S as the three components of LMS color space, the three

chromatic-opponent axes are:

l̂ =
1√
3

(
L̂+ M̂ + Ŝ

)
, (4.10)

BY =
1√
6

(
L̂+ M̂ − 2Ŝ

)
, (4.11)

RG =
1√
2

(
L̂− M̂

)
, (4.12)

where L̂, M̂ , and Ŝ are the NLCs Equation (2.2) of the logarithmic signals of the L,

M, and S components respectively, i.e.,

L̂(i, j) =
logL(i, j)− µL(i, j)

σL(i, j) + 1
, (4.13)

where µL(i, j) is the mean and σL(i, j) is the standard deviation of logL, similar to

those defined in Equations (2.3) and (2.4) for L. M̂(i, j) and Ŝ(i, j) are defined in

the same manner as Equation (4.13) from logM(i, j) and logS(i, j) respectively.
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Figure 4.6: Histogram of color opponent maps of (a) red-green channel (RG). (b)
blue-yellow channel (BY ).

i. Blue-Yellow (BY) and Red-Green (RG) color-opponent maps:

The marginal distributions of image data projected along each opponent axis follow

a Gaussian distribution (Fig. 4.6). In the presence of distortion, this statistical

regularity is perturbed along all three axes Equations (4.10) - (4.12). By projecting

each image along the two color opponent axes RG and BY , then fitting them with

an AGGD model, I captured additional distortion-sensitive features in the form of

the model parameters (ν, σ2
l , σ

2
r ). I also compute the sample kurtosis and skewness

of the color opponent maps RG and BY .

j. M and S Channel Maps:

After transforming an image into LMS color space, theM and S components are pro-

cessed as in the previous section and their normalized coefficients are modeled along

with their sigma field. I also generate the Laplacian, DOGsigma, and DOG
′
sigma

feature maps from both M and S channels, and extract model parameters and sam-

ple statistics from them. C-DIIVINE features at 3 scales and 6 orientations are also
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Table 4.1: Summary of different feature maps and the features extracted from them
in all three color spaces. The last three columns refer to feature counts from each
feature map in each color space and the number in their headings refer to the total
number of features in those color spaces.

Feature map
Color Channels or

Spaces

Model parameters
(derived from GGD
(real and complex),
AGGD, wrapped

Cauchy)

Sample
statis-
tics

Luma
(155)

Chroma
(163)

LMS
(240)

Yellow color map and its
sigma field

RGB
goodness
of GGD

fit
2 0 0

Red-Green Equation
(4.12) and Blue-Yellow
Equation (4.11) color

opponent maps

LMS
shape, left and right
standard deviation

kurtosis,
skewness

0 0 10

Neighboring pair product
map

Luminance, Chroma
(from LAB space)

shape, mean, left and
right variance

kurtosis,
skewness

48 48 0

Debiased and normalized
coefficients

Luminance, Chroma
(from LAB space), M

and S (from LMS
space)

shape, variance
kurtosis,
skewness

8 8 16

Sigma field

Luminance, Chroma
(from LAB space), M

and S (from LMS
space)

shape, variance

kurtosis,
skew-
ness,
mean

6 14 28

DOGsigma and

DOG
′
sigma

Luminance, Chroma
(from LAB space), M

and S (from LMS
space)

shape, standard
deviation

kurtosis,
skewness

6 6 12

First Laplacian

Luminance, Chroma
(from LAB space), M

and S (from LMS
space)

shape, left and right
standard deviations

kurtosis,
skewness

5 5 10

Complex steerable
decomposition

Luminance, Chroma
(from LAB space), M

and S (from LMS
space)

Model parameters from
magnitude and phase
coefficients (See [35])

- 82 82 164

computed on both the channel maps and added to the final list of features.

4.2.4 Statistics from the Hue and Saturation Components

I also extract the hue and saturation components of every image in the HSI (hue,

saturation, intensity) color space and compute the arithmetic mean and standard

deviation of these two components. These four features are also added to the list of

features to be considered by the learner. I examined the bandpass distributions of

the HS components, but found that they were redundant with respect to those of

other color channels in regards to distortion. Thus, in order to avoid redundancy in

my final feature collection, I exclude these from the final feature list.
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Figure 4.7: Histogram of the normalized coefficients of (a) Y and (b) Ysigma of Fig.
4.3 (a) - (d).

4.2.5 Yellow Color Channel Map

Similar to the design of saliency-related color channels in [131], I constructed a

yellow color channel map of an RGB image I, which is defined as follows:

Y =
R+G

2
− |R−G|

2
−B, (4.14)

where R, G, and B refer to the red, green, and blue channels respectively. My

motivation for using the yellow channel is simply to provide the learner with direct

yellow-light information rather than just B-Y color opponency, which might be

relevant to distortion perception, especially on sunlit scenes.

Divisive normalization of Y computed on a pristine image yields coefficients

which, as illustrated in Fig. 4.7(a), exhibit Gaussian-like behavior on good qual-

ity images. Furthermore, the normalized coefficients of the sigma map of Y (de-

noted henceforth as Ysigma) also display Gaussian behavior on pristine images (Fig.

4.7(b)). This behavior is often not observed on distorted images. Thus, the good-
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ness of generalized Gaussian fit of both the normalized coefficients of Y and Ysigma

at the original scale of the image are also extracted and added as features used in

this model. As discussed in the next section, features drawn from the yellow color

channel map were able to efficiently capture a few distortions that were not captured

by the luminance component alone.

4.3 Advantages of the proposed Feature Maps

As an example to illustrate the advantages of the proposed feature maps, consider

the four images presented in Fig. 2.10. To reiterate, Fig. 2.10(a) is a pristine

image from the legacy LIVE Image Quality Database [3] while Fig. 2.10 (b) and

(c) are JPEG2000 compression and additive white noise distortions (respectively)

artificially applied to Fig. 2.10 (a). On the other hand, Fig. 2.10 (d) is a blurry

image distorted by low-light noise and presumably compression, drawn from the

LIVE In the Wild Image Quality Challenge Database [1].

I processed these four images using three different operations - (a) the mean

subtraction, divisive normalization operation used in [29] on singly distorted images,

(b) the yellow color channel map Equation (4.14), and (c) the DOGsigma map

on the luminance map as defined in earlier sections. It may be observed that,

though the histograms of the singly distorted images differ greatly from those of the

pristine image in Fig. 4.8(a), the distribution of an authentically distorted image

containing noise, blur, and compression artifacts closely resembles the distribution

of the pristine image. However, when the normalized coefficients of the proposed

yellow color channel and the DOGsigma feature maps are observed in Fig. 4.8(b)-

(c), it is clear that these distributions are useful for distinguishing between the

pristine image and both singly and authentically distorted images. I have observed

the usefulness of all of the proposed feature maps on a large and comprehensive

collection of images contained in the LIVE Challenge Database.
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Figure 4.8: (a) Histogram of the normalized coefficients of the images in Figures
2.10(a) - (d) when processed using (a) BRISQUE-like normalization defined in Equa-
tion (2.2), (b) yellow color channel maps Equation (4.14), and (c) DoG sigma com-
puted on the luminance map. Notice how for the authentically distorted image Fig.
2.10 (d), the corresponding histogram in (a) resembles that of a pristine image. But
in the case of the two feature maps - yellow color map and DoGsigma, the histograms
of pristine vs. authentically distorted images vary. (Best viewed in color).

I have thus far described a series of statistical features that I extract from a

set of feature maps and also how each of these statistics are affected by the presence

of image distortions (summarized in Table 4.1). I note that in Table 4.1, I did not

show the 4 features extracted in the HSI space due to space constraints. Also, the

number of features shown in the LMS column refer to the sum of the number of

features extracted on the M and S channel maps. Predicting the perceptual severity

of authentic distortions is recondite, and a ‘bag of features’ approach is a powerful

way to approach the problem.

4.4 Regression

These perceptually relevant image features, along with the corresponding real-valued

MOS of the training set, are used to train a support vector regressor (SVR). SVR

is the most common tool for learning a non-linear mapping between image features
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and a single label (quality score) among IQA and VQA algorithms [29, 35, 30, 31,

132, 133]. Given an input image (represented by a feature vector), SVM maps

the high-dimensional feature vector into a visual quality score [134, 135]. While

the database is large, it is not large enough to motivate deep learning methods.

The SVM classifier and regressor is widely used in many disciplines due to its high

accuracy, ability to deal with high-dimensional data, and flexibility in modeling

diverse sources of data [134].

In this algorithm, I used an SVR with a radial basis kernel function. Follow-

ing this, given any test image’s image features as input to the trained SVR, a final

quality score may be predicted. The optimal model parameters of the learner were

found via cross-validation. The choice of the model parameters was driven by the

obvious aim of minimizing the learner’s fitting error to the validation data.

4.5 Experiments

As described, FRIQUEE combines a large, diverse collection of perceptually rele-

vant statistical features across multiple domains, which are used to train a regressor

that is able to conduct blind image quality prediction. Variations called FRIQUEE-

Luma, FRIQUEE-Chroma, FRIQUEE-LMS, and FRIQUEE-ALL are developed ac-

cording to the subset of overall features considered. Thus FRIQUEE-Luma uses

feature maps a. - f., FRIQUEE-Chroma uses feature maps g. - h., FRIQUEE-LMS

uses feature maps i.-j., while FRIQUEE-ALL uses all feature maps as well as the

two HSI color space feature maps and the yellow color channel map.

In all of the experiments I describe below, the model (initialized with the

optimal parameters) was trained from scratch on a random sample of 80% training

images and tested on the remaining non-overlapping 20% test data. To mitigate any

bias due to the division of data, the process of randomly splitting the dataset was

repeated 50 times. Spearman’s rank ordered correlation coefficient (SROCC) and
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Pearson’s correlation coefficient (PLCC) between the predicted and the ground truth

quality scores were computed at the end of each iteration. The median correlation

over these 50 iterations is reported. A higher value of each of these metrics indicates

better performance both in terms of correlation with human opinion as well as the

performance of the learner. I also report the outlier ratio (OR) [136] which is

the fraction of the number of predictions lying outside the range of ± 2 times the

standard deviations of the ground truth MOS. A lower value of the outlier ratio

indicates better performance of a given model.

4.5.1 Comparing Different IQA Techniques

I trained several other well-known NR IQA models (whose code was publicly avail-

able) on the LIVE In the Wild Image Quality Challenge Database, using identical

train/test settings and the same cross-validation procedure over multiple random

trials. In the case of DIIVINE [30] and C-DIIVINE [35] which are two-step models,

I skipped the first step of identifying the probability of an image belonging to one

of the five distortion classes present in the legacy LIVE IQA Database as it doesn’t

apply to the newly proposed database. Instead, after extracting the features as

proposed in their work, I learned a regressor on the training data. An SVR with

a RBF (radial basis function) kernel was trained using FRIQUEE features and I

denote this model as FRIQUEE-ALL. The median and the standard deviations of

the correlations and the mean of the outlier ratios across the 50 train-test itera-

tions is reported in Table 4.2. I note that the NIQE [33] score is a measure of how

far a given image is from ‘naturalness,’ which is different from the subjective MOS

values. Since it is not trained on MOS values, I do not compute an outlier ratio

on the predicted NIQE scores. I conclude from this table that the performance of

the proposed model on unseen test data is significantly better than that of current

top-performing state-of-the-art NR IQA models on the LIVE Challenge Database
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[1, 2].

To justify the design choice of an SVR with an RBF kernel, I also trained

a linear SVR (FRIQUEE-LSVR) on FRIQUEE features extracted from the images

in the LIVE Challenge Database. The training was performed under the same

setting (on 50 random train/test splits). The median correlations across 50 iterations

are reported in Table 4.2. From this table I conclude that the performance of

FRIQUEE-ALL is better than the other learners. Also, comparing the median

correlation scores of FRIQUEE-ALL with those of top-performing IQA models such

as C-DIIVINE, BRISQUE, and DIIVINE, all of which also use an SVR as a learning

engine, reveals that the perceptually-driven FRIQUEE NSS features perform better

than the features designed in the other top-performing IQA models.

The high internal statistical consistency and reliability of the subjective

scores gathered in the crowdsource study make it possible to consider the MOS

values obtained from the online study as ground truth quality scores of the images

[2]. Moreover, the poor correlation scores reported by most algorithms suggests

that the LIVE Challenge Database is a difficult test of the generalizability of those

models.

4.5.2 Statistical Significance and Hypothesis Testing

Although there exist apparent differences in the median correlations between the

different algorithms (Table 4.2), I evaluated the statistical significance of the perfor-

mance of each of the algorithms considered. Thus, I performed hypothesis testing

based on the paired t-test [137] on the 50 SROCC values obtained from the 50 train-

test trials. The results are tabulated in Table 4.3. The null hypothesis is that the

mean of the two paired samples is equal, i.e., the mean correlation for the (row) algo-

rithm is equal to the mean correlation for the (column) algorithm with a confidence

of 95%. The alternative hypothesis is that the mean correlation of the row algo-
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Table 4.2: Median PLCC and SROCC, and mean OR of several no-reference IQA
metrics across 50 train-test combinations on the LIVE Challenge Database [1, 2].
FRIQUEE-ALL refers to the scenario where the proposed learning engine, i.e.,SVR
with an RBF was used. The IQA algorithm that achieves top-performance is indi-
cated in bold font.

PLCC SROCC OR

FRIQUEE-ALL 0.72± 0.04 0.72± 0.04 0.04

FRIQUEE-LSVR 0.65± 0.04 0.62± 0.04 0.04

BRISQUE [29] 0.61± 0.06 0.58± 0.05 0.07

DIIVINE [30] 0.59± 0.05 0.56± 0.05 0.06

BLIINDS-II [31] 0.45± 0.05 0.40± 0.05 0.09

NIQE [33] 0.48± 0.05 0.42± 0.05 −

C-DIIVINE [35] 0.66± 0.04 0.63± 0.04 0.05

rithm is greater than or lesser than the mean correlation of the column algorithm.

A value of ‘1’ in the table indicates that the row algorithm is statically superior to

the column algorithm, whereas a ‘-1’ indicates that the row is statistically worse

than the column. A value of ‘0’ indicates that the row and column are statistically

indistinguishable (or equivalent), i.e., I could not reject the null hypothesis at the

95% confidence level.

From Table 4.3 I conclude that FRIQUEE-ALL is statistically superior to

all of the no-reference algorithms that I evaluated, when trained and tested on the

LIVE Challenge Database.

4.5.3 Contribution of Features from Each Color Space

I next evaluated the performance of FRIQUEE-Luma, FRIQUEE-Chroma, and

FRIQUEE-LMS. I trained three separate SVRs with features extracted from each

color space serving as an input to each SVR and report the median correlation values

across 50 random train/test splits in Table 4.4. These values justify my choice of
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Table 4.3: Results of the paired one-sided t-test performed between SROCC values
generated by different measures. ‘1,’ ‘0,’ ‘-1’ indicate that the NR IQA algorithm
in the row is statistically superior, equivalent, or inferior to the algorithm in the
column.

DIIVINE BRISQUE NIQE
C-

DIIVINE
BLIINDS-

II
FRIQUEE-

LSVR
FRIQUEE-

ALL

DIIVINE 0 -1 1 -1 1 -1 -1

BRISQUE 1 0 1 -1 1 -1 -1

NIQE -1 -1 0 -1 0 -1 -1

C-DIIVINE 1 1 1 0 1 0 -1

BLIINDS-II -1 -1 0 -1 0 -1 -1

FRIQUEE-
LSVR

1 1 1 0 1 0 -1

FRIQUEE-ALL 1 1 1 1 1 1 0

Table 4.4: Median PLCC and Median SROCC across 50 train-test combinations on
[1, 2] when FRIQUEE features from each color space were independently used to
train an SVR.

PLCC SROCC

FRIQUEE-Luma 0.64± 0.04 0.61± 0.04

FRIQUEE-LMS 0.63± 0.04 0.60± 0.04

FRIQUEE-Chroma 0.36± 0.05 0.34± 0.05

different color spaces, all of which play a significant role in enhancing image quality

prediction.

4.5.4 Contribution of Different Feature Maps

To better understand the relationship between the proposed feature set and per-

ceptual quality, I trained separate learners (SVR with radial basis kernel functions)

on the statistical features extracted from each feature map on 50 random, non-

overlapping train and test splits. I report the median Spearman rank ordered cor-

relation scores over these 50 iterations in Fig. 4.9. This plot illustrates the degree

to which each of these features accurately predict perceived quality, while also jus-

tifying the choice of the feature set. I want to point out that I included the Yellow

Map under FRIQUEE-Luma in Fig. 4.9 purely for the purpose of illustration. It is
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Figure 4.9: Contribution of different types of features that are extracted in different
color spaces. A correlation of 0 in a color space indicates that that specific feature
map was not extracted in that color space.

not extracted from the luminance component of an image but is a color feature as

described earlier.

4.5.5 Evaluating the Robustness of Different IQA Techniques

The goal of this experiment was to study the efficacy of training IQA models on the

synthetically distorted images contained in current benchmark databases relative

to training on authentically distorted images. Some of the current top-performing

IQA learning models have been made publicly available (i.e., the model parameter
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Table 4.5: Median PLCC and Median SROCC across 50 train-test combinations of
a few NR-IQA models on [1, 2] when models trained on the LIVE IQA Database
are used to predict the quality of the images from the LIVE Challenge Database.
The IQA algorithm that achieves top-performance is indicated in bold font.

PLCC SROCC

FRIQUEE-ALL 0.6289±0.0425 0.6303±0.0405

BRISQUE [29] 0.3296± 0.0505 0.2650± 0.0505

DIIVINE [30] 0.3667± 0.0504 0.3328± 0.0536

BLIINDS-II [31] 0.1791± 0.0713 0.1259± 0.0704

C-DIIVINE [35] 0.4705± 0.0549 0.4589± 0.0515

values used by their SVRs) after being trained on the images on the legacy LIVE

IQA Database. I sought to understand the performance of these publicly available

models when they are used in real-world scenarios, to predict the quality of real-

world images captured using mobile devices. I used the publicly available model

BRISQUE [29] trained on the legacy LIVE Database. With regards to the other

blind algorithms, I extracted image features from each image in the LIVE IQA

Database following the same procedure as was originally presented in their work

and separately trained SVRs for each model on these image features.

Next, I used the 50 randomly generated test splits and evaluated each learned

engine (trained on the LIVE IQA Database) on the 50 test splits. I report the median

of the correlations of the predicted scores with human judgments of visual quality

across the 50 test splits in Table 4.5. This analysis provides an idea of how well

state-of-the-art quality predictors generalize with respect to image content and real-

world distortions. As can be seen from the results reported in Table 4.5, although

FRIQUEE performed better than all of the algorithms, the performance of all the

models suffer when they are trained only on images containing synthetic, inauthentic

distortions.
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Table 4.6: Performance on legacy LIVE IQA Database [3]. Italics indicate NR-IQA
models. -NA- indicates data not reported in the corresponding paper.

SROCC PLCC

PSNR [138] 0.8636 0.8592

SSIM [39] 0.9129 0.9066

MS-SSIM [40] 0.9535 0.9511

CBIQ [36] 0.8954 0.8955

LBIQ [73] 0.9063 0.9087

DIIVINE [30] 0.9250 0.9270

BLIINDS-II [31] 0.9124 0.9164

BRISQUE [29] 0.9395 0.9424

NIQE [33] 0.9135 0.9147

C-DIIVINE [35] 0.9444 0.9474

FRIQUEE-ALL 0.9477 ±0.0250 0.9620 ±0.0223

4.5.6 Evaluating IQA models on Legacy LIVE Database

I next compared the performance of the proposed model against several other top-

performing blind IQA models on the older standard benchmark LIVE IQA Database

[3]. Regarding FRIQUEE-ALL, 560 features were extracted on all the images of the

LIVE IQA Database and the image data was divided into training and test subsets,

with no overlap in content. This process was repeated 1000 times and I report the

median correlation values in Table 4.6. With regards to the other models, I report

the median correlation scores as reported in their papers. I note that [34] report an

SROCC value of 0.9650 on the legacy LIVE IQA Database, but this result is not

verifiable since the authors do not make the code publicly available. Since I cannot

validate their claim, I do not include it in Table 4.6.

Comparing the correlation scores reported in Table 4.2 with those in Table

4.6, I observe that several other blind IQA models are not robust to authentic dis-
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Table 4.7: Median PLCC and Median SROCC across 100 train-test combinations of
a few NR-IQA models on LIVE-Multiply Database - Part I [4]. The IQA algorithm
that achieves top-performance is indicated in bold font.

PLCC SROCC

FRIQUEE-ALL 0.9667 0.9591

BRISQUE [29] 0.9391 0.9238

DIIVINE [30] 0.9424 0.9327

NIQE [33] 0.9075 0.8614

C-DIIVINE [35] 0.9336 0.9179

Table 4.8: Median PLCC and Median SROCC across 100 train-test combinations of
a few NR-IQA models on LIVE-Multiply Database - Part II [4]. The IQA algorithm
that achieves top-performance is indicated in bold font.

PLCC SROCC

FRIQUEE-ALL 0.9664 0.9632

BRISQUE [29] 0.9070 0.8748

DIIVINE [30] 0.8956 0.8677

NIQE [33] 0.8316 0.7762

C-DIIVINE [35] 0.8837 0.8772

tortions, since while they achieve superior performance on the legacy LIVE IQA

Database, they fail to accurately predict the quality of authentically distorted im-

ages. On the other hand, it may be observed that FRIQUEE not only performs

well on the LIVE Challenge Database (Table 4.2), but also competes very favorably

with all the other blind IQA models as well as with full-reference IQA models on the

legacy LIVE Database. It reaches and exceeds the ‘saturation level’ of performance

achieved on this long-standing synthetic distortion database by the tested prior

models. This supports my contention that a combination of semantically rich, per-

ceptually informative image features feeding a highly discriminative learning model
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Table 4.9: Median PLCC and Median SROCC across 100 train-test combinations of
a few NR-IQA models on TID2013 Database [5].. The IQA algorithm that achieves
top-performance is indicated in bold font.

PLCC SROCC

FRIQUEE-ALL 0.9287 0.9138

BRISQUE [29] 0.7781 0.7515

DIIVINE [30] 0.8066 0.7644

NIQE [33] 0.3592 0.3137

C-DIIVINE [35] 0.7319 0.6602

Table 4.10: Median PLCC and Median SROCC across 100 train-test combinations
of a few NR-IQA models on CSIQ Database [6]. The IQA algorithm that achieves
top-performance is indicated in bold font.

PLCC SROCC

FRIQUEE-ALL 0.9622 0.9627

BRISQUE [29] 0.8926 0.8823

DIIVINE [30] 0.9171 0.9282

NIQE [33] 0.6943 0.6142

C-DIIVINE [35] 0.8660 0.8611

is a powerful way to automatically predict the perceptual quality of images afflicted

by both authentic and synthetic distortions.

4.5.7 Evaluating IQA models on other legacy databases

Although my primary focus was to evaluate the performance of the proposed algo-

rithm on the LIVE In the Wild Challenge Database (since I wanted to benchmark

the superior performance of FRIQUEE on authentically distorted images), I un-

derstand that some readers may find performance on the legacy databases to be

relevant. Therefore, I evaluated FRIQUEE and a few other top-performing NR
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IQA algorithms on other legacy databases such as TID2013 [5] and CSIQ [6] both of

which contain single, synthetic distortions and LIVE-Multiply Database [4], which

contains Gaussian blur followed by JPEG compression distortions (in Part I) and

Gaussian blur followed by additive white noise distortions (in Part II). The images

in all of these datasets were divided into non-overlapping training and test sets and

this process was repeated 100 times. For each IQA algorithm on every database,

optimal model parameters were chosen for an SVR with a radial basis kernel while

training a model. In Tables 4.7 - 4.10, I report the median correlation values be-

tween ground truth and predicted quality scores across 100 iterations on all these

databases.

Comparing the correlation scores, it may be observed that FRIQUEE fea-

tures perform better than the features designed in all the other top-performing IQA

models on synthetic distortions modeled in [5, 6, 4].

4.6 Conclusion

In this chapter, I have described a first effort towards the design of blind IQA mod-

els that are capable of predicting the perceptual quality of images corrupted by

complex mixtures of authentic distortions. Its success encourages the feasibility of

adapting the proposed model for application to real-world problems such as percep-

tual optimization of digital camera capture, perceptual image enhancement, and so

on.
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Chapter 5

A Subjective Study of Stalling

Events in Mobile Streaming

Videos

As mentioned in Section 2.4, over-the-top mobile video streaming is invariably in-

fluenced by volatile network conditions which cause playback interruptions (stalling

events), thereby impairing users’ quality of experience (QoE). Numerous subjective

studies have been conducted in the past with an aim of better understanding the

effects of volatile networks on an end user’s QoE. However, all existing databases

have certain limitations as described in Section 2.4.2 and do not support subjective

and objective instantaneous QoE assessment of videos in-the-wild.

In this chapter, I present the details of a subjective study that I recently

conducted on a novel video collection to address the limitations of all existing video

QoE datasets. This chapter is organized as follows:

1. I first provide details of the new LIVE Mobile Stall Video Database-II,

which consists of 174 videos that model 26 different patterns of rebuffering
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events and startup delays. I also describe the distribution of stalling patterns,

selection of reference videos, and the process of generating the 174 distorted

videos in Section 5.1.

2. I next discuss the subjective study I conducted to gather ground-truth human

opinion scores on these videos. I detail the set-up, the subjects, and the testing

methodology (Section 5.2).

3. I present the results of my thorough analysis of the subjects’ continuous-time

subjective behavior to better understand the temporal variations in the per-

ceived QoE due to the influence of factors such as stall positions, number of

stalls, length of the stalls, and varied video content (Section 5.4).

5.1 Construction of the database

A few previous studies have gathered network and client-side media analytics by

capturing the network traces of viewers streaming videos from services such as Aka-

mai [96]. The authors of [98] manually varied the client-side network bandwidth in

their study set-up, thereby causing bottlenecks in the network and stalling events in

streaming videos. Videos with these types of network-induced stalling events were

then viewed and rated by the subjects. Though these studies have provided useful

insights on viewers’ QoE, such uncontrolled network settings can often lead to non-

reproducible stalling patterns. Videos and subjective data captured in this manner,

with no preset goals and an insufficient number of subjective scores per distortion

pattern, limits researchers’ and system designers’ abilities to dissect the effects of

specific stall types on an end user’s QoE.

Thus, in this dissertation, I chose to first obtain a small set of high-quality

videos, into which I systematically inserted a wide variety of predefined—yet realistic—

stalling patterns in a controlled manner, thereby generating distorted video content.
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Figure 5.1: Sample frames of the reference video contents contained in the LIVE
Mobile Stall Video Database-II.

To be able to evaluate the influence of different stall parameters on subjective be-

havior, the new database was designed to meet the following requirements:

1. The reference video content used to generate the distorted videos should be

interesting and representative of what a typical viewer may stream on a mobile

device.

2. The distortion severities and the stall pattern parameter settings should model

a wide range of realistic distortions.

3. The distorted video contents should model adequate perceptual separability,

i.e., they should reasonably span the quality spectrum, from low quality to

high quality. Otherwise, a large number of videos may cluster too tightly at

high and/or low quality, making it difficult to distinguish the performances of
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different quality assessment models.

4. There should be an overlap of video content across different distortion patterns,

enabling us to analyze the interplay of video content and different stall patterns

on user’s QoE.

5. There should be a reasonable number of data samples per distortion pattern,

enabling us to reasonably analyze the influence of these patterns on subjective

behavior.

6. The videos should not contain any post-capture distortions (such as compres-

sion artifacts or frame drops), since I wish to focus exclusively on network-

induced distortions.

5.1.1 Source Sequences

I selected 24 High Definition (HD) creative commons licensed videos (with audio)

from YouTube and Vimeo. These public-domain videos have different original res-

olutions: 1280 × 720, 1280 × 640, 480 × 360, 484 × 360, 490 × 360, 540 × 360, and

640 × 360. All videos are of 30 fps. Any visual distortions due to aliasing were

deemed minimal or invisible. In order to focus exclusively on network impairments,

I excluded any jittered or delayed videos, and thus each of the 24 selected video

sequences contained minimal spatial distortions or abrupt camera shakes. From

each of these video sequences, I chose a video segment that was semantically and

temporally coherent and long enough to be meaningful on its own. The lengths (af-

ter adding rebuffering impairments) of these video segments range between 29 and

134 seconds. Though streaming services typically deliver longer video sequences, in

order to test a variety of content and stall patterns while maintaining reasonable

study session durations, I had to limit the sequence lengths.

In order to understand the impact of video content type in the presence of
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Table 5.1: Number of videos classified into broad content categories.
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Figure 5.2: Spatial Information (SI) against Temporal Information (TI) for the 24
video contents in the database.

network delays on QoE, I selected video sequences of varied content categories that

a typical video viewer is likely to encounter on the Internet. The 24 video contents

were categorized into five broad categories as detailed in Table 5.1.

As noted in [139], measuring the amount of spatial and temporal information

or activity in the reference videos can help to broadly characterize their span in the

spatio-temporal plane. An appropriate set of test scenes should span a wide range of

spatial and temporal information to be representative of the wide variety of content

typically viewed over the Internet. Let Fn denote the luminance component of a

video frame at instant n, and let (i, j) denote the spatial coordinates of within the

frame. A frame filtered with the spatial Sobel operator is denoted as Sobel(Fn).

A frame difference operation can be defined as Mn(i, j) = Fn(i, j) − Fn−1(i, j). As

formulated in [139], the spatial perceptual information (SI) and temporal perceptual
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information (TI) measurements are given by

SI = maxtime

{
stdspace

[
Sobel(Fn(i, j))

]}
(5.1)

TI = maxtime

{
stdspace

[
Mn(i, j)

]}
, (5.2)

where maxtime denotes the maximum value computed over all the frames and stdspace

denotes the standard deviation over all the pixels of a given image (Fn or Mn). As

shown in Fig. 5.2, the reference video content of the database widely spans the

spatio-temporal space.

5.1.2 Distortion Patterns

The studies in [98] and [8] model scenarios where network congestion occurs at a

constant rate, leading to periodic stalling patterns wherein each stall is of a fixed

duration. This, however, is not realistic, as stall patterns could occur arbitrarily.

I chose to construct different stalling patterns by varying four defining fea-

tures: start-up delay length, stall lengths, stall positions, and the number of stalls.

Table 5.2 provides information about the range of values these four parameters take

for different stalling patterns. Figure 5.3 illustrates the different positions in a video

sequence where stalls were placed. Different settings for any single stall pattern

parameter were not combined, i.e., if the stall position for a given video is chosen as

beginning (B), and the stall length was chosen as medium, then all the stalls would

be of medium length and occur only in the first half of that video. By varying the

four stall pattern parameters, I designed a comprehensive set of distorted videos

with the following constraints in mind:

1. Videos without any rebuffering should also be presented to subjects as they

would serve as a baseline.

2. To understand the impact of start-up delays, a subset of videos should only

contain start-up delay events (of varied lengths), with no additional rebuffering
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events.

3. To understand the impact of inherent memory biases on a user’s overall QoE,

a subset of videos should have stall events of varied lengths in the latter half

of the video.

4. To understand the recency, or the hysteresis effect [140] on quality perception,

a subset of videos should have stall events in the beginning and middle regions

of a video.

5. In order to model a variety of real-world network bandwidth capacities, a

subset of videos should have many (or longer) stalls while a disjoint subset of

videos should have very limited stalling events.

6. To tease out the most dominant factor impacting viewer QoE, the value of

each stall parameter should be sufficiently varied within the set of modeled

distortion patterns.

The 26 unique stall patterns designed with the above constraints are listed in Table

5.3. Notice that a given stall pattern (defined in terms of length and number of stalls)

was introduced at multiple positions in a video (denoted by x). This was done to

help us understand the influence of the position of stalling events on QoE. Further,

since start-up delays are a very common and frequently experienced phenomenon,

all of the distorted videos in the collection have start-up delays of varied lengths.

Figure 5.4 illustrates example stall patterns. The videos with the fewest number

of stalls, excluding the reference videos, contain only an initial delay, whereas the

largest number of stalls that were added to any video was 7.

5.1.3 Distortion Simulation Process

A different randomly-selected set of stall patterns was introduced on each of the 24

reference videos, with the constraint that each of the distortion patterns may be

100



Table 5.2: Description of the four stall parameters (left column) and the differ-
ent values of these parameters considered constructing the stalling patterns in the
following database. L refers to the total length of a given video.

Number of
stalls

Few ( 1− 3
stalls)

Many (4− 7 stalls)

Stall length Short (2−4 sec.) Medium (5− 9 sec.) Long (10− 15
sec.)

Position of the
stalls

Beginning
(between

0− L/2 sec.)

Middle (between
L/4− 3L/4 sec.)

End (between
L/2− L sec.)

Uniformly
throughout

(between 0− L
sec.)

Startup delay Short (0−7 sec.) Long (8− 20 sec.)

Table 5.3: Summary of different simulated stall patterns. The prefix x refers to the
position where the pattern is introduced and takes values {B, M, E, U} as defined
in Fig. 5.3. ‘#’ refers to the count of videos in each column.

Stalling patterns # videos
with x = B

# videos
with x = M

# videos
with x = E

# videos
with x = U

Total #
videos

Only short initial delays
(shortInitial)

- - - - 5

Only long initial delays
(longInitial)

- - - - 4

Short initial + few
medium (x sfm)

6 6 8 - 20

Short initial + few long
(x sfl)

6 6 6 - 18

Short initial + many
medium (x smm)

4 - 4 6 14

Short initial + many short
(x sms)

6 - 6 6 18

Long initial + few
medium (x lfm)

6 6 6 - 18

Long initial + few long
(x lfl)

6 6 4 - 16

Long initial + many
medium (x lmm)

4 - 4 5 13

Long initial + many short
(x lms)

6 - 6 4 16
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Beginning (B) End (E)

Uniformly Throughout (U)

L/20 L

Middle (M) 3L/4L/4

Figure 5.3: Illustrating different positions of stalls in a video of length L represented
by {B, M, E, U}.

Stall

Video

(a)

(b)

Figure 5.4: Illustrating (a) the stall pattern B sfl (short initial delay followed by
a few long stalls in the beginning.) (b) stall pattern E lmm (long initial delay
with many medium stalls towards the end.) as defined in Table 5.3 for any video
sequence.

added to a minimum of 4 and a maximum of 8 reference videos. For each video

content, a stall pattern file was generated containing the stall location(s) and the

length(s) in seconds (< stall loc, stall length >). Using the FFmpeg tool [141], the

source .mp4 sequences were decoded yielding uncompressed raw .yuv files. At every

stall loc contained in the stall pattern file of a given video, the corresponding .yuv

file was split into two chunks. The last frame of the chunk preceding stall loc was

copied for stall length seconds to simulate the scenario where the client-side network

buffer has emptied, thereby forcing the last frame in the buffer to be displayed on

the screen until the next frame is streamed, thus generating the rebuffering video

chunk. Further, a loading or buffering icon was overlaid at the center of each frame

of the rebuffering video chunk to realistically simulate the network impairment as

encountered by a viewer when streaming over-the-top video content.
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5.2 Subjective Study

5.2.1 Subjects and Study Set-up

Due to the large amount of video data in the LIVE Mobile Stall Video Database-II,

it was difficult to obtain a sufficient amount of subjective data on each video, and

having each subject view every video in the database would be be asking subjects

to volunteer approximately four hours of their time, which would likely discourage

participation. Therefore, as was done in [142], I divided the videos into two groups,

A and B, containing 88 and 86 videos respectively. Each set of videos was further

equally divided over three study sessions of approximately 40 minutes each, to avoid

mentally and visually fatiguing the subjects. The duration of all three sessions were

roughly equivalent for both groups of subjects. Subjects were randomly assigned

to either the A or the B group, and each viewed the same two training videos

prior to the start of their first session. These training videos are not included in

the database and were simply used to introduce subjects to the rebuffering events

they would encounter in the study and to allow them time to practice providing

continuous-time feedback and using the ratings bar. The study was conducted over

a two-week period, and in total, 54 undergraduate and graduate students from The

University of Texas at Austin participated. Both the A and B groups contained 27

subjects after random assignments.

Before participating in the study, each subject read instructions informing

them that they should provide both continuous-time and overall opinion scores based

on their viewing experience. I then verbalized instructions to reiterate the subject’s

tasks and to ensure that the subjects understood that they were not to judge the

content of a video. The monitor position was also adjusted to ensure a viewing

distance between 2 and 2.5 feet, which was considered a comfortable viewing dis-

tance. The subjects were informed not change their viewing distance and position

too much throughout the study to maintain viewing conditions. The subjects were
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allowed to take breaks during their session if they felt visually fatigued, but they

were not allowed to take breaks while the video was playing or while the interface

was prompting for submission of a rating. I did not test subjects for vision problems,

because I wanted to capture the impressions of a realistic sampling of human vision

systems. I did, however, ask them to wear corrective lenses during the study, if they

usually wore them during for daily activities.

5.2.2 Study Interface

The study was conducted on a PC using a GUI I designed using the XGL toolbox

[143] with MATLAB 2015b. I chose to use a PC over a smartphone with a touch

screen to make it easy for subjects to provide accurate continuous-time ratings. The

XGL toolbox was developed for the presentation of psychophysical stimuli to human

observers, and I encountered no display issues while using it. Each video sequence

was stored as raw YUV 4:2:0 frames, and to avoid additional playback interruptions,

I loaded each video in its entirety into memory before presenting to subjects. Cor-

responding audio files were played with each video and no latency was experienced

with audio playback. The PC contained an ATI Radeon X600 graphics card, and

the attached monitor was an ASUS VG248QE. Videos with original resolutions of

1280×720 and 1280×640 were converted to 1024×576 and 1024×512 respectively,

using FFmpeg [141] to resize raw YUV frames. These were the highest resolutions

that were supported by the monitor and that did not cause the video load times to

exceed three seconds, which was a cutoff I set to avoid annoying subjects. All other

videos were displayed in their native resolutions. I believed that showing the videos

in high definition, or even 1080p, was not necessary, as the focus of the current work

is on mobile streaming QoE and monitoring its trends over time. Showing lower-

resolution videos on a typical laptop-sized monitor allowed us to gather continuous

scores with minimal distractions to the subjects, as I was not trying to simulate
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watching a movie in HD at home. Prior to the subjective tests, the display monitor

was color-calibrated using the Datacolor Spyder5PRO Display Calibration System

[144], which measures ambient lighting conditions and provides on-screen guidance

to change the monitor settings so that colors are authentically presented. Finally, I

processed each video sequence to have a 30-Hz frame rate, set the monitor refresh

rate to be 60 Hz, and displayed each frame for two monitor refresh cycles for avoid

adding flicker artifacts.

5.2.3 Testing Methodology

I used a single stimulus continuous quality evaluation (SSCQE) procedure [145] to

obtain both continuous-time and overall quality ratings on video sequences. All

videos were shown in random order without repeated content shown successively.

Subjects used a continuous-scale ratings bar with a neutral initial cursor position,

i.e., qualitatively Fair, to minimize additional bias. The qualitative range of the

ratings bar started at Bad (far left) and reached a maximum at Excellent (far right),

with Poor and Good equally spaced between Bad, Fair, and Excellent to reflect the

ITU-R Absolute Category Rating (ACR) scale [145]. Subjects used a mouse to

adjust their desired ratings on the quality scale. Figure 5.5 shows a screenshot of

the GUI during video playback with the continuous-scale ratings bar at the bottom

of the screen. Following the presentation of each video, subjects were shown a screen

displaying the same continuous-scale ratings bar with instructions to provide a single

overall quality score. A screenshot of this screen is shown in Fig. 5.6.
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Figure 5.5: Screenshot of the GUI showing the continuous ratings bar placed below
the video sequence for gathering continuous-time scores during playback.

Figure 5.6: Screenshot of instructions and ratings bar for gathering an overall QoE
score at the end of each video’s playback.

5.3 Processing of the Subjective Scores

5.3.1 Accounting for Intra-Subject Variability

As there are inevitable variations between each subject’s use of the quality scale,

possibly also across sessions, I compute overall Z-scores [146] for continuous-time

and overall QoE scores which I describe next. If I let sijk denote the final QoE score

assigned by subject i to video j during session k,

µik =
1

Nik

Nik∑
j=1

sijk, (5.3)

σik =

√√√√ 1

Nik − 1

Nik∑
j=1

(sijk − µik)2 (5.4)
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zijk =
sijk − µik

σik
. (5.5)

Here, Nik is the number of test videos seen by subject i in session k, k ∈ {1, 2, 3}.

To compute continuous-time Z-scores, let sijkl denote the score assigned by

subject i to the lth frame of a video j during the session k. The per-frame Z-scores

are then computed as:

µik =
1∑Nik

j=1Nj

Nik∑
j=1

Nj∑
l=1

sijkl, (5.6)

σik =

√√√√√ 1∑Nik
j=1Nj − 1

Nik∑
j=1

Nj∑
l=1

(sijkl − µik)2, (5.7)

zijkl =
sijkl − µik

σik
. (5.8)

In this case, Nik is the total number of test videos that were seen by subject i

in session k, and Nj is the total number of frames in video j. The per-frame Z-

scores zijkl are thus computed using the scores the subject assigned to all frames

l ∈ [1, Nj ], j ∈ [1, Nik] over the entire session.

5.3.2 Subject Rejection Methodology for Continuous-Time Scores

Perceptual video quality is inherently subjective, and the task of providing continuous-

time feedback is even more likely to induce variability across subjects, so I wanted

to filter out data from subjects who were unable to provide consistent ratings.

There is no standard acceptable method for subject rejection that can be applied

to continuous-time quality monitoring. Moreover, adopting the rejection strategies

recommended for single overall scores per video by discarding the rich, temporal

subjective data is inefficient.

Thus, with a goal to identify and eliminate inconsistent continuous-time sub-

jective data, I used a subject rejection method based on the Dynamic Time Warping
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(DTW) technique [147], similar to what is described in [9]. Dynamic Time Warp-

ing (DTW) is a helpful technique for aligning time series data and computing a

distance measure between the best aligned data. Specifically, in the DTW method,

given a pair of temporal sequences (seq1, seq2), their time axis are warped (stretched

or compressed) to achieve a reasonable alignment between them, by minimizing an

aggregated Euclidean distance between corresponding points of the two sequences.

Computing a DTW distance between (seq1, seq2) yields a measurement of dissimi-

larity between the two sequences.

I chose to apply DTW on pairs of sequences with a locality restriction that

the maximum window for matching temporally-corresponding points of any two se-

quences was 5 seconds. This was done to account for the variation in typical human

response time to an event (in this case, a quality variation, which could be the start

or end of a stalling event), including the motor activity required to adjust opinions

on the rating bar in response to a change in video quality [148]. I tested subject rejec-

tion using warping windows of {2, ..., 12,∞}. By manually inspecting the instances

where different windows rejected different subjects, I determined that a window of 5

seconds allowed for reasonably associating corresponding data points and waveform

patterns without matching completely unrelated temporal data points. Further,

unlike the piece-wise distortion-localized sequences constructed in [9], I chose to

consider complete temporal subjective data waveforms, excluding data from frames

associated with start-up delays, as inputs to the DTW algorithm. I only removed

start-up delay data to identify inconsistent subjective responses, because I found

that subjects were generally not bothered by start-up delays (more in Sec. 5.4.1).

I conjectured that the reliability of the continuous-time opinion scores can

depend on the following two scenarios [145]:

• Scenario 1: Systematic shifts: If a subject is too negligent, optimistic or

pessimistic, or has misunderstood the voting procedures, a series of continuous-
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time ratings could be systematically shifted away from the general consensus,

if not completely out of range.

• Scenario 2: Local inversions: A subject can sometimes vote without taking

too much care in watching and tracking the variation of the quality of the

sequence displayed. In this case, the opinion curve can be relatively similar to

the general consensus curve, but local discrepancies can be observed.

These two undesirable behavioral patterns need to be identified and the correspond-

ing ratings have to be discarded. I thus followed a two-step subject rejection strat-

egy; the first step was devoted to detecting and discarding observers exhibiting a

strong shift of votes compared to the consensus behavior (Scenario 1), while the sec-

ond step was used for detecting inconsistent observers (Scenario 2). I then rejected

subjects identified as outliers in either of the two scenarios.

To assist the identification of unreliable subjects due to Scenario 1, I com-

puted a mean QoE waveform per frame for each video, by averaging the continuous-

time waveforms obtained from the individual subjects. Figure 5.7 illustrates the in-

dividual continuous QoE waveforms along with the mean QoE waveforms for a few

videos. The standard deviations of the mean QoE waveforms and the stall patterns

afflicting the videos are also illustrated. It may be observed that, despite the local

temporal fluctuations in the continuous-time scores of individual subjects, in gen-

eral, they followed similar trends which were effectively captured by the mean QoE

waveforms. However, I note that the individual continuous-time subjective scores

were not temporally aligned to account for each subject’s motor response delays

prior to computing the mean QoE waveforms. To identify the unreliable subjects

due to Scenario 2, I compared individual waveforms of subjects in a pairwise manner

to identify responses that were highly inconsistent with other individual responses.

I now describe the proposed two-step subject rejection strategy in detail:

1. From each continuous-time subjective score waveform, I removed the data
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Figure 5.7: In each top-bottom pair of plots, the top shows all the responses from
individual subjects plotted together, and the bottom shows the average response
and standard deviation (in yellow) around the mean (in black) along with the stall
pattern (in magenta). Here, values of 100 indicates stall frames, and values of 0
indicates playback frames.

points associated with the start-up delay for each video with a start-up delay.

2. I computed the mean QoE waveform for each video by averaging the continuous-

time waveforms from each subject per frame.

3. For each video:

a. For each subject, I computed:

i. their DTW distance from the mean QoE waveform;

ii. their average DTW distance from all other subjects who viewed that

video.

b. I used the distribution of DTW distances from the mean QoE waveforms

to determine inconsistent subjects (Scenario 1).

c. I used the distribution of average pairwise DTW distances to determine

additional inconsistent subjects (Scenario 2).

Note that I rejected subjects on a per-video basis. A large distance value in

either Step 3(a)-i or Step 3(a)-ii for a given subject suggests that the subject was
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Figure 5.8: Example histograms of accumulated DTW distances when using mean-
wise (left) and pairwise (right) comparisons.

misaligned from other subjects or the consensus and thus could be an outlier. To

identify the outlier subjective responses, in Steps 3(b) and 3(c), I used the adjusted

boxplot method for skewed distributions detailed in [149] and implemented in a

MATLAB toolbox called LIBRA [150]. I used their default parameter selections

and rejected only subjects having very high aggregated DTW values. Consider Fig.

5.8, which shows histograms of accumulated DTW distances for two example videos.

On the left, the DTW distances to the mean QoE response are summed (meanwise

distances), and on the right, the DTW distances to other individual responses are

summed (pairwise distances). In both cases, the rightmost subject gets rejected as

an outlier. Specifically, given a set of DTW distances (from Step 3(b) or 3(c)) for

a video, I reject any subject having DTW distances (either meanwise or pairwise)

greater than:

Q3 + hu(MC) IQR, (5.9)

where Q3 is the third quartile cutoff, IQR is the interquartile range Q3 − Q1, and

hu(MC) = 1.5ebMC, with b = 3, as found in [149] to produce a robust outlier

detection model. The medcouple (MC) is defined as the scaled median difference

between the left and right halves of a univariate distribution and is used here to
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Figure 5.9: Examples of inliers and outliers using meanwise DTW subject rejection.
Each column represents a different video. The top row shows the dynamic time
warped mean waveform and an example inlier waveform. The second row shows the
dynamic time warped mean and an example outlier waveforms.

measure the distribution of skewness in the DTW distances. In my experiments I

found that most of the time, |MCpairwise| > |MCmeanwise|, meaning that histograms

of accumulated pairwise DTW distances tended to be more skewed than those of

accumulated DTW distance to the mean waveforms. However, there were many

cases in which the opposite inequality was true. Thus, pairwise and meanwise

subject rejection methods may handle border cases differently, and by combining

them, I could enforce stricter subject rejection cutoffs. Figures 5.9 and 5.10 show

inlier and outlier examples using both the meanwise and pairwise DTW subject

rejection steps. With either method, it is clear the outlier waveforms have much

larger DTW distances to either the mean (Fig. 5.9) or an identified inlier (Fig. 5.10)

than the inliers do. On average, the proposed subject rejection method identified

only 0.7 subjects per video to be rejected.
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Figure 5.10: Examples of inliers and outliers using pairwise DTW subject rejection.
Each column represents a different video. In the top row, two dynamic time warped
inlier responses are plotted against one another. The second row shows dynamic
time warped inlier and outlier waveforms.

5.3.3 Subject Rejection Methodology for Overall QoE Scores

As mentioned earlier, each subject also provided an overall QoE score for each video,

upon watching the entire sequence. In order to be able to use these scores, I wanted

to retain only those subjects who were able to rate the videos consistently. I followed

a different subject rejection procedure, detailed in the ITU-R BT.500-11 recommen-

dation [139], and used overall QoE Z-scores. By following the recommended steps,

I rejected 6 subjects out of total 54 (3 from each set) and retained 24 subjects per

set for analysis.

As was done in [82], the Z-scores were linearly rescaled so that the scores lay

in the range [0,100]:

z′ij =
100(zij + 3)

6
. (5.10)

I can scale the scores in this way, because if the Z-scores are normally distributed,

then > 99% of the scores will lie in the range [−3, 3], which I found to be the case

in my subjective data.
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Figure 5.11: Histogram of the overall MOS of the distorted videos.

Finally, I computed a Mean Opinion Score (MOS) for each video by averaging

the rescaled Z-scores:

MOSj =
1

M

M∑
i=1

z′ij , (5.11)

where M = 24 subjects after subject rejection in both sets A and B. Figure 5.11

illustrates the mean overall QoE scores across all the distorted test video sequences,

after subject rejection. These scores were found to lie in the range [19.12, 75.82],

and the mean of the standard deviations of the Z-scores obtained from all subjects

across all the videos from both the groups was 16.62.

5.3.4 Temporally Pooling Continuous-Time QoE Scores

I sought to derive a single quality value per video from the continuous data in order

to analyze and compare them with the overall subjective QoE values. I achieved this

by adopting the following two temporal pooling strategies: (a) a per-frame average

of the continuous-time scores (henceforth referred to as average-pooled QoE) and

(b) VQ Pooling as described in [151]. VQ Pooling technique combines the scores

giving lower-quality frames more influence on the overall quality score, supporting

the concept that the worst part of a video tends to attract more attention of the

viewers, thus dominating the overall quality perception of the video [151]. I achieved

a Spearman rank ordered correlation of 0.9128 between the average-pooled QoE and

overall QoE and 0.8685 between the VQ-pooled QoE and the overall QoE.
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This analysis is helpful in comparing overall continuous-time data to reported

overall scores, which are the most commonly collected data points in QoE subjective

studies [82, 83, 84, 85, 86, 87]. Given that a simple arithmetic average weighs each

per-frame score equally, I found that it did not often effectively capture temporal

changes in viewer QoE, which depends on stall features, such as their absolute and

relative locations, lengths, and so on, which do factor into the final overall subjective

QoE scores. Thus, for the subjective data analysis which I describe next, I chose to

rely on the mean overall QoE scores defined in (5.11).

5.4 Analysis of the Subjective Data

Continuous-time subjective data is a valuable resource that could help us better

understand the aspects of rebuffering events (such as their length and frequency

of occurrence) that impact viewer behavior. Such analysis could assist the design

of quality-aware stream-switching algorithms which could influence the occurrence

and lengths of the stalls, for a given network bandwidth budget, such that the end

user’s QoE is maximized. However, when trying to understand the effects of stall

patterns, rather than a single stall event, on continuous-time QoE, I use a single

representative QoE score per video. In this section, I utilize the mean overall QoE

scores to represent the continuous-time waveforms to analyze the effect of the four

stall parameters—stall length, number, position, and the startup delay—on an end

user’s overall QoE. Also, wherever feasible, I report the statistical significance of the

observed differences in QoE by conducting a paired, two-sided Wilcoxon signed rank

test [152] (at significance level α = 0.05). However, as described in Sec. 5.1, the

videos in my collection are of varied lengths, and not all stall patterns were added

to all video contents (Table 5.3). This constraint prevented us from comparing all

of the distortion patterns for each video content or aggregating the continuous-time

scores of all the videos for each distortion pattern. Thus, for the analysis I present
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Figure 5.12: Temporal subjective ratings of a reference video and its corresponding
distorted variants afflicted with short and long initial delays. At x = 0, I plot their
overall QoE scores.

in the following sections, I illustrate the results using only those video contents that

model the specific stall patterns under investigation. I acknowledge that the design

of the test sequences limits the conclusions I can draw from holding video lengths

constant, however, my goal is to develop a general VQA model that can predict

QoE regardless of sequence length.

5.4.1 Effect of Start-up Delay on QoE

To understand the impact of the length of the start-up delay on QoE, I compared

the overall QoE values of videos with only short or long initial delays with the overall

QoE of the reference videos, which do not contain any stalling events (delay lengths

are defined in Table 5.2, and the number of distorted videos per stall pattern are

listed in Table 5.3). I found that the observed difference in the overall QoE scores of

the 4 videos with and without the long initial delays was not statistically significant.

Similar results were obtained for the 5 videos with and without short initial delays.

The duration of the 9 reference videos used to generate the distorted sequences

under consideration were in the range [29, 82] seconds in length with an average

of about 60 seconds. Figure 5.12 illustrates the temporal subjective ratings for a
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Figure 5.13: Temporal QoE ratings and the overall QoE scores (presented at x = 0)
of three different video contents (a) - (c) modeling few (Vf in red) and many (Vm in
green) stalling events of similar lengths. It may be observed that videos with many
stalls consistently score lower, and the gap between the overall scores increases with
the increase in the difference between the many and few stall counts, as illustrated
in (d). Best viewed in color.

reference video1 (of length 82 sec.) and its corresponding distorted variants. It may

be observed that for this video, the subjects were not too frustrated with the initial

delay, and thus the overall opinion scores (presented at x = 0) did not seem to vary

greatly around this factor.

Start-up delays are currently very commonly experienced in OTT video

streaming, which could have led to viewers having a higher level of tolerance to

stalls placed in this particular position, even in short video sequences. It could also

be attributed to the hysteresis (recency) effect [140] experienced by subjects, which

1This was the only reference sequence that was used to model both shortInitial and longInitial
stall patterns.
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Figure 5.14: Temporal QoE ratings and the overall QoE scores (presented at x = 0)
of two different video contents (a) modeling shorter (‘Vl,’ in red) and longer (‘Vh,’
in green) stalling events.

supports the phenomenon that stalls that occur early in a video tend to cause less

viewer annoyance. I study this more closely in Sec. 5.4.4.

5.4.2 Effect of the Number of Stalls on QoE

In order to understand the effect of the number of stalls on QoE (i.e., few vs. many

as defined in Table 5.2), I conducted the following experiment. From each of the

24 unique video contents, I selected contents that were used to model both sfm

and smm stall patterns or those that model both lfm and lmm (refer Table 5.3).

Identifying such video sequences can help us understand the effect of the number of

stalls while keeping stall lengths and start-up delay lengths fixed for a given video

content. I then grouped all the videos containing few distortions in set Vf and their

corresponding videos containing many distortions in set Vm. Some sample video

sequences are illustrated in Figure 5.13. From Fig. 5.13(a) to 5.13(c), I notice that

irrespective of the stall location and the start-up delay lengths, videos with many

stalls annoyed viewers more than videos with few stalls. Further, I found that the

observed difference in the overall QoE scores between the 18 videos that belonged

to sets Vf and Vm was statistically significant. The average duration of these 18

videos was 79.2 seconds.
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To effectively quantify my observation that annoyance increases with in-

creases in the number of stalls, I computed the difference between the overall QoE

scores between the video contents belonging to Vm and Vf and aggregated them

based on the difference between the number of stalls in Vm and Vf
2. In Fig. 5.13(d),

along the x-axis, I plot the difference in the number of stalls between videos be-

longing to Vf and Vm, and along the y-axis I plot the aggregated average difference

between the overall QoE scores. It is obvious in Fig. 5.13(d) that as the difference

in the number of stalls increases, user annoyance increases monotonically.

5.4.3 Effect of the Lengths of the Stalls on QoE

Next, I wanted to understand the effect of stall lengths on viewers’ QoE, i.e., compare

short vs. medium vs. long length stalls as defined in Table 5.2. Towards this end,

out of the 24 unique video contents, I selected contents that were used to model at

least one of the following pairs of distortions (also refer Table 5.3):

1. sfm and sf l

2. sms and smm

3. lfm and lf l

4. lms and lmm

As was done earlier, I constructed two sets Vl and Vh, of videos with low and high

stall lengths respectively. Vl consists of distorted videos with shorter stalls relative

to videos in Vh. For example, Vl may consist of all videos containing sfm or sms

stall patterns, while Vh may consists of the corresponding video contents containing

sfl or smm stall patterns, respectively. Identifying such video sequences can help us

isolate and understand the effect of the length of stalls, keeping the number of stalls

2The videos with few stalls had 1−3 stalls and videos with many stalls had 4−7 stalls. Therefore,
the difference in the number of stalls between videos belonging to Vf and Vm ranges between 1− 6
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and the length of start-up delays fixed for a given video content. However, I note

that a video with few stalling events can have anywhere between 1− 3 stalls, while

videos with many stalling events can have anywhere between 4 − 7 stalls. Thus, I

denote the total number of stalls for each video content belonging to Vl and Vh as

nsl and nsh respectively.

By comparing the overall QoE scores from both the groups, I observed that:

1. For the 25 video contents where the total number of stalls in Vl were less than

those in Vh (i.e., nsl ≤ nsh), I found that the observed difference in the overall

QoE was statistically significant.

2. However, for the 11 video contents where nsl > nsh, the observed difference

in overall QoE was not statistically significant.

3. Irrespective of the number of stalls, during a stall event, viewers’ QoE val-

ues dropped more steeply to lower values for longer stalls than for short (or

medium) length stalls. Figure 5.14 illustrates two examples.

4. Irrespective of the number of stalls, after a stall event, viewers’ QoE seems to

recover quickly. However, it appears to recover to a lower value each time due

to the occurrence of the stall.

This analysis indicates that, given two stall patterns, if the number of stalls are

equal, then the stall length exerts more influence on an end users’ QoE. Also, an

increase in the number of stalls causes more viewer annoyance than do the lengths of

the stalls. To more closely study this observation, I chose to compare video contents

that modeled few medium length stalls, i.e., sfm or lfm (set Vfm) against those

containing many short length stalls, i.e., sms or lms (set Vms). A video content

belonging to both sets would have stalls occurring at the same location (B, M, E, or

U). For each of the 7 videos contents that belonged to both video sets, Vfm and Vms,

I found that videos with many short stalls were consistently rated lower (Fig. 5.14
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(b)). Further, I also found that this observed difference in perceived QoE between

these two stall patterns was statistically significant.

5.4.4 Effect of the Position of the Stalls on QoE

As mentioned earlier in Sec. 5.1.2, all of the stall patterns designed in the current

study were placed in one of the four positions: beginning, middle, end, or distributed

uniformly throughout a video (refer Fig. 5.3). This was done to enable us to study

the effect of the position of the stalls on viewers’ QoE. Therefore, as was done earlier,

out of the 24 unique video contents, I selected the distorted contents that consisted

of similar distortion patterns occurring both at an earlier and at a later point in the

video, and constructed two sets: Vp and Vs. This was done for all distortion patterns

listed in Table 5.3 except for shortInitial and longInitial. I considered the following

order of positions: B ≺ M , M ≺ E, B ≺ E.3 Thus, the predecessor belonged to

Vp and the successor to Vs. For example, I identified distorted videos afflicted with

B smm and E smm, for each of the 24 unique video contents. The distorted video

sequence with B smm belonged to Vp and the one with E smm belonged to Vs.

Further, I denote the number of stalls occurring in a video belonging to either Vp

or Vs as nsp or nss respectively. Identifying such video sequences helps us isolate

and understand the effect of stall position, while keeping the stall lengths and the

start-up delay lengths fixed for a given video content. By comparing the overall

QoE scores from both sets, I observed the following:

1. For the 9 videos where nsp ≤ nss, in most cases, videos belonging to Vp had

higher overall QoE when compared to their corresponding video contents in

Vs. This phenomenon of distortions that occur early on in a video sequence

having less effect on a viewer’s QoE is referred to as the ‘subjective hysteresis’

effect [140], since the memory of poor-quality elements in the recent past

3Position U (uniformly throughout) was not considered in this analysis.
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causes subjects to provide lower quality scores immediately following the event.

However, this observed difference was not statistically significant in the case

of these 9 videos. The average duration of these 9 videos was 71 seconds.

2. For the 3 videos where nsp > nss, I found that the overall QoE values of

videos belonging to Vp was less than the overall QoE of those belonging to

Vs. This suggests that videos with more frequent interruptions annoy a viewer

the most, even if the interruptions occur at the beginning of a video playback.

The average length of these 3 videos was 60 seconds.

It is not the case that the perceived overall QoE is unaffected by stall position.

Note that I was limited by the number of available videos from conducting a more

detailed analysis. In this direction, an even more focused study using videos of longer

duration, with stalls occurring at various locations and sufficient data samples per

location could further deepen my understanding of the dependency between the stall

positions and QoE.

5.4.5 Recency, Primacy, and Repetition Priming

Since subjective overall QoE scores were gathered at the end of each video’s play-

back, I wanted to evaluate the extent to which the ‘recency effect’ influenced these

scores. I observed evidence supporting the influence of recency, detailed in Sec.

5.4.4, where videos with stalls at the beginning of video playback were perceived to

be of higher quality than those with the exact same stall pattern occurring at the

end of playback. However, I wanted to understand the extent of this effect and the

complex interplay of recency and the number and length of stalls in more depth.

To further my understanding, I once again compared video contents that modeled

either of the following pairs of distortions (also refer to Table 5.3):

1. B smm vs. E sms
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2. B smm vs. E sfl

3. B smm vs. E sfm

4. B sms vs. E sfl

I then grouped all the videos afflicted with either of the above listed distortions

into Vb or Ve, depending on whether the stalls were located towards the beginning

or end, respectively, of the video sequence. I found that in the 5 video contents

that modeled any of the above pairs of distortions, the number of stalls had a more

prevailing effect on viewer perception, as illustrated in Fig. 5.15. The average length

of these 5 videos was 88 seconds.

Many factors other than recency could contribute to this subjective behav-

ior. The ‘primacy effect’ [153] refers to the phenomenon of being able to recollect

(stalling) events that occurred at or near the beginning of a temporal sequence more

clearly than those that occurred around the middle. ‘Repetition priming,’ [154, 155]

caused by the repetition of stalling events at the beginning of a video’s playback,

could lead to the encoding of this experience in memory. Thus, when providing over-

all QoE scores, a viewer could be influenced by recollections of unpleasant viewing

events related to repetition priming, primacy, and recency.

In the real world scenario of video streaming on mobile devices, frequent

rebuffering events—either long or short—at the beginning of a video could lead to

viewer abandonment [96]. My analysis, albeit on a small video collection, suggests

that, under a given network bandwidth budget, introducing stalling events early

on in a video sequence by the stream-switch controllers can lead to severe viewer

annoyance and should probably be avoided.

123



0 500 1000 1500 2000 2500 3000

Frameindex

30

35

40

45

50

55

60

65

S
u

b
je

c
ti
v
e

 Q
o

E

B_smm

E_sfm

0 500 1000 1500 2000 2500 3000 3500

Frameindex

30

35

40

45

50

55

60

65

70

S
u

b
je

c
ti
v
e

 Q
o

E

B_sms

E_sfl

Figure 5.15: Temporal QoE ratings and the overall QoE scores (presented at x = 0)
of two different video contents (a) modeling stalls in the beginning (‘Vb,’ in red) and
in the end (‘Ve,’ in green).

Table 5.4: Questionnaire Responses

Survey question % of subjects
responding Yes

% of subjects
responding No

Did you find it hard to rate your viewing experience? 40% 60%

Would you have preferred fewer videos per session and more
sessions?

42% 58%

Would you have preferred fewer sessions and more videos per
session?

30% 70%

Would you have preferred longer videos? 23% 77%

Did you feel any visual fatigue during the course of study? 38% 62%

Do you think you would be less fatigued and more engaged if
there were fewer stalling events?

72% 28%

5.4.6 Summary of the Analysis

In this section, with the help of this subjective data, I focused on gaining insights

into the way viewers respond to different stall parameters. I found that start-up

delays did not significantly impact overall QoE, whereas the number of stalls did.

I also found that stall length negatively impacts overall QoE, but the frequency of

stall events had a more significant effect. Additionally, when analyzing evidence of

the recency effect, I found that frequent poor-quality experiences in distant memory

can also have a significant impact on overall QoE.
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5.5 Analyzing the Survey Responses

As mentioned earlier, all of the subjects participated in a survey at the end of the

subjective study. I summarize all of their responses in this section.

Level of concentration of the subjects

I asked the subjects from both A and B groups to rate their level of concentration

throughout the study on a scale of 1 to 5, with 1 indicating that the subject was

very distracted and 5 indicating that the subject was very concentrated throughout

the study. I found that the average concentration level of all the subjects was 3.99

and the average standard deviations of the reported concentration levels was 0.78.

Level of interest in the test video contents

I also asked all of the subjects to rate their interest level in the test video content

on a scale of 1 to 5, with 1 indicating very boring content and 5 indicating very

interesting content. Subjects reported an average interest level of 3.18.

Repetition of the video content

As described in Sec. 5.1.3, each stall pattern was added to 4−8 videos. This design

choice was partly to assist us in studying the effects of different stall patterns on any

given content. However, about 76% of subjects expressed that the content was too

repetitive. When asked what they believed to be an acceptable number of times a

given content could be repeated, their average response was 3.7 videos per session,

with a standard deviation of 1.5.

Table 5.4 presents the responses to a few more questions asked in the survey

session. I wanted to understand if the highly subjective and subtle task of rating

QoE was understandable to the subjects. The questions were designed to gather

feedback on the test set-up, number of sessions, and length of videos preferred by
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the subjects. From the responses presented in Table 5.4, it can be understood that

subjects would prefer watching fewer videos distorted with stalling events, as they

are visually fatiguing.

5.6 Conclusion

In this chapter, I described the details of a new database called the LIVE Mobile

Stall Video Database-II designed to gain a deeper understanding of viewer behavior

when exposed to videos with realistic network-induced rebuffering events. I also dis-

cussed a subjective study I conducted using this database to collect continuous-time

subjective QoE scores. Further, with the lack of publicly-available video databases

that model such distortions, I hope that this new video database can be of use to

researchers developing stall-dependent QoE models.

This subjective data and the insights gained by the analysis presented in

Section 5.4 proved to be valuable when analyzing the aspects of stalling events that

most impact viewer experience, and assisted in designing automatic QoE predictors

which I describe in the next chapter.
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Chapter 6

A Continuous-Time Streaming

Video QoE Model

Using the analysis of the subjective study results presented in Chapter 5, I next

aimed to tackle the problem of developing perceptually-accurate QoE prediction

models that perform well on video contents afflicted with several different aspects

of stalling events, in addition to variations in their spatio-temporal quality (due to

compression, upscaling, frame rate distortions, and so on). As mentioned in Section

2.4.2, a number of QoE prediction algorithms exist in the literature that predict

a global quality score for an entire video sequence. However, current streaming

technologies are almost exclusively based on DASH or HLS, which adaptively select

the optimal video levels. Thus, having an accurate measure of video QoE at any

given instant would be much more valuable than obtaining a single overall QoE

prediction at the end of the video.

In this chapter, I will describe an objective, no-reference, continuous-time

QoE predictor called the Time-Varying QoE (TV-QoE) Indexer for processing

streaming videos afflicted by stalling events and quality variations [156]. Towards

solving this problem, I sought to solve several sub-problems simultaneously, includ-
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Figure 6.1: An example video sequence with 6 stalling events from the LIVE Mobile
Stall Video Database-II [7], where the stall waveform (in red) is overlaid on the
average of the temporal subjective QoE scores from each subject (in blue). For the
purpose of illustration, a value of 0 in the stall waveform indicates normal video
playback, while a value of 50 in the stall waveform indicates a stalling event.

ing how factors such as stalling event properties, the network buffer state, and video

content impact an end user’s QoE. This chapter is organized as follows:

1. First, I describe the comprehensive set of continuous-time, stall-informative,

video content-informative, and perceptual quality-informative inputs that I

derive from distorted videos. These inputs contain useful evidence descriptive

of the effects of stalls and quality degradations on the time-varying QoE of a

streaming video (Section 6.1.1).

2. In Section 6.1.2, I mathematically model the dynamics of a client-side net-

work buffer that takes into account the variations in the bitrates at which

the streaming video segments are encoded, as well as the instantaneous net-

work throughput. This dynamic model serves as a valuable indicator of the

fluctuations in perceived QoE due to stalling events.

3. I employ a Hammerstein-Wiener model that effectively captures the hysteresis

effects that contribute to QoE using a linear filter. Further, it also accounts

for the nonlinearity of human behavioral responses using nonlinear functions
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at the input of the linear filter (Fig. 6.7). Each distortion-informative input

is independently used to train a HW model with memory, resulting in an

ensemble of HW models. The details of these approaches is discussed in Section

6.2.

4. I fuse the predictions of these individual HW models by employing and com-

paring two different strategies: (a) a multi-stage approach, in which the

Hammerstein-Wiener models are concatenated, such that the predictions from

the learners at one stage are supplied as inputs to another HW Model at a

subsequent stage and (b) a multi-learner approach, in which the predictions

of the individual HW models are used to train a different learner, called the

meta-learner [157]. These two predictors, described in detail in Section 6.2,

are independently trained to predict continuous-time ground truth QoE scores.

5. To address the side problem of predicting the overall perception of the quality

of experience after viewing a video, I derive useful global statistics from the

proposed comprehensive set of continuous-time inputs, and I also design a

global overall QoE predictor (Section 6.3).

6. In Section 6.4, I present the results obtained from evaluating state-of-the-

art models and TV-QoE predictors (multi-stage, multi-learner, and global)

on three different video QoE databases. I also present my analysis on the

performances of the proposed and existing models when different amounts

and types of information about the test video are available.
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6.1 Modeling Continuous-Time Inputs for QoE Predic-

tion

The subjective data that I gathered on the LIVE Mobile Stall Video Database-II [7]

(Chapter 5) proved to be a valuable resource to better understand various aspects of

rebuffering events, such as their length, density, and location within a video, on an

end users’ QoE. With a goal to model the effects of stalls as well as video content,

distortion, and other factors on QoE, I designed a number of stall-informative and

content-informative input channels that I describe next.

6.1.1 Video Stall-Driven Inputs

Stall Length

One of the inputs (u1[t]) is designed to capture the impact of stall lengths on QoE.

Given a video, if s1[t] denotes the length of a stall at a discrete time instance t, then

let

u1[t] = eα1s1[t] − 1, (6.1)

where α1 is a scalar chosen via cross-validation (Sec. 6.4). The choice of a nonlinear

exponential function to express the influence of stall lengths on predicted QoE is

motivated by the basic observation that viewer annoyance increases with rebuffering

length [7]. Using a parameterized exponential makes it possible for TV-QoE to learn

the steepness of the stall-length / annoyance relationship.

Total number of stalls

I also found from my analysis of the subjective data in [7] that, as the number of

stalls increases, user annoyance increases monotonically, irrespective of the video

content or duration. Further, as may be observed in the example in Fig. 6.1,

perceived QoE tends to decrease with every stall occurrence. To capture the impact
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of the number of stalls on QoE, I defined another dynamic input

u2[t] = eα2s2[t] − 1, (6.2)

where s2[t] is the total number of stalls up to a discrete time instance t. Again, using

an exponential model makes it possible to capture a viewer’s annoyance against the

number of stalls. The parameter α2 is also a scalar chosen via cross-validation (Sec.

6.4).

Time since the previous stall

The next continuous-time input targets recency. Viewers generally react sharply to

a stall occurrence, and as the period of time following the end of a stall increases, the

viewer’s perceived QoE may reflect improved satisfaction with the streaming video

quality. However, immediately (and for some period of time) following a stall, the

viewer’s perceived QoE generally reflects heightened annoyance with the streaming

quality. I found clear evidence for this behavior in the continuous-time subjective

data obtained on the LIVE Mobile Stall Video Database-II [7]. Figure 6.1 also

illustrates this behavior.

Thus, the third input to the TV-QoE model is the time since the preceding

rebuffering event at every discrete instant t, with values of zero representing times

during stalls. If [Ti,end, Ti+1,begin] denotes the discrete time interval between the

stall event (si) ending at time Ti,end and the next stall event (si+1) starting at time

Ti+1,begin
1, then

u3[t] =


t− Ti,end if [Ti,end ≤ t < Ti+1,begin]

0 if [Ti,begin ≤ t < Ti,end]

. (6.3)

1If there does not exist a stall event si+1, then Ti+1,begin denotes the end of the video.
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Figure 6.2: (Top row) A sample test video impaired by intermittent stalling events.
(Bottom two rows) Stall-descriptive continuous input waveforms computed from a
video sequence as described in Sec. 6.1.1. The vertical axis labels the type of input.
Best viewed in color.
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Inverse Stall Density

In addition to the various individual stall properties, the length of the video sequence

containing stalls also affects viewer QoE. For instance, two videos of different lengths,

one 20 seconds long and another 100 seconds long, but having the same stall pattern

(i.e., one 5 second stall towards the end of the video) are likely to be perceived very

differently by viewers. Thus, the next dynamic input I design is the reciprocal stall

density at discrete time t, which provides a way of accounting for the length of

the video (that includes the rebuffering events) relative to the total number of stall

events that have occurred at any given instant. The inverse stall density is simply a

discrete time t divided by the number of rebuffering events in the video up to time

t:

u4[t] =
t

s2[t]
. (6.4)

The inverse stall density adds a normalized time factor to the model and incorporates

the combined effect of video length and stall positions.

Frequency of stalling events

Next, I sought to define a model input that excludes the effects of stall lengths, in-

stead capturing the interplay between the number of stalling events and the length

of video playback time up to a given time instant (p[t]). Therefore, the next in-

put captures the effects of the density of the stalls on QoE relative to the current

moment. The frequency of stalling events (u5[t]) at a given time t is given by

u5[t] =
p[t]

s2[t]
, (6.5)

where s2[t] is the total number of stalls up to time t.
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Rebuffering rate

While the inverse stall density and frequency of stalling events inputs capture im-

portant interactions between video length, playback time, and the number of stalls,

the next input to the model focuses exclusively on the interplay between stall lengths

and the length of playback up to a given time instant (p[t]). To motivate the con-

struction of this input, consider a single, very long stalling event in a video of length

90 seconds. This event may impact QoE differently than would a relatively short

stalling event in a 20-second video. To effectively account for this hypothesis, I

define the rate of rebuffering events as:

u6[t] =
r[t]

r[t] + p[t]
, (6.6)

where r[t] is the total sum of stall lengths up to time t, and p[t] is the playback time

up to time instant t.

6.1.2 Modeling the Dynamics of the Client-Side Network Buffer

As previously mentioned, OTT services employ adaptive bitrate streaming algo-

rithms, wherein the end-to-end network conditions are constantly monitored, and

the bitrates of future video segments are chosen based on the current network buffer

status of the client’s media player, with a goal to minimize the occurrences of stalling

events. However, under constrained network conditions, the state of the network

buffer varies dynamically, and a stream-switching controller constantly chooses ei-

ther to request a lower bitrate video segment or to risk the possibility of stall occur-

rence. Thus, the dynamics of a network buffer have a direct impact on streaming

video quality but are not being modeled in any existing QoE models [110, 8, 158].

Existing publicly available QoE databases have been constructed by system-

atically inserting a variety of predefined stalling patterns in a controlled manner into
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a small set of high-quality videos, thereby generating distorted video content [7, 8].

Thus each distorted video is not accompanied by the associated ground truth dy-

namic network buffer capacity that could have caused the underlying impairments.

To overcome this challenge, I designed a simple model for a client-side network

buffer, which I describe next. Note that, in the event that a media-streaming ser-

vice or a QoE database can make available the actual network buffer capacity trace,

then it could be directly plugged into the proposed QoE learner without needing to

explicitly model the network buffer as I do below.

Assumptions and Notation: I make the following assumptions about the client-

side network buffer, which are reflected in my mathematical model.

1. That a client-side network buffer is of a fixed size with a capacity measured

in seconds. BUFF MAX CAPACITY is defined as the maximum amount

of video content that can be stored in a buffer.

2. Without loss of generality, that each video segment that is being adaptively

transmitted from the media server is 1 second long.

3. That the buffer capacity builds and depletes exponentially. However, a differ-

ent function can be easily applied in place of the exponential function.

4. That BUFF MIN CAPACITY = 1, which is the minimum amount of video

(in seconds) that should be present in the network buffer for it to be able

to handle input bitrate variations. This quantity can also be understood as

requiring the network buffer to contain at least one second’s worth of video

content in order to continue playback on the client’s media player. If the buffer

state does not satisfy this minimum requirement, the result on the client side

would be the occurrence of a rebuffering event.

5. O[t] is the rate at which the video content leaves the buffer at time t. It can
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take one of the two possible values

O[t] =


1, during playback

0, during stall

(6.7)

i.e., one second of video content leaves the network buffer during each second

of playback, and no video content leaves during a playback interruption.

6. Let B[t] be the amount of buffer that is occupied with video content and ∆B[t]

be the rate of change of the buffer occupancy at a given discrete time instant

t.

7. Let L[t] denote the bitrate at which the incoming video segment is encoded,

and I[t] be the network throughput at time t.

At a given discrete time instant t, the rate of change of the buffer occupancy can

be defined as follows [77]:

∆B[t] =
I[t]

L[t]
−O[t], (6.8)

i.e., ∆B[t] is the difference between the amount of video (in seconds) that is entering

the buffer and the amount of video (in seconds) that is leaving the buffer. Thus,

variations in the buffer occupancy can be introduced due to changes in I[t] or L[t].

When videos are encoded under a constant bitrate (CBR) regime, then L[t] is fixed

over the entire duration of the video sequence being streamed, which would not be

the case for videos encoded under a variable bitrate (VBR) regime.

In the proposed model, the client-side network buffer can exist in one of the

following three phases:

1. A steady-state phase where there is sufficient content in the network buffer

to be transmitted to the client’s media player at time t, i.e.,

B[t] ≥ BUFF MIN CAPACITY .
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Figure 6.3: Illustration of a possible client-side network buffer state.

2. A build-up phase, where the buffer builds up until it reaches

BUFF MIN CAPACITY , i.e., until B[t] < BUFF MIN CAPACITY .

In this phase, set O[t] = 0 until I[t]/L[t] ≈ BUFF MIN CAPACITY . In

other words, until the buffer contains at least one second of content, no amount

of video content can leave the buffer, and thus, a rebuffering event occurs.

3. A depletion phase that occurs when I[t]/L[t] < O[t]. In this phase, the

amount of data leaving the buffer is greater than the amount of data entering

the buffer, which causes the buffer to slowly deplete until there is no more

data to transmit.

I will now illustrate how a network buffer might transition from one state to another

through a general scenario. Consider a video sequence v[t] such that

1. there is a stall event between times t1 and t2;

2. there is smooth continuous playback between times t2 and t3;

3. and there is another stall event that occurs after t3.

A possible network buffer scenario can be described as follows:

1. At a discrete time instant t = t1, the buffer starts off empty, but it must enter

the build-up phase before t = t2 for playback to begin.

2. Next, the buffer must be in the steady-state phase for some time (ts) be-

tween t2 and t3.
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Figure 6.5: Example video sequence with one stall between t1 and t2 and another
stall at t3. A value of 0 in this waveform indicates successful video playback, while
a value of 1 indicates a stall event.
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3. The buffer should next enter the depletion phase and must be completely

empty at t = t3, for a stall to occur at t = t3.

I effectively model the different phases of the buffer as follows:

1. Modeling the buildup phase (between t1 and t2):

• I randomly sample a discrete time instant tb between times t1 and t2.

• I fit an exponential function between data points (tb, 0) and

(t2, BUFF MIN CAPACITY ).

2. Modeling the depletion phase (between t2 and t3):

• I randomly sample a discrete time instance td between times t2 and t3.

• I fit an exponential function between data points

(td, BUFF MIN CAPACITY ) and (t3, 0).

During smooth playback (steady-state phase), the buffer capacity is not necessarily

always at BUFF MIN CAPACITY , but instead can fall anywhere in the range

[BUFF MIN CAPACITY, BUFF MAX CAPACITY ]. However, I chose not to model the

steady-state phase of the network buffer, because it does not cause any quality

degradations in the streaming video, and therefore does not influence viewer QoE.

6.1.3 Video Content-Driven Inputs

As mentioned earlier, in addition to stalling events, a viewer’s QoE can further be

affected by the interplay of other factors such as video quality (due to the presence

of distortions), and the spatial and temporal complexities of the video. During the

subjective study in [7], I instructed subjects to not judge a video based on their

interest in the content, but I did not provide instructions regarding the audio or the

video presentation quality. To deepen my understanding in these regards, I sought

to study the contributions of these aspects on QoE.
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Figure 6.6: Illustrating a possible client-side buffer state (in blue) for a given play-
back state (in red). Best viewed in color.

Perceptual Video Quality

Perceptual video quality can be defined as the quality of a digital video as perceived

by human observers, as a reaction to the presence of different forms of spatial and

temporal distortions. Rebuffering events, while a form of distortion, do not fall

in this category. Bitrate variations and rebuffering events co-occur in streaming

videos, and although rebuffering events are more likely to dominate a viewer’s QoE,

rapid bitrate variations can also significantly impact an end user’s dynamic viewing

experience and must be accounted for when designing a QoE predictor.

Towards this end, I incorporate either a full-reference, a reduced-reference, or

a no-reference video quality assessment (VQA) algorithm [91, 33, 39] in the TV-QoE

model, depending on the application scenario. Given the information provided by

an objective VQA algorithm, I compute a perceptual VQA score at every second,

which provides a continuous-time waveform of perceptual quality. This serves as

another continuous-time input to the proposed QoE predictor.
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Video Space-Time Perceptual Measurement

Videos contain highly diverse spatial and temporal complexities, and different video

contents may be retained differently in memory [159, 160]. These may both interact

with past memories of unsatisfactory viewing experiences, e.g., caused by rebuffering

events or bitrate drops. The perceptual video quality input designed in Sec. 6.1.3 is

not sufficient to capture this aspect, so I chose to use a variant of a spatial-temporal

metric called scene criticality [161]. Let Fn denote the luminance component of a

video frame at instant n, and (i, j) denote spatial coordinates within the frame. A

frame filtered with the spatial Sobel operator [162] is denoted as Sobel(Fn). Also

define the frame difference operation Mn(i, j) = Fn(i, j)−Fn−1(i, j). As formulated

in [139], spatial perceptual information (SI) and temporal perceptual information

(TI) measurements are computed as

SI[n] = STDspace

[
Sobel(Fn(i, j))

]
, (6.9)

TI[n] = STDspace

[
Mn(i, j)

]
, (6.10)

where STDspace denotes the standard deviation computed over all the pixels of a

given image (Fn or Mn). These are simple, widely used measurements of video

activity [139].

By combining these quantities, a continuous-time scene criticality input at

every n is arrived at:

Criticality[n] = log10

[
SI[n] + TI[n]

]
. (6.11)

I study the efficacies of each of these content-driven inputs on continuous-time QoE

prediction in Sec. 6.4.
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6.2 Training a Continuous-Time QoE Predictor

6.2.1 Hammerstein-Wiener Model

When designing a dynamic model that can accurately predict perceived QoE, struc-

tural simplicity and computational efficiency are highly desirable. Moreover, the

dynamic model should also crucially account for the affects of subjective hysteresis

and memory on viewers’ QoE [140, 163]. While a simple linear system model would

be desirable, human visual responses contain numerous nonlinearities [164, 165, 166],

which should also be modeled.

Thus, towards simultaneously capturing the nonlinearities in human visual

responses and the hysteresis effect, I employ a classical nonlinear temporal system

called the Hammerstein-Wiener (HW) model [167]. The core of the HW model

is a linear filter with memory [167] to capture the hysteresis effect, with an input

point nonlinearity of a very general form to allow the model to learn nonlinearities.

This simple design makes it possible to capture both linear and nonlinear aspects

of human behavioral responses. The output linear scaling block simply scales the

output of the linear filter to continuous-time quality scores. Figure 6.7 shows a block

diagram of the single-input single-output (SISO) Hammerstein-Wiener model that

I use.

The linear filter block of the proposed model (See Fig. 6.7) has the following

form:

x[t] =

nb∑
d=0

bdw[t− d] +

nf∑
d=1

fdx[t− d]

= bT (w)t−nb:t + fT (x)t−nf :t−1,

(6.12)

where w[t] is the output of the nonlinear input block at time t. The parameters

nb and nf define the model order, while the coefficients b = (b1, ..., bnb)
T and f =

(f1, ..., fnf )T are learned.
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Figure 6.7: Block diagram representing the structure of a Hammerstein-Wiener
model.

At the input, I process the signal with a generalized sigmoid function of the

form

w[t] = β3 + β4
1

1 + exp(−(β1u[t] + β2))
. (6.13)

The output block, which scales the output of the linear IIR filter to a continuous-

time QoE prediction, is a simple linear function of the form

y[t] = γ1x[t] + γ2, (6.14)

where β = (β1, ..., β4)T and γ = (γ1, γ2)T are also learned.

6.2.2 An Ensemble of Hammerstein-Wiener Models

The HW model is the building block of the proposed continuous-time QoE predictor.

Each of the distortion-informative continuous-time inputs (detailed in Sec. 6.1) is

independently used to train a HW model, thereby leading to an ensemble of M HW

models. My next task is to accurately combine them to jointly model the interactions

between these factors. Formally, if Yi ∀i = 1, 2, ..M are the continuous-time outputs

predicted from each HW model (HWi), then

Ycombined = Φ(Y1, Y2, Y3, ..YM ), (6.15)

where Φ is a function that maps the individual outputs to a combined desired

output Ycombined. In this case, I have a total of 9 inputs (7 stall-derived and 2

content-derived) to design an ensemble of M = 9 SISO HW models. I chose to
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Figure 6.8: The multi-stage framework for predicting dynamic QoE.

strategically combine these models by learning Φ via the following two alternative

approaches:

Multi-Stage Approach

In this approach, I utilize the predictions from each HW model (HWi) to train

another Wiener model2 (Fig. 6.8). Specifically, each individual prediction serves as

input to another linear filter (in the second stage), followed by an output linearity

block. Thus, the model in the second stage is a MISO (Multiple Input, Single

Output) Wiener model. Given a test video’s distortion-informative inputs, I use

the trained multi-stage framework to directly derive the final continuous-time QoE

prediction Ycombined .

Although I utilized a two-stage model here, I note that this can be easily

extended to more stages if desired. For example, by training separate MISO Wiener

models for stall-derived and content-derived inputs, then fusing them using another

MISO model, a third stage could be added to the framework, and so on.

Multi-Learner Approach

I denote the continuous-time output of a HWi model for a given video content of

length V seconds as Yi = [yi1, yi2, yi3, ...yiV ]. In this approach, I first construct a set

of instance-label pairs for each video content, (ȳIn, y
L
n ) ∀ n = 1, 2, ..V , where yLn is

2A Hammerstein-Wiener model without an input non-linearity block is a Wiener model [168].
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Figure 6.9: The multi-learner framework for predicting dynamic QoE.

the ground truth subjective QoE at time instant n and ȳIn = [y1n, y2n, ...yMn] are the

predictions from each of theM HW models at time instant n. Using the instant-label

pairs of all the video contents in the training set, I train a support vector regressor

(SVR) to learn the mapping function Φ. I illustrate this learning framework in

Fig. 6.9. Thus, in this approach, I use multiple learners: Hammerstein-Wiener

models that predict the continuous-time outputs Yi, and an SVR that learns Φ.

Given a test video’s distortion-informative inputs, I use the pre-trained HW models

and Φ to directly derive Ycombined using an SVR. Since the SVR is trained on the

predictions of other learners, it is a meta-learner [157]. Other learners (random

forests, multilayer perceptron, etc...) could also be used in place of the SVR.

6.2.3 Advantages of the Proposed Dynamic Frameworks:

• Structural Flexibility: The proposed ensemble framework is extremely flex-

ible, since it can be further supplemented with any number of additional inputs

(or by eliminating any ineffective ones), without changing the general structure

of the model.

• Computational Efficiency: Each of the SISO HW models are extremely

fast (the average training time on a video of average length 86 seconds was
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0.54 seconds3). The models can also be trained in parallel to improve the

overall computation time on a test video.

• Modeling the effects of Memory: The long-term and short-term effects of

memory on viewing experience could be easily modeled by adding more SISO

HW models to the ensemble using the same kinds of distortion-informative

dynamic inputs, but with varied amounts of memory parameters (nb and nf

defined in Equation (6.12)).

Note that a single MISO HW model could potentially be designed instead of con-

structing an ensemble of SISO HW models. However, this approach has several

disadvantages: 1) the train and test times would be very high when training on

multiple nonlinearly transformed inputs. 2) a MISO HW model cannot be trained

on different inputs in parallel, and 3) jointly learning multiple input non-linear func-

tions requires a very large amount of training data which is not available in any of

the existing QoE databases.

6.3 An Overall QoE Predictor with Global Video Fea-

tures

Although continuous-time QoE predictors are valuable, there is also a need for

accurate, computationally efficient overall (end-of-video) QoE predictors that could

be used when the resources of the stream-switching controllers are limited or when

a different analysis is desired. Thus, I also trained an overall QoE predictor by

designing comprehensive global features (listed in Table 6.1) which are derived by

effectively encapsulating the aforementioned continuous-time inputs. With regards

to the perceptual quality score feature, as I describe in Sec. 6.4.4, I tested different

3These runtimes were obtained using MATLAB’s implementation of the Hammerstein Wiener
model [168] when executed on Ubuntu 14.04 OS with an Intel i7 CPU (single processor) and 32
GB of RAM.
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Table 6.1: Description of the proposed global video QoE features.

Type of the feature Definition

Number of stalls -

Sum of the lengths of all stalls -

Rebuffering Rate TotalP laytime
TotalV ideoLength

Frequency of stalling events TotalP laytime
NumberofStalls

Time since the end of last
quality impairment

-

Perceptual Quality Score -

pooling strategies and different objective VQA algorithms in regards to their ability

to derive a single, effective, representative quality score to be used as a feature to

feed the proposed global model.

A non-linear mapping was learned between these global features and the

corresponding real-valued overall QoE scores of the training videos, using an SVR

with a radial basis kernel function. Given any test video’s features as input to the

trained SVR, a final QoE score may be predicted. The optimal model parameters of

the learner were found via cross-validation. My choice of the model parameters was

driven by the obvious aim of minimizing the learner’s fitting error to the validation

data (details in Sec. 6.4).

6.4 Experiments

I evaluated the proposed TV-QoE model and all other currently known continuous-

time QoE and global QoE predictors on three different databases: the LIVE Mobile

Stall Video Database-II [7], the Waterloo QoE Database [8], and the recent LIVE-

Netflix Video QoE Database [9]. Every distorted video in the LIVE Mobile Stall
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Video Database-II is afflicted by at least one stalling event. However, 60 of the 180

distorted videos in the Waterloo QoE Database, and 56 of the 112 videos of the

LIVE-Netflix Video QoE Database are afflicted only by compression artifacts. Since

stall-based inputs are not applicable to videos having only compression artifacts, I

constructed two disjoint video sets: Vs and Vc, comprising videos afflicted with only

compression artifacts and videos afflicted with combinations of stalling events and

compression artifacts (if any), respectively4. In each of the experiments I describe

below, I evaluated the performance of the various predictors on both of these disjoint

video collections, wherever applicable.5

For every experiment, each database (and video set) was partitioned into

training and testing data (80/20 split) with non-overlapping content. To mitigate

any bias due to the division of data, the process of randomly splitting each dataset

was repeated 50 times. Since global TV-QoE and one of the compared models

(V-ATLAS [169]) are learning-based, in each iteration, a model was trained from

scratch on the 80% of the data that was set aside for training, then evaluated on

the remaining 20% of the test data. FTW [170] and the Streaming QoE Index

(SQI) [8] are training-free algorithms, but for a fair comparison with the learning-

based models, I report their performance on the test data alone. For each test split,

depending on the type of predictor being evaluated (continuous-time or global), I

computed three different metrics as described below:

1. Continuous-time performance was evaluated by computing the median of

the per-frame correlation and root mean square error (RMSE) between the

subjective and the estimated continuous QoE for each distorted test video.

The median of these per-video correlations and errors was computed as a

performance indicator of the given split.

4Skipping stall-based inputs is the same as setting all stall-based inputs to zero, provided that
these instances are carefully handled in the feature normalization step.

5Note that Vc is the empty set ∅ for LIVE Mobile Stall Video Database-II.
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2. Overall QoE performance of a global QoE predictor for a given split was

evaluated by computing the correlation and RMSE between the predicted

overall QoE and the ground truth overall QoE of the test videos.

For continuous-time as well as global predictors, I report the median Pearson

Linear Correlation Coefficient (PLCC), median Spearman Rank-Order Correlation

Coefficient (SROCC), and the median RMSE across the 50 test splits. Higher cor-

relation values indicate better performance of a QoE prediction model with better

monotonicity and linear accuracy, while lower RMSE values indicate better accu-

racy of the model. Since SQI and FTW are training-free algorithms, their predic-

tions were passed through a logistic non-linearity [3] mapping them to the ground

truth QoE scores before computing PLCC. Furthermore, since the Waterloo QoE

Database [8] does not contain ground truth continuous-time subjective scores, I was

only able to evaluate global QoE models on that database. The continuous-time

TV-QoE predictors were superior to all the compared models on all databases with

statistical significance. I report the results of the statistical significance tests that I

conducted on the results of every experiment described below in Section 6.4.5.

Parameter selection: To find the optimal parameters for each individual

Hammerstein-Wiener QoE prediction model in the ensemble, I determined the model

order parameters (nb, nf , b, f, β, and γ), and the input nonlinearities via cross-

validation on the LIVE Mobile Stall Video Database-II [7]. Performing a simple

grid-search resulted in the values nb = 4 and nf = 3 being chosen as the final model

parameters for each of the SISO Hammerstein-Wiener models in the ensemble. I

also determined the values of the weights α1 in (6.1) and α2 in (6.2) using cross-

validation. Specifically, I performed a grid search varying both scalars between

0.1 and 0.7 in steps of 0.1, trained a series of models using the training data, and

evaluated the performance of each on the validation data. I found that the models

with α1 ≈ 0.2 and α2 ≈ 0.1 yielded maximum correlation scores, and thus, these
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values were used in all the experiments on all the databases.

The parameters of both the Wiener model in the multi-stage framework (Sec.

6.2.2) and the SVR in the multi-learner framework (Sec. 6.2.2) were also determined

via cross-validation. I found that the value of nb = 1 and a simple linear output

block yielded maximum correlation scores on all the databases.

6.4.1 Performance of Continuous-Time Predictors on LIVE Mobile

Stall Video Database-II

First, I evaluated the performance of continuous-time QoE models on the distorted

videos of the LIVE Mobile Stall Video Database-II. The results are reported in Table

6.2. Since I proposed two different ways of combining the ensemble of Hammerstein-

Wiener models (the multi-learner will be referred to as TV-QoE-1 while the multi-

stage learner will be referred to as TV-QoE-2), I report the performance of both of

these models. SQI, which is the only other existing continuous-time QoE predic-

tor, uses a per-frame quality metric to compute the spatial quality on each frame.

Specifically, the instantaneous QoE (Qn) at each frame n is computed as the sum of

a video presentation quality (Pn), i.e., spatial quality, and a stall-dependent expe-

rience quality (Sn). Since the LIVE Mobile Stall Video Database-II does not have

reference videos, I relied on a popular per-frame NR-IQA metric, NIQE [33], to

compute the continuous-time SQI scores.

It may be observed from Table 6.2 that the proposed set of dynamic inputs

and learners significantly outperform SQI. It may also be observed that the proposed

multi-learner approach (Sec. 6.2.2), which uses an SVR with a nonlinear radial

basis kernel function performs better than the multi-stage approach (Sec. 6.2.2),

for every given input combination. I will show next that NIQE scores [33] are poor

indicators of instantaneous QoE, so including NIQE as an input slightly deteriorates

the performance of TV-QoE. Figure 6.10 illustrates a few examples of the ground
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Table 6.2: Performance of continuous-time QoE predictors on the LIVE Mobile Stall
Video Database-II. Note that the per-frame QoE values lie in the range [0, 100]. The
best performing model is indicated in bold font.

Learner Type PLCC SROCC RMSE

Multi-learner
(TV-QoE-1)

Stall only Inputs 0.9599 0.9474 4.6305

Multi-learner Stall only Inputs + Scene Criticality 0.9601 0.9444 4.4241

Multi-learner Stall only Inputs + Scene Criticality + NIQE [33] 0.9297 0.9262 5.5052

Multi-stage
(TV-QoE-2)

Stall only Inputs 0.9394 0.9378 5.3155

Multi-stage Stall only Inputs + Scene Criticality 0.9429 0.9330 5.0244

Multi-stage Stall only Inputs + Scene Criticality + NIQE [33] 0.9348 0.9162 5.2517

SQI + NIQE [8] 0.8348 0.6988 4.4901

truth and the predicted continuous-time QoE waveforms of a few test videos from

the proposed approach (using the multi-learner approach and the stall-based inputs

in isolation). It may be observed that the proposed model does not overfit to the

existing dataset, but instead attempts to accurately predict the varying trends in

each dynamic QoE prediction. In some of the examples, it may be observed that

the QoE predictions occasionally fall outside of the 95% confidence interval, despite

maintaining a strong monotonic relationship with the ground truth dynamic QoE.

6.4.2 Intrinsic Analysis of the Individual Dynamic Inputs

To better understand the relationship between the proposed input set and the dy-

namic QoE, I trained separate Hammerstein-Wiener Models on each input on the

same 50 random, non-overlapping train and test splits of the LIVE Mobile Stall

Video Database-II, as were used in Sec. 6.4.1. I report the median SROCC and

PLCC scores over these 50 iterations in Table 6.4. These results illustrate the degree

to which each of these inputs accurately predict perceived QoE, while also justify-

ing the choice of the proposed inputs. It may also be observed that the per-second
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Table 6.3: Performance of continuous QoE predictors on the video set Vc of the
LIVE-Netflix Video QoE Database. Note that the per-frame QoE values lie in the
range [−2.26, 1.52]. The best performing model is indicated in bold font.

Learner Type Quality Predictor PLCC SROCC RMSE

Multi-learner
(TV-QoE-1)

Scene Criticality NIQE [33] 0.2412 0.1711 0.5462

Multi-learner Scene Criticality SSIM [39] 0.6314 0.3998 0.4723

Multi-learner Scene
Criticality

STRRED [91]
0.6733

0.5776 0.3965

Multi-stage
(TV-QoE-2)

Scene Criticality NIQE [33] 0.2512 0.1594 0.5609

Multi-stage Scene Criticality SSIM [39] 0.6387 0.3786 0.4732

Multi-stage Scene Criticality STRRED [91] 0.6728 0.5715 0.3969

SQI NIQE [33] 0.2123 0.1408 0.3102

SQI SSIM [39] 0.2392 0.0934 0.3136

SQI STRRED [91] 0.1984 0.1917 0.3214

NIQE scores[33] performed rather poorly at predicting QoE scores when videos were

afflicted by stalling events. Thus including this input when conducting continuous-

time QoE prediction degrades performance (Sec. 6.4.1). Of course, the NIQE model

utilizes only spatial information and does not benefit from any reference signal or

training process.

6.4.3 Performance of Continuous-Time Predictors on the LIVE-

Netflix Video QoE Database

As mentioned, I divided the entire collection of 112 videos in the LIVE-Netflix

Video QoE Database into two disjoint video sets: Vc and Vs. Videos belonging to

Vs contain both compression and stalling artifacts, while those in Vc contain only

compression artifacts. Hence, on the video set Vc, I did not use any stall-based

inputs6, relying instead only on the content-driven inputs. I report the performance

6This is same as setting stall-based inputs to zero.
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Table 6.4: Contribution of the proposed stall and video content-based dynamic
inputs towards continuous-time QoE on the 50 test splits of the LIVE Mobile Stall
Video Database-II [7]. The video content-based inputs are italicized.

Dynamic Inputs PLCC SROCC

Stall position 0.6946 0.6962

Number of stalls 0.4399 0.4744

Time since
previous stall

0.9109 0.8919

Stall density 0.6264 0.6945

Buffer model 0.7893 0.7829

Frequency 0.6812 0.7640

Rebuffering rate 0.5554 0.5495

Scene Criticality 0.5701 0.4399

NIQE [33] 0.0758 0.0811

of TV-QoE-1, TV-QoE-2, and SQI in Table 6.3. For videos in Vs, however, I used

both stall-based as well as content-based inputs, and report the performance in Table

6.5. Furthermore, I also considered scenarios where either a FR, RR, or NR VQA

model would be incorporated into the QoE predictor. It may be observed from these

results that TV-QoE significantly outperforms SQI on both video sets, especially

when videos were afflicted by both stalls and compression artifacts. Further, the

multi-learner approach (TV-QoE-1) yielded better performance than the multi-stage

approach (TV-QoE-2) on both video sets of the LIVE-Netflix Video QoE Database.

6.4.4 Performance of Global QoE Predictors

Next, I evaluated the performance of the proposed global features (Table 6.1) and

other global QoE predictors under identical train/test settings on all three databases

and report the results in Tables 6.6, 6.7, and 6.8. I computed the perceptual quality
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Table 6.5: Performance of continuous QoE predictors on the video set Vs of the
LIVE-Netflix Video QoE Database. Note that the per-frame QoE values lie in the
range [−2.26, 1.52]. The best performing model is indicated in bold font.

Learner Type Quality
Predictor

PLCC SROCC RMSE

Multi-learner
(TV-QoE-1)

Stall only Inputs - 0.9131 0.8579 0.3536

Multi-learner Stall only Inputs + Scene Criticality NIQE [33] 0.9059 0.8306 0.3672

Multi-learner Stall only Inputs + Scene Criticality SSIM [39] 0.8694 0.7820 0.3151

Multi-learner Stall only Inputs + Scene Criticality STRRED [91] 0.8905 0.8061 0.3004

Multi-stage
(TV-QoE-2)

Stall only Inputs 0.8800 0.7970 0.3851

Multi-stage Stall only Inputs + Scene Criticality NIQE [33] 0.8738 0.7775 0.4026

Multi-stage Stall only Inputs + Scene Criticality SSIM [39] 0.8345 0.7248 0.3584

Multi-stage Stall only Inputs + Scene Criticality STRRED [91] 0.8496 0.7471 0.3777

SQI NIQE [33] 0.6821 0.4281 0.3433

SQI SSIM [39] 0.6892 0.3793 0.3450

SQI STRRED [91] 0.6705 0.3275 0.3581

scores using various quality predictors and tested several pooling strategies to derive

a single quality score from the per-frame perceptual quality score, to be used as a

global feature. I only report the results obtained from the pooling strategy that

yielded the best performance. Note that the LIVE Mobile Stall Video Database-

II does not contain pristine videos, so I relied on the no-reference (NR) picture

quality model NIQE [33] to supply VQA scores on this database. For the other two

databases, the reference videos are available, so I report the performance using full-

reference (SSIM [39]), reduced-reference (ST-RRED [91]), and no-reference VQA

models (NIQE [33]). Note that when evaluating the proposed global QoE predictor

on the video sets Vc of different databases, I utilized only the video content-based

inputs, since the stall-informative global features do not capture any information.

When evaluating the proposed global QoE predictor and V-ATLAS, I trained an

SVR with a radial basis kernel function, by separately finding the optimal SVR
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Figure 6.10: Some examples of the continuous-time predictions obtained from the
proposed algorithm (indicated in red) on different test video sequences of the LIVE
Mobile Stall Video Database-II. The ground truth dynamic QoE response is in-
dicated in magenta and the associated 95% confidence interval derived from the
responses from individual subjects is indicated in green. Spearman Rank Ordered
Correlation (SROCC) and Root Mean Squared Error (RMSE) between the instan-
taneous predicted and ground truth QoE is also reported in each plot.

parameters via cross-validation on all three databases.

I found that the proposed global QoE predictor outperforms all existing

QoE predictors on the LIVE Mobile Stall Video Database-II (Table 6.6). It is also

clear from these results that including NIQE as a global perceptual quality metric

benefits the QoE prediction. The scatter plots of the predicted and the ground

truth QoE scores for one test split are illustrated in Fig. 6.11. With regards to

the Waterloo QoE Database, there are a couple of oddities in the results arising

from the database design. Each of the 120 videos in the Waterloo QoE Database

belonging to Vs are of the same length and each contains one stalling event of
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Figure 6.11: Scatter plots of the ground truth overall QoE scores and the predicted
overall QoE scores obtained on a single test split from our different global QoE
predictors on the LIVE Mobile Stall Video Database-II [7]. Global TV-QoE is
statistically significant than all other global QoE predictors.

Table 6.6: Performance of global QoE models on the LIVE Mobile Stall Video
Database-II [7]. Note that the final QoE values lie in the range [0, 100]. The best
performing model is indicated in bold font.

PLCC SROCC RMSE

TV-QoE Global Stall Features 0.7099 0.6836 8.7609

TV-QoE Global Stall
Features + Max-Pooled

NIQE

0.7757 0.7797 7.7914

SQI + NIQE 0.4828 0.4565 9.8512

V-ATLAS + Max-Pooled NIQE 0.7541 0.7572 8.1541

FTW 0.4411 0.6689 10.5074

duration 5 seconds. In this peculiar scenario, the otherwise different global TV-

QoE and V-ATLAS features capture exactly the same information, thereby yielding

identical performances (Table 6.7). Moreover, since the FTW model [170] is based

on only two features (the number and the summed length of stalls), it predicts the

same quality score on all video contents in the Waterloo QoE Database. On the

LIVE-Netflix QoE Database, the global TV-QoE model competes very well with the

performances of V-ATLAS and SQI (Table 6.8).
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Table 6.7: Performance of global QoE predictors on the Waterloo QoE Database
[8]. Note that the final QoE values lie in the range [0, 100]. The best performing
model is indicated in bold font.

Vs Vc

Quality Predictor (Pool
type = mean)

PLCC SROCC RMSE PLCC SROCC RMSE

Global TV-QoE
Features

NIQE [33] 0.3200 0.3216 14.8681 0.2983 0.3356 19.9181

Global TV-QoE
Features

SSIM [39] 0.8660 0.8604 8.5568 0.8956 0.8531 12.2217

SQI [8] NIQE [33] 0.3046 0.4134 14.1765 0.2393 0.3357 18.6965

SQI [8] SSIM [39] 0.8582 0.8623 7.5603 0.8910 0.8462 12.2412

V-ATLAS [169] NIQE [33] 0.3200 0.3216 14.8681 0.2983 0.3356 19.9181

V-ATLAS [169] SSIM [39] 0.8660 0.8604 8.5568 0.8956 0.8531 12.2217

FTW [170] NaN NaN - -NA- -NA- -NA-

6.4.5 Statistical Significance of Global and Dynamic QoE Predic-

tors on Different QoE Databases

In this section, I report the results of the paired sample t-tests that I had conducted

between SROCC values obtained from different global QoE predictors on three dif-

ferent databases in Tables 6.9 -6.13 and different continuous-time QoE predictors in

Tables 6.14 - 6.16.

6.5 Conclusions

In this Chapter, I presented a continuous-time video QoE predictor that effectively

captures the effects of a variety of QoE-influencing factors, and that models the

client-side network buffer model, subjective hysteresis, and that is able to accurately

predict viewers’ instantaneous QoE. I have also designed a global QoE predictor that

achieves top performance on all existing QoE databases. The success of these two

models encourages the design of quality-aware stream-switching algorithms at either
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Table 6.8: Performance of global QoE predictors on the LIVE-Netflix Video QoE
Database [9]. Note that the final QoE values lie in the range [−1.6, 1.6]. The best
performing model is indicated in bold font.

Vs Vc

Quality Predictor
(Pool type = mean)

PLCC SROCC RMSE PLCC SROCC RMSE

Global TV-QoE
Features

NIQE [33] 0.6719 0.3318 0.4126 0.7676 0.4909 0.6616

Global TV-QoE
Features

SSIM [39] 0.7821 0.7045 0.3475 0.9030 0.8000 0.7452

Global TV-QoE
Features

STRRED [91] 0.8564 0.7591 0.3196 0.9246 0.8091 0.5663

SQI NIQE [33] 0.1977 0.0272 0.4051 0.4895 0.3773 0.6630

SQI SSIM [39] 0.6132 0.5500 0.3185 0.8262 0.8000 0.4596

SQI STRRED [91] 0.8597 0.7500 0.2151 0.8061 0.8000 0.3820

V-ATLAS NIQE [33] 0.8165 0.6091 0.3245 0.8170 0.6045 0.6250

V-ATLAS SSIM [39] 0.7951 0.6591 0.3346 0.9406 0.8545 0.3902

V-ATLAS STRRED [91] 0.8547 0.7636 0.3095 0.9462 0.8591 0.3586

FTW 0.2797 0.2778 0.3984 -NA- -NA- -NA-

the client or the server’s end which could control the position, location, and length

of stalls, given a network bandwidth budget and the end user’s device information,

such that the end user’s QoE is maximized. Such models would greatly benefit both

content and network providers.
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Table 6.9: Results of the paired sample t-test performed between SROCC values gen-
erated by different global QoE predictors on LIVE Mobile Stall Video Database-II.
‘1,’ ‘0,’ ‘-1’ indicate that the algorithm in the row is statistically superior, equivalent,
or inferior to the algorithm in the column respectively. Global TV-QoE is denoted
as TV-QoE.

TV-QoE
(Stall only)

TV-QoE +
NIQE

V-ATLAS + NIQE
SQI +
NIQE

FTW

TV-QoE (Stall
only)

0 -1 -1 1 1

TV-QoE + NIQE 1 0 1 1 1

V-ATLAS + NIQE 1 -1 0 1 1

SQI + NIQE -1 -1 -1 0 -1

FTW -1 -1 -1 1 0

Table 6.10: Results of the paired sample t-test performed between SROCC values
generated by different global QoE predictors on the video set Vs of Waterloo QoE
Database. ‘1,’ ‘0,’ ‘-1’ indicate that the algorithm in the row is statistically superior,
equivalent, or inferior to the algorithm in the column respectively. Global TV-QoE
is denoted as TV-QoE.

TV-QoE V-ATLAS SQI

NIQE SSIM NIQE SSIM NIQE SSIM

TV-QoE
NIQE 0 -1 0 -1 -1 -1

SSIM 1 0 1 0 1 1

V-ATLAS
NIQE 0 -1 0 -1 -1 -1

SSIM 1 0 1 0 1 1

SQI
NIQE 1 -1 1 -1 0 -1

SSIM 1 -1 1 -1 1 0
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Table 6.11: Results of the paired sample t-test performed between SROCC values
generated by different global QoE predictors on the video set Vc of Waterloo QoE
Database. ‘1,’ ‘0,’ ‘-1’ indicate that the algorithm in the row is statistically superior,
equivalent, or inferior to the algorithm in the column respectively. Global TV-QoE
is denoted as TV-QoE.

TV-QoE V-ATLAS SQI

NIQE SSIM NIQE SSIM NIQE SSIM

TV-QoE
NIQE 0 -1 0 -1 0 -1

SSIM 1 0 1 0 1 0

V-ATLAS
NIQE 0 -1 0 -1 0 -1

SSIM 1 0 1 0 1 0

SQI
NIQE 0 -1 0 -1 0 -1

SSIM 1 0 1 0 1 0

Table 6.12: Results of the paired sample t-test performed between SROCC values
generated by different global QoE predictors on the video set Vs of LIVE Netflix
Video QoE Database. ‘1,’ ‘0,’ ‘-1’ indicate that the algorithm in the row is statis-
tically superior, equivalent, or inferior to the algorithm in the column respectively.
Global TV-QoE is denoted as TV-QoE.

TV-QoE V-ATLAS SQI

NIQE SSIM ST-
RRED

NIQE SSIM ST-
RRED

NIQE SSIM ST-
RRED

TV-QoE

NIQE 0 -1 -1 -1 -1 -1 1 -1 -1

SSIM 1 0 -1 1 0 -1 1 1 -1

ST-
RRED

1 1 0 1 1 0 1 1 0

V-ATLAS

NIQE 1 -1 -1 0 -1 -1 1 0 -1

SSIM 1 0 -1 1 0 -1 1 1 -1

ST-
RRED

1 1 0 1 1 0 1 1 0

SQI

NIQE -1 -1 -1 -1 -1 -1 0 -1 -1

SSIM 1 -1 -1 0 -1 -1 1 0 -1

ST-
RRED

1 1 0 1 1 0 1 1 0
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Table 6.13: Results of the paired sample t-test performed between SROCC values
generated by different global QoE predictors on the video set Vc of LIVE Netflix
Video QoE Database. ‘1,’ ‘0,’ ‘-1’ indicate that the algorithm in the row is statis-
tically superior, equivalent, or inferior to the algorithm in the column respectively.
Global TV-QoE is denoted as TV-QoE.

TV-QoE V-ATLAS SQI

NIQE SSIM ST-
RRED

NIQE SSIM ST-
RRED

NIQE SSIM ST-
RRED

TV-QoE

NIQE 0 -1 -1 -1 -1 -1 1 -1 -1

SSIM 1 0 -1 1 -1 -1 1 0 -1

ST-
RRED

1 1 0 1 -1 -1 1 1 0

V-ATLAS

NIQE 1 -1 -1 0 -1 -1 1 -1 -1

SSIM 1 1 1 1 0 0 1 1 1

ST-
RRED

1 1 1 1 0 0 1 1 1

SQI

NIQE -1 -1 -1 -1 -1 -1 0 -1 -1

SSIM 1 0 -1 1 -1 -1 1 0 -1

ST-
RRED

1 1 0 1 -1 -1 1 1 0

Table 6.14: Results of the paired sample t-test performed between SROCC val-
ues generated by different continuous-time QoE predictors on LIVE Mobile Stall
Video Database-II. ‘1,’ ‘0,’ ‘-1’ indicate that the algorithm in the row is statistically
superior, equivalent, or inferior to the algorithm in the column respectively. TV-
QoE-1 denotes the multi-learner approach and TV-QoE-2 denotes the multi-stage
approach. The row to the left of NIQE represents the proposed QoE model with
stall-derived inputs alone.

TV-QoE-1 TV-QoE-2 SQI

- NIQE - NIQE

TV-QoE-1
- 0 1 1 1 1

NIQE -1 0 -1 1 1

TV-QoE-2
- -1 1 0 1 1

NIQE -1 -1 -1 0 1

SQI -1 -1 -1 -1 0
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Table 6.15: Results of the paired sample t-test performed between SROCC values
generated by different continuous-time QoE predictors on the video set Vc of LIVE
Netflix Video QoE Database. ‘1,’ ‘0,’ ‘-1’ indicate that the algorithm in the row is
statistically superior, equivalent, or inferior to the algorithm in the column respec-
tively. TV-QoE-1 denotes the multi-learner approach and TV-QoE-2 denotes the
multi-stage approach.

TV-QoE-1 TV-QoE-2 SQI

NIQE SSIM ST-
RRED

NIQE SSIM ST-
RRED

NIQE SSIM ST-
RRED

TV-QoE-1

NIQE 0 -1 -1 0 -1 -1 0 1 0

SSIM 1 0 -1 1 0 -1 1 1 1

ST-
RRED

1 1 0 1 1 0 1 1 1

TV-QoE-2

NIQE 0 -1 -1 0 -1 -1 0 1 0

SSIM 1 0 -1 1 0 -1 1 1 1

ST-
RRED

1 1 0 1 1 0 1 1 1

SQI

NIQE 0 -1 -1 0 -1 -1 0 1 0

SSIM -1 -1 -1 -1 -1 -1 -1 0 -1

ST-
RRED

0 -1 -1 0 -1 -1 0 1 0
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Table 6.16: Results of the paired sample t-test performed between SROCC values
generated by different continuous-time QoE predictors on the video set Vs of LIVE
Netflix Video QoE Database. ‘1,’ ‘0,’ ‘-1’ indicate that the algorithm in the row is
statistically superior, equivalent, or inferior to the algorithm in the column respec-
tively. TV-QoE-1 denotes the multi-learner approach and TV-QoE-2 denotes the
multi-stage approach. The row to the left of NIQE represents the proposed QoE
model with stall-derived inputs alone.

TV-QoE-1 TV-QoE-2 SQI

- NIQE SSIM ST-
RRED

- NIQE SSIM ST-
RRED

NIQE SSIM ST-
RRED

TV-QoE-1

- 0 1 1 1 1 1 1 1 1 1 1

NIQE -1 0 1 0 1 1 1 1 1 1 1

SSIM -1 -1 0 -1 0 0 1 1 1 1 1

ST-
RRED

-1 0 1 0 1 1 1 1 1 1 1

TV-QoE-2

- -1 -1 0 -1 0 1 1 1 1 1 1

NIQE -1 -1 0 -1 -1 0 1 1 1 1 1

SSIM -1 -1 -1 -1 -1 -1 0 -1 1 1 1

ST-
RRED

-1 -1 -1 -1 -1 -1 1 0 1 1 1

SQI

NIQE -1 -1 -1 -1 -1 -1 -1 -1 0 1 1

SSIM -1 -1 -1 -1 -1 -1 -1 -1 -1 0 1

ST-
RRED

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0
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Chapter 7

Conclusion

There is a growing awareness of the importance of understanding, predicting, and

monitoring the perceptual quality of images and videos that are delivered to human

viewers. The leaps of progress made thus far in vision science and image engineer-

ing continue to push the boundaries of achievable perceptual quality prediction.

Existing quality prediction approaches only tackle a confined set of image and video

distortions. With a motivation to address the scenarios encountered in real-world

visual media applications, this dissertation focused on designing quality models that

are robust to factors such as authentic mixtures of naturally occurring distortions in

pictures and videos, varied visual content, network conditions, and display devices.

Specifically, I have introduced two image and video quality assessment databases

and two separate image and video quality predictors that effectively predict the

(temporal) quality of pictures and videos in-the-wild. I have demonstrated my algo-

rithms successfully on a variety of datasets. These databases and automated tools

could in turn have tremendous practical and industrial significance and could help

in delivering the best possible visual content to end users.

I described an image database that models authentic picture distortions and

an online study framework for subjective studies in Chapter 3. This database greatly
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contrasts with existing benchmark IQA databases that are limited to single, syn-

thetic distortions with subjective studies conducted in carefully calibrated labora-

tory settings. The online study framework is an important contribution as it an

indispensable resource for conducting several other studies on tone-mapped HDR

pictures [171], X-ray images, and mobile videos.

The automatic image quality predictor, FRIQUEE that I introduced in Chap-

ter 4 is the first of its kind to address authentic image distortions. Such algorithms

are invaluable for applications such as source inspection of user-uploaded pictures

and videos on social-media applications such as Facebook, Instagram, and YouTube,

and can guide content-based image/video compression strategies. It can also drive

the next-generation mobile cameras that support on-device quality-adaptive picture

and video capturing algorithms. These tools can serve as an additional factor for

the image search ranking algorithms – identifying and culling low quality images in

the top search results can greatly improve user experience.

With an ultimate goal to promptly and accurately predict an end user’s in-

stantaneous QoE, I conducted a subjective study on a video collection afflicted with

simulated network impairments (detailed in Chapter 5). Contrary to previous stud-

ies that focused only on end-point subjective scores on limited video data collections,

I obtained rich subjective per-frame data on a large video dataset and designed a

novel subject rejection strategy for temporal data. Building on the insights obtained

from a thorough analysis of the human behavioral responses to time-varying video

quality, I designed a dynamic QoE predictor that requires only a video segment (to

be transmitted), the instantaneous network conditions, and the end user’s device

information for accurate, instantaneous QoE prediction. Since existing approaches

only predict end-point quality score for a given video with dynamic impairments,

they do not offer sufficient benefit to the existing stream-switching algorithms. On

the other hand, the TV-QoE model that I designed and described in Chapter 6
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could easily have a direct and immediate impact on existing adaptive bitrate allo-

cation protocols and stream-switching algorithms that are used in the client players

of content providers such as YouTube and Netflix, thereby propelling user-centric

mobile network planning and management.

In any case, given the current explosive growth rate of photos and videos

on numerous data-driven services, finding effective and efficient ways to provide a

high-quality of viewing experience is a pressing concern. The overarching goal of

this work is to model image and video statistics by thoroughly understanding how

naturally occurring distortions change these statistics thus designing low-level per-

ceptual quality models. Though I have concentrated on applications for visible light

pictures and videos, the perceptual quality models presented in this dissertation

are absolutely suitable for applications involving alternative imaging modalities –

infrared images, satellite images, and so on. I hope that this dissertation has laid a

concrete foundation for exciting and practical prospective avenues of quality assess-

ment research.
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